柱锥台的结构特征(详)
- 格式:ppt
- 大小:1.12 MB
- 文档页数:43
高考数学空间几何体知识点:柱、锥、台、球的结构特征如何搞好复习,是一项教学技术。
为大家带来高考数学空间几何体知识点:柱、锥、台、球的结构特征,供大家参考!棱柱:(1)概念:如果一个多面体有两个面互相平行,而其余每相邻两个面的交线互相平行。
这样的多面体叫做棱柱。
棱柱中两个互相平行的面叫棱柱的底面,其余各个面都叫棱柱的侧面,两个侧棱的公共边叫做棱柱的侧棱,棱柱中两个底面间的距离叫棱柱的高。
(2)分类:①按侧棱是否与底面垂直分类:分为斜棱柱和直棱柱。
侧棱不垂直于底面的棱柱叫斜棱柱,侧棱垂直于底面的棱柱叫直棱柱;②按底面边数的多少分类:底面分别为三角形,四边形,五边形…、分别称为三棱柱,四棱柱,五棱柱,…棱锥:(1)概念:如果一个多面体的一个面是多边形,其余各个面是有一个公共顶点的三角形,那么这个多面体叫棱锥。
在棱锥中有公共顶点的各三角形叫做棱锥的侧面,棱锥中这个多边形叫做棱锥的底面,棱锥中相邻两个侧面的交线叫做棱锥的侧棱,棱锥中各侧棱的公共顶点叫棱锥的顶点。
棱锥顶点到底面的距离叫棱锥的高,过棱锥不相邻的两条侧棱的截面叫棱锥的对角面。
(2)分类:按照棱锥底面多边形的边数可将棱锥分为:三棱锥、四棱锥、五棱锥…(3)正棱锥的概念:如果一个棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。
棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台,原棱锥的底面和截面分别叫做棱台的下底面和上底面。
圆柱的概念:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面,平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边叫做圆柱侧面的母线。
圆锥的概念:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体;圆台的概念:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分;球的定义:第一定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫球体,简称球。
§1.1.1 柱、锥、台、球的结构特征一、教学目标:认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。
二、重点与难点:重点:柱、锥、台、球的性质难点:柱、锥、台、球性质应用课前预习案(一)、我的知识:1、问题引入:在现实生活中,我们的周围存在着各种各样的物体,它们具有不同的几何形状。
下面请同学们观察以下物体,它们具有什么样的几何结构特征?你能对它们进行分类吗?分类的依据是什么?图12、空间几何体大体分类上图中的物体大体可分为两大类:①由若干个__________________叫做多面体。
__________________叫做多面体的面。
________________________叫做多面体的棱,______________________叫做多面体的顶点。
②____________________________________________________________________叫做旋转体,____________________________叫做旋转体的轴。
(二)预习自测:※限时检测(时量:5 分钟满分:10 分)1. 一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成()A.棱锥B.棱柱C.平面D.长方体2. 棱台不具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点3. 已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则()A.A ⊆B ⊆ C ⊆ D ⊆ F ⊆ EB.A ⊆C ⊆ B ⊆ F ⊆ D ⊆ EC.C ⊆ A ⊆ B ⊆ D ⊆ F ⊆ ED.它们之间不都存在包含关系4. 长方体三条棱长分别是AA' =1 AB =2,AD = 4,则从A点出发,沿长方体的表面到C′的最短矩离是_____________.5. 若棱台的上、下底面积分别是25 和81,高为4,则截得这棱台的原棱锥的高为___________.※限时检测(时量:5 分钟满分:10 分)1.Rt∆ABC三边长分别为3、4、5,绕着其中一边旋转得到圆锥,对所有可能描述不对的是()A.是底面半径 3 的圆锥B.是底面半径为 4 的圆锥C.是底面半径 5 的圆锥D.是母线长为 5 的圆锥2. 下列命题中正确的是().A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个平行截面间的几何体是旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线3. 一个球内有一内接长方体,其长、宽、高分别为5、4、3,则球的直径为______4. 用一个平面截半径为25cm 的球,截面面积是49π2c m cm2 ,则球心到截面的距离为多少?(三)、预习中存在的问题课中探究案学习建议:请同学们在课堂中用有效时间认真思考这些问题,并结合预习中的疑问开始下面的小组探究学习。