(完整版)平面向量的数乘及其几何意义
- 格式:ppt
- 大小:2.93 MB
- 文档页数:12
平面向量数乘的定义及运算法则一、平面向量数乘的定义a平面向量数乘是指将一个实数与一个向量相乘的运算。
给定一个向量,记实数为k,则该数乘运算表示为k。
二、数乘运算的几何意义a1.若k>0,则k的几何意义是将向量的长度放大k倍,并且与的方向相同。
a2.若k<0,则k的几何意义是将向量的长度放大|k|倍,并且与的方向相反。
a3.若k=0,则k的几何意义是零向量,即长度为零的向量。
三、数乘运算的性质a1.结合律:对于任意实数k1、k2和向量,有k1(k2)=(k1k2)。
a2.分配律:对于任意实数k和向量、**b**,有k(+**b**)=k+k**b**。
a3.分配律:对于任意实数k1、k2和向量,有(k1+k2)=k1+k2。
a4.数乘1的性质:对于任意向量,有1=。
a5.数乘0的性质:对于任意向量,有0=**0**。
四、实例分析现在我们通过一个实例来理解平面向量数乘的定义及运算法则。
例1:已知向量**a**=(2,3),计算3**a**和-2**a**。
解:根据定义,我们有:a-3=3(2,3)=(6,9)a--2=-2(2,3)=(-4,-6)a所以,3=(6,9),-2=(-4,-6)。
a根据几何意义,3的长度是向量长度的3倍,并且与方向相同;-2的长度是向量长度的2倍,并且与方向相反。
五、总结平面向量数乘的定义及运算法则为:-数乘运算是将一个实数与一个向量相乘的运算。
-数乘运算的几何意义是改变向量的长度和方向。
-数乘运算满足结合律、分配律,数乘1的性质和数乘0的性质。
-通过实例分析可以更好地理解平面向量数乘的概念和运算法则。
在向量的数乘运算中,需要注意实数与向量的顺序以及符号的正确性,以确保结果的准确性。
掌握平面向量数乘的定义及运算法则,能够在解决相关问题时得到正确的结果,并应用到更复杂的向量运算中。
注意:(1)两相向量的和仍是一个向量;(2)当向量a r 与b r 不共线时,a r +b r 的方向不同向,且|a r +b r |<|a r |+|b r |;(3)当a r 与b r 同向时,则a r +b r 、a r 、b r 同向,且|a r +b r |=|a r |+|b r |;当a r 与b r 反向时,若|a r |>|b r |,则a r +b r 的方向与a r 相同,且|a r +b r |=|a r |-|b r |,若|a r |<|b r |,则a r +b r 的方向与b r 相同,且|a r +b r |=|b r |-|a r |.2、向量加法的交换律:a r +b r =b r +a r3.向量加法的结合律:(a r +b r ) +c r =a r + (b r +c r )证:知识点二 向量的减法1.用“相反向量”定义向量的减法:“相反向量”的定义: 记作 规定:零向量的相反向量仍是零向量-(-a r ) = a r任一向量与它的相反向量的和是零向量a r + (-a r ) =0r如果a r 、b r 互为相反向量,则a r = -b r , b r = -a r , a r + b r = 0r向量减法的定义:向量a r 加上的b r 相反向量,叫做a r 与b r 的差,即:a r - b r = a r + (-b r )2.用加法的逆运算定义向量的减法:3.求作差向量:已知向量a r 、b r ,求作向量∵(a r -b r ) + b r = a r + (-b r ) + b r = a r +0r = a r减法的三角形法则作法:在平面内取一点O , 作OA u u u r = a r , OB uuu r = b r , 则BA u u u r = a r - b r即a r - b r 可以表示为从向量b r 的终点指向向量a r 的终点向量知识点三 向量的数乘运算 1、定义:实数λ与向量a ρ的积是一个 ,这种运算叫做向量的数乘,记作: ,其长度与方向规定如下:(1)|λa ρ|=|λ||a ρ| (2)λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ=02、运算定律 结合律:λ(μa ρ)=第一分配律:(λ+μ)a ρ= 第二分配律:λ(a ρ+b ρ)=3、向量共线定理。
2.2.3 向量数乘运算及其几何意义疱工巧解牛知识•巧学一、向量的数乘1.向量的数乘一般地,我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa .它的长度与方向规定如下:(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.实数与向量的积的定义可以看作是数与数的积的概念的推广,λa 是一个向量,其长度|λa |=|λ||a |,其方向与λ的符号有关,应注意0a =0而不是实数0.2.向量的数乘的几何意义由实数与向量积的定义可以看出,它的几何意义就是将表示向量a 的有向线段伸长或压缩.当|λ|>1时,表示向量a 的有向线段在原方向(λ>0)或反方向(λ<0)上伸长了|λ|倍;当|λ|<1时,表示向量a 的有向线段在原方向(λ>0)或反方向(λ<0)上缩短了|λ|倍.图2-2-343.向量数乘的运算律设λ、μ为实数,那么(1)λ(μa )=(λμ)a ;(2)(λ+μ)a =λa +μa ;(3)λ(a +b )=λa +λb .学法一得 实数与向量的积的运算律与中学代数运算中实数乘法的运算律很相似.证明这些运算律成立的关键是证明等式两边的向量的模相等,且方向相同.证明:(1)如果λ=0,μ=0,a =0中至少有一个成立,则(1)式显然成立.如果λ≠0,μ≠0,且a ≠0,有|λ(μa )|=|λ||μa |=|λ||μ||a |,|(λμ)a |=|λμ||a |=|λ||μ||a |.∴|λ(μa )|=|(λμ)a |.(2)如果λ=0,μ=0,a =0中至少有一个成立,则(2)式显然成立.如果λ≠0,μ≠0且a ≠0,可分如下两种情况:当λ、μ同号时,则λa 和μa 同向,所以|(λ+μ)a |=|λ+μ||a |=(|λ|+|μ|)|a |,|λa +μa |=|λa |+|μa |=|λ||a |+|μ||a |=(|λ|+|μ|)|a |,即有|(λ+μ)a |=|λa +μa |.(3)当a =0,b =0中至少有一个成立,或λ=0,λ=1时,(3)式显然成立.当a ≠0,b ≠0且λ≠0,λ≠1时,分如下两种情况:当λ>0且λ≠1时,在平面内任取一点O ,作=a ,=b ,1OA =λa ,11B A =λb ,如图2-2-35所示,则=a +b ,1OB =λa +λb .图2-2-35 由作法知∥11B A ,有∠OAB=∠OA 1B 1,|11B A |=λ||, ||||111AB OA =λ.∴△OAB∽△OA 1B 1||1OB =λ,∠AOB=∠A 1OB 1.因此,O 、B 、B 1在同一条直线上,|1OB |=|λ|,1OB 与λ的方向也相同. ∴λ(a +b )=λa +λb .当λ<0时,由图2-2-36可类似证明λ(a +b )=λa +λb .图2-2-36∴(3)式成立.误区警示 分类讨论的思想在数学中既是一个重要的策略思想,也是一个重要的思想方法.很多数学问题不仅在涉及的知识范围上带有综合性,而且就问题本身来说,也受到多种条件的交叉制约,形成错综复杂的局面,很难从整体上着手解决,这时,就从“分割”入手,把“整体”划分为若干个“局部”,转而去解决局部问题,最后达到整体上的解决.这是具有哲学意义的思想方法.分类讨论思想,就是科学合理地划分类别,通过各个击破,再求整体解决(即先化整为零,再聚零为整)的策略思想.类别的划分必须满足互斥、无漏、最简的要求,探索划分的数量界限是分类讨论的关键.二、两向量共线如果向量b 与非零向量a 共线,那么有且只有一个实数λ,使得b =λa .(1)向量的平行(共线)与直线平行是有区别的,直线平行不包括重合的情况.(2)定理的实质是向量相等,即存在唯一实数λ使b =λa (a ≠0),应从向量的大小和方向两个方面理解,借助于数量λ沟通了两个向量b 与a 的联系.学法一得 定理为解决三点共线和两直线平行问题提供了一种方法,要证三点共线或两直线平行,任取两点确定两个向量,看能否找到唯一的实数λ使两向量相等.把向量平行的问题转化为寻求实数λ使向量相等的问题.典题•热题知识点一 向量的加法、减法及数乘例1设a 、b 为向量,计算下列各式.(1)-31×3a ; (2)2(a -b )-(a +21b ); (3)(2m-n)a -m b -(m-n)(a -b )(m 、n 为实数).思路分析:利用向量的加法、向量的减法及数乘向量运算的法则及运算律计算.解:(1)原式=(-31×3)a =-a ; (2)原式=2a -2b -a -21b =(2a -a )-(2b +21b )=a -25b . (3)原式=2m a -n a -m b -m(a -b )+n(a -b )=2m a -n a -m b -m a +m b +n a -n b=m a -n b .知识点二 用向量共线判断三点共线例2 求实数λ,使得λa +b 与2a +λb 共线.思路分析:求未知数的值,可考虑通过挖掘题目的条件,布列含有未知数的方程求解. 解:∵λa +b 与2a +λb 共线,∴存在一个实数,不妨设为m ,使得(λa +b )=m(2a +λb ),即(λ-2m)a +(1-m λ)b =0.∴⎩⎨⎧=-=-.01,02λλm m 解得λ=±2.例3 如图2-2-37所示,在平行四边形ABCD 中,=a ,=b ,M 是AB 的中点,点N 是BD 上一点,|BN|=31|BD|.求证:M 、N 、C 三点共线.图2-2-37解:∵=a ,AB =b ,∴=-AB =a -b . ∴+==21b +31=21b +31(a -b )=31a +61b =61 (2a +b ). 又∵+==21b +a =21(2a +b ), ∴MN MC 3=.又MC 与MN 有共同起点,∴M、N 、C 三点共线.方法归纳 几何中证明三点共线,可先在三点中选择起点和终点确定两个向量,看能否找到唯一的实数λ使两向量相等,把向量共线问题转化为寻求实数λ使向量相等的问题.向量共线即向量平行,它与直线(线段)共线不同.知识点三 用向量法解决几何问题例4 求证:三角形两边中点的连线平行于第三边并且等于第三边的一半.图2-2-38如图2-2-38,已知△ABC 中,D 、E 分别是边AB 、AC 的中点.求证:DE ∥BC,且DE=21BC. 证明:因为D 、E 分别是边AB 、AC 的中点,故AD =21AB ,AE =21.DE =AE -AD =21 (-)=21, 而D 、E 不重合,所以DE ∥BC,且DE=21BC. 例5 如图2-2-39,在OACB 中,BD=31BC ,OD 与BA 相交于点E ,求证:BE=41BA.图2-2-39证明:用向量法证明.设E′是线段BA 上的一点,且BE′=41BA ,只要证点E 、E′重合即可. 设=a ,=b ,则=31a ,=b +31a . ∵E O E B '='-b ,E '=a -E O ',3E B '=E ', ∴E O '=41(a +3b )=43(b +31a ). ∴E O '=43.∴O、E′、D 三点共线.∴BE=41BA. 问题•探究思想方法探究问题 向量的运算(运算律)与几何图形的性质有紧密的联系,向量的运算(运算律)可以用图形简明地表示,而图形的一些性质又可以反映到向量的运算(运算律)上来.在课本中哪些地方能反映二者的紧密联系?向量作为研究几何问题的工具,有什么特殊的优越性?用向量解决问题有什么明确的步骤吗?探究过程:在课本中有若干例子说明了向量与图形的密切联系,如平行四边形是表示向量加法、减法的几何模型,加法及其交换律a +b =b +a 可以表示平行四边形中的对边平行以及三角形全等,这说明,以向量为工具,可以把几何图形、几何变换、向量运算及运算律统一起来.再如平面几何中的共线和平行关系,用向量与实数的乘法来描述.而向量数乘的分配律:k(a+b)=k a+k b可以表示三角形相似.向量数量积可以证明垂直问题.向量作为研究几何问题的工具,开创了研究几何问题的新方法.由于欧氏几何只依据基本的逻辑原理,而不便用其他工具,只从基本公理出发,通过演绎推理建立几何关系,因此,它给出的几何论证严谨且幽雅,能够给人们极大的美感和享受,但没有一般规律可循,且存在较大的思考难度,往往对人的智力提出极大的挑战.寻求几何研究的工具,以更好地把握图形的性质和规律,推进几何研究的发展成为数学家们的一个理想.自从建立向量运算(运算律)与几何图形之间的关系后,将图形的研究推进到了有效运算的水平,从而实现了综合几何到向量几何的转折.向量运算(运算律)把向量与几何、代数有机地联系在一起.探究结论:用向量方法解决几何问题的基本过程是:首先把一个几何量代数化,即把位移这个基本的几何量加以抽象而得到向量的概念;然后运用欧氏空间特有的平移、全等、相似与勾股定理等基本性质引进向量的加(减)法、向量数乘与数量积这三种运算,并把欧氏几何的直观性与向量的运算(运算律)有机地结合起来,使得直观的几何问题代数化,抽象的运算及运算律直观化,这样就使数与形有机地结合起来.运算和运算律是向量的灵魂,是联结数与形的纽带,它建立了运算(运算律)与几何图形之间的对应关系,使我们能够通过运算来研究几何.误区陷阱探究问题“已知非零向量a、b、c满足a+b+c=0,表示a、b、c的有向线段一定构成三角形”这个命题是否正确?探究思路:乍一看题目,好像能构成一个三角形,但应注意三角形三边不共线.而题目中所给的三个向量并不一定是不共线的向量,若不注意这一点,则极易得出“命题正确”的错误结论.因此要处理这个问题应从两方面来考虑:三个向量共线与不共线.图2-2-40,当a、b不共线时,如右图,在平面内取一点O,作=a,=b,由向量的加法可知=a+b,又由已知a+b+c=0,则有c=-(a+b)=-=BO,取BO=c则表示a、b、c的有向线段能构成三角形.当a、b共线时,显然不能构成三角形.故非零向量a、b、c满足a+b+c=0,表示a、b、c的有向线段不一定构成三角形.故“已知非零向量a、b、c满足a+b+c=0,表示a、b、c的有向线段一定构成三角形”这个命题不正确.探究结论:这个命题不正确.。