控制系统仿真第6章 电力电子及电机拖动系统的simscape仿真
- 格式:pptx
- 大小:763.83 KB
- 文档页数:10
matlab的simulink仿真建模举例-回复Matlab的Simulink仿真建模举例Simulink是Matlab附带的一款强大的仿真建模工具,它能够帮助工程师们通过可视化的方式建立和调试动态系统模型。
Simulink通过简化传统的数学模型建立过程,使得工程师们能够更加直观地理解和分析复杂的系统。
在本文中,我们将介绍一个关于电机控制系统的Simulink仿真建模的例子。
一、了解电机控制系统在开始建模之前,我们首先需要了解电机控制系统的基本原理。
电机控制系统通常包括输入、电机和输出三个主要部分。
输入通常是来自于传感器或用户的命令信号,例如转速、位置或力矩。
电机是通过接受输入信号并根据特定的控制算法生成输出信号。
输出信号通常是电机的转速、位置或功率等。
控制算法通常采用比例-积分-微分(PID)控制或者其他控制算法。
二、建立Simulink模型1. 创建新的Simulink模型在Matlab主界面中,选择Simulink选项卡下的“New Model”创建一个新的Simulink模型。
2. 添加输入信号在Simulink模型中,我们首先需要添加输入信号模块。
在Simulink库浏览器中选择“Sources”类别,在右侧面板中找到“Step”模块,并将其拖放到模型中。
3. 添加电机模型接下来,我们需要将电机模型添加到Simulink模型中。
Simulink库浏览器中选择“Simscape”类别,在右侧面板中找到“Simscape Electrical”子类别,然后找到“Simscape模型”模块,并将其拖放到模型中。
4. 连接输入信号和电机模型将输入信号模块的输出端口与电机模型的输入端口相连,以建立输入信号与电机模型之间的连接。
5. 添加输出信号模块在Simulink模型中,我们还需要添加输出信号模块。
在Simulink库浏览器中选择“Sinks”类别,在右侧面板中找到“Scope”模块,并将其拖放到模型中。
电力电子系统的PSIM+MATLAB联合仿真方法李洁,王伟,李晓妮,钟彦儒西安理工大学,陕西西安金花南路5号 710048电子邮箱:lijie@JOINT SIMULATION METHOD OF PSIM+MATLABFOR POWER ELECTRONIC SYSTEMSLI Jie, WANG Wei, LI Xiao-ni, ZHONG Yan-ruXi’an University of Technology, 710048ABSTRACT: A new idea of joint simulation with PSIM and MATLAB is proposed in order to meet the requirements of those power electronic systems that need more elaborate modeling both in system level and in circuit-level. The proposed joint simulation method is illustrated by the example of analysis of the deadtime effect in voltage source inverters. It is shown that the method can make PSIM and MATLAB give full play to their strengths, simplify the process of the establishment of the simulation models, extend the application occasions to maximum extent, and greatly accelerate the simulation speed.KEY WORDS: simulation;PSIM; MATLAB; power electronics systems摘要:针对一些要求仿真建模细致程度同时兼顾系统层面及线路层面的电力电子系统仿真需求,提出了用PSIM+MATLAB联合建立仿真模型的新思路。
控制系统仿真第六章课后题作业6.1在图6.1中,已知单位负反馈系统被控对象的传递函数为)1001.0)(11.0()(++=s s s K s G 试编写matlab 程序,设计系统的超前矫正器Gc(s),要求:1)在斜坡信号r (t)=2t 作用下,系统的稳态误差ess<=0.002;2)校正后系统的相位裕度Pm 范围为:45~55;3)绘制系统校正后的bode 图和阶跃响应曲线。
程序:>> s=tf('s');>> G=1000/(s*(0.1*s+1)*(0.001*s+1));>> margin(G) % 绘制校正前的bode 图>> figure(2)>> sys=feedback(G,1);>> step(sys) %绘制校正前的单位阶跃响应曲线>> [Gm,Pm]=margin(G); %该句值计算bode图的增益裕量Gm和相位裕量Pm >> [mag,phase,w]=bode(G); %该句只计算bode图上多个频率点w对应的幅值和相位>> QWPm=50; %取矫正后的相位为50>> FIm=QWPm-Pm+5;>> FIm=FIm*pi/180;>> alfa=(1-sin(FIm))/(1+sin(FIm));>> adb=20*log10(mag);>> am=10*log10(alfa);>> wc=spline(adb,w,am);>> T=1/(wc*sqrt(alfa));>> alfat=alfa*T;>> Gc=tf([T 1],[alfat 1]) %校正器的传递函数Transfer function:0.01794 s + 1-------------0.00179 s + 1>> figure(3)>> margin(Gc*G) % 系统矫正后的bode图>> figure(4)>> step(feedback(Gc*G,1)) % 校正后的单位阶跃响应曲线作业6.2在图6.1中,已知单位负反馈系统被控对象的传递函数为)102.0)(11.0()(++=s s s K s G 试编写matlab 程序,设计系统的滞后校正器Gc (s ),要求:1) 在斜坡信号r(t)=t 作用下,系统的稳态误差ess 01.0≤;2) 校正后系统的相位裕度Pm 范围为:40~50;3) 绘制系统矫正前后的bode 图和阶跃响应曲线。
电力拖动自动控制系统Matlab仿真实验报告实验一单闭环转速反馈控制直流调速系统一.【实验目的】1. 加深对比例积分控制的无静差直流调速系统的理解;2. 研究反馈控制环节对系统的影响和作用 .二.【实验步骤和内容】1. 仿真模型的建立:打开模型编辑窗口,复制相关模块,修改模块参数,模块连接。
2. 仿真模型的运行;仿真过程的启动,仿真参数的设置 .转速负反馈闭环调速系统 :直流电动机:额定电压U N=220V,额定电流I dN =55A,额定转速n N=1000r/min电动机电动势系数C e=0.192V.min/r, 假定晶闸管整流装置输出电流可逆,装置的放大系数K s=44,滞后时间常数T s =0.00167s,电枢回路总电阻R=1.0Ω,电枢回路电磁时间常数T1 =0.00167s,电力拖动系统机电时间常数Tm=0.075s,转速反馈系数α=0.01V.min/r对应额定转速时的给定电压U n∗ =10V 比例积分控制的直流调速系统的仿真框图如图 5-1 所示。
图 5-1 比例积分控制的直流调速系统的仿真框图图 5-2 开环比例控制直流调速系统仿真模型图图 5-3 开环空载启动转速曲线图图 5-4 开环空载启动电流曲线图图 5-5 闭环比例控制直流调速系统仿真模型图在比例控制直流调速系统中,分别设置闭环系统开环放大系数 k=0.56 , 2.5, 30 ,观察转速曲线图,随着 K 值的增加,稳态速降减小,但当 K 值大于临界值时,系统将发生震荡并失去稳定,所以 K 值的设定要小于临界值。
当电机空载启动稳定运行后,加负载时转速下降到另一状态下运行,电流上升也随之上升。
图 5-6 k=0.56 转速曲线图图 5-7 k=0.56 电流曲线图图 5-8 k= 2.5 转速曲线图图 5-9 k= 30 转速曲线图图 5-10 闭环比例积分控制直流调速系统仿真模型图图 5-11 PI 控制转速 n 曲线图图 5-12 PI 控制电流曲线图在闭环比例积分( PI )控制下,可以实现对系统无静差调节,即, 提高了系统的稳定性。
Matlab作业09电气2班陈雅淇200930530207 (1)电力电子交流调压器的matlab仿真:相控式单相交流调压原理通过某种装置对交流电压的有效值进行调整叫做交流调压。
交流调压的方式一般分为三种:相控式、斩波式、通断式。
第一种的电路一般由晶闸管构成,通过改变控制角实现调压。
第二种又叫交流斩波器,一般要用全控型器件来实现。
第三种也叫功率控制器,主电路也相控电路相似,但控制规则不同。
单相相控交流调压电路如图1-1所示。
两个晶闸管反并联与负载串联,通过改变控制角来调节晶闸管的导通时间,进而起到调节负载电压有效值的作用。
与晶闸管相控整流电路类似,负载性质会对电路的工作情况有较大的影响。
图1-1相控作用使电流发生滞后,并且波形也发生畸变,所以即使纯电阻负载功率因数也不1。
而且控制角越大,功率因数越低,这是相控电路普遍存在的一个缺点。
图1-2 单相调压电路电阻负载波形图1-3 带感性负载的交流调压电路图1-4 感性负载的电压和电流波形仿真如下:图 1-5 单相交流调压仿真图图1-8 输入脉冲信号设置仿真参数,仿真时间设置0.04s,仿真算法ode15s;启动仿真,结果如图1-9和图1-10。
图1-9 α=90°电流电压波形图1-10 α=10°电流电压波形(2)电力系统matlab仿真为了保证问题研究具有普遍性,我们选择了典型的电力系统——单机一无穷大系统如图1所示.vi 是机端电压、xi是变压器的电抗、x 1 和x 2 是线路电抗、Vs是无穷大电源电压.直接利用PSB中的以下模块来组成我们要研究的传统励磁控制系统。
仿真之前必须合理的设置算法和精度.算法和精度选择的不适合,将使仿真结果偏离理论与实际,出现仿真图象不连续或者发散的情况,很可能令仿真难以进行,甚至被系统自动中断.MATLAB针对不同的系统提供给用户两大仿真算法——定步长和变步长,可以通过Simulation中的Solver 进行设置.定步长求解器使用固定的步长对系统进行求解,有Discrete,ode5,ode4,ode3,ode2,ode1;变步长求解器则能够根据用户指定的积分误差自动调整仿真步长,有Discrete,ode45,ode23,ode13,ode15 s,ode23 s,ode23 t,ode23 tb.仿真算法的选择很重要,算法的合理与否将影响到仿真的结果和仿真速度.MATLAB 针对刚性系统(系统的特征值相差很大,既有快变特性又有慢变特性的系统)提供了ode15 s,ode23 s,ode23 t与ode23 tb 等算法.电力系统模型由于含有发电机这类刚性系统应采用ode15 s,ode15 s是刚性系统的变阶次多步解法,因此仿真结果较准确.MATLAB 使用户方便地控制仿真精度,用户可以对积分绝对误差和相对误差进行合理的设置.减小积分误差限可提高系统仿真结果的精度,但系统仿真速度将变慢;使用较大的积分误差限或者定步长求解器可以加快系统的仿真速度,但会使仿真结果的精度降低.具体应用时应综合考虑系统仿真精度与仿真效率,来决定仿真模型的Relative tolerance 和Absolute tolerance: 的选项.综上,将求解器设置(Solver options)如下:Type: Varible step. Ode15 (s) (stiff/NDF) Max step size: auto Relative tolerance:1e-2Min step size: auto Absolute tolerance:1e-16Initial step size: auto Maximum order 5小扰动试验t= 5 s时在系统的励磁调节器机端电压参考输入端(vref)加上阶跃扰动(5%),进行小扰动试验,记录下该扰动下电功率Pe的时域响应如图3所示短路试验在t = 5.1 s时系统出现三相短路故障,在=5.2 s排除故障将线路重新闭合,得到系统电功率短路故障的时域响应如图4 所示.(3)自动控制matlab仿真三阶系统单位反馈传递函数F(s)=3(s^2+4s+3)/(2s^3+s^2+4s+2)Matlab参数如下:num=3*[1 4 3];den=[2 1 4 2];sys=tf(num,den);p=roots(den)t=0:0.01:3;figure(1)impulse(sys,t);gridxlabel('t');ylabel('c(t)');title('impulse response'); figure(2)step(sys,t);gridxlabel('t');ylabel('c(t)');title('step response'); figure(3)u=t;lsim(sys,u,t,0);gridxlabel('t');ylabel('c(t)');title('ramp response');单位脉冲响应单位阶跃响应单位斜坡响应。
电力拖动自动控制系统---Matlab仿真实验报告实验一二极管单相整流电路一.【实验目的】1.通过对二极管单相整流电路的仿真,掌握由电路原理图转换成仿真电路的基本知识;2.通过实验进一步加深理解二极管单向导通的特性。
图1-1二极管单相整流电路仿真模型图二.【实验步骤和内容】1.仿真模型的建立1打开模型编辑窗口;2复制相关模块;3修改模块参数;4模块连接;2.仿真模型的运行1仿真过程的启动;2仿真参数的设置;3.观察整流输出电压、电流波形并作比较,如图1-2、1-3、1-4所示。
三.【实验总结】由于负载为纯阻性,故输出电压与电流同相位,即波形相同,但幅值不等,如图1-4所示。
图1-2整流电压输出波形图图1-3整流电流输出波形图图1-4整形电压、电流输出波形图实验二三相桥式半控整流电路一.【实验目的】1.通过对三相桥式半控整流电路的仿真,掌握由电路原理图转换成仿真电路的基本知识;2.研究三相桥式半控整流电路整流的工作原理和全过程。
二.【实验步骤和内容】1.仿真模型的建立:打开模型编辑窗口,复制相关模块,修改模块参数,模块连接。
2.仿真模型的运行;仿真过程的启动,仿真参数的设置。
相应的参数设置:(1)交流电压源参数U=100V,f=25Hz,三相电源相位依次延迟120°。
(2)晶闸管参数Rn=0.001Ω,Lon=0.0001H,Vf=0V,Rs=50Ω,Cs=250e-6F。
(3)负载参数R=10Ω,L=0H,C=inf。
(4)脉冲发生器的振幅为5V,周期为0.04s(即频率为25Hz),脉冲宽度为2。
图2-1三相桥式半控整流电路仿真模型图当α=0°时,设为0.0033s,0.0166s,0.0299s。
图2-2α=0°整流输出电压等波形图当α=60°时,触发信号初相位依次设为0.01s,0.0233s,0.0366s。
图2-3α=60°整流输出电压等波形图三.【实验总结】三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、双反星形可控整流电路以及十二脉波可控整流电路等,均可在三相半波的基础上进行分析。
“电力电子”仿真实验指导书MATLAB仿真实验主要是在simulink环境下的进行的。
Simulink是运行在MATLAB环境下,用于建模、仿真和分析动态系统的软件包。
它支持连续、离散及两者混合的线性和非线性系统。
由于它具有直观、方便、灵活的特点,已经在学术界、工业界的建模及动态系统仿真领域中得到广泛的应用。
Simulink提供的图形用户界面可使用鼠标的拖放操作来创建模型。
Simulink本身包含sources、sinks、Discrete、math、Nonlinear和continuous 等模块库。
实验主要使用Sinks、Sources、Signals & System和Power System Blockset这四个模块库中的一些模块搭建电力电子课程中的典型电路进行仿真。
在搭建成功的电路中使用scope显示模块显示仿真的波形、验证电路原理分析结果。
这些典型电路包括:1)单相半波可控整流电路(阻性负载和阻感负载)2)单相全控桥式整流电路(阻性负载和阻感负载)3)三相全控桥式整流电路(双窄脉冲阻性负载和双窄脉冲阻感负载)4)降压斩波电路、升压斩波电路5)三相半波逆变电路、三相全波逆变电路。
一、matlab、simulink基本操作多数学生在做这个实验是时候可能是第一次使用matlab中的simulink来仿真,因此下面首先介绍一下实验中要掌握得的一些基本操作(编写试验指导书时所使用的matlab6.1版本)。
若实验过程中使用matlab的版本不同这些基本操作可能会略有不同。
图0-1 matlab启动界面matlab的启动界面如图0—1所示,点击matlab左上方快捷键就可以进入simulink程序界面(在界面右侧的Command Window中输入simulink命令回车或者在Launch Pad窗口中点击simulink子菜单中Library Browser都可以进入simulink程序界面)如图0—2所示.+图0-2 simulink程序界面1。