t
1 2
E2
1 2
mH
2
s
E2
利用矢量恒等式 ( E H ) H ( E ) E ( H )
E
H
t
1 2
E2
1 2
mH
2
s
E2
在时变场中总电磁能量密度为
于是得
w
we
wm
1E2 2
1 2
mH
2
(E
H
)
w t
p
单位体积损耗的的焦耳热为
p s E2
取体积分,并应用散度定理得
S
EH
20
例题:课本例6.4
一个漏电的圆盘电容器,其漏电导率为s, 介电常数 为, 导磁率为m0, 圆盘面积足够大以致可以忽略边
缘效应. 当电容器所加电压为U=U0cosωt时, 求电容器中任意点的磁场强度H。
解: 由第一方程
JT
H • dl C
sE
S Jd
JT Jd • dS D E
j
1 2
U0I0
sin
耗能
储能
复数形式的坡印廷定理
对于简谐振荡的电磁场 E E0e jkz H H 0e jkz
说明相位变化的方向是+z方向,电磁波能量传播的方向是
+z方 向, 时间因子包含于E0和H0中.
1 2
EH*
• dS
jw
V
1 2
mH
2 0
E02
dV
V
1 2
(s
E2 )dV
填充空气,电压为U=U0sinωt, 距离d 很小, 面 积S 较大,电容器中的电场均匀分布。
证明:流进封闭面的传导电流等于流出封闭面的位移 电流。