多元统计分析对应分析
- 格式:doc
- 大小:302.00 KB
- 文档页数:20
多元统计分析——对应分析多元统计分析是指在研究中同时考虑两个或多个自变量对因变量的影响,并通过统计方法进行分析。
对应分析是多元统计分析的一种方法,用于确定两个或多个分类变量之间的关联性。
对应分析可以帮助人们理解变量之间的相关性,并提供用于可视化和解释数据的工具。
在本文中,我们将详细介绍对应分析的概念、原理、应用以及一些重要的注意事项。
对应分析的应用非常广泛。
它可以用于数据挖掘、市场研究、生态学、社会科学等领域。
在市场研究中,对应分析可以用于确定消费者对产品的喜好和需求,帮助企业调整产品定位和市场战略。
在生态学中,对应分析可以用于研究不同物种之间的相互作用,并帮助我们了解生态系统的结构和动态。
在社会科学中,对应分析可以用于研究不同社会群体之间的关系,例如分析不同年龄段人群的消费行为和购买偏好。
然而,对应分析也需要注意一些重要的事项。
首先,对应分析是一种描述性的分析方法,不能确定因果关系。
其次,对应分析对数据的分布假设了一定的要求,例如对称分布、线性关系等。
如果数据的分布不满足这些假设,结果可能会不准确。
最后,对应分析通常在两个分类变量之间进行,而不适用于连续变量或混合类型的变量。
在总结中,对应分析是多元统计分析的一种方法,用于确定两个或多个分类变量之间的关联性。
它可以帮助我们理解变量之间的相关性,并提供用于可视化和解释数据的工具。
对应分析有着广泛的应用领域,但也需要注意一些重要的事项。
通过理解对应分析的原理和应用,我们可以更好地利用这一方法来分析和解释数据。
一、什么是多元统计分析❖多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广。
❖多元统计分析是研究多个随机变量之间相互依赖关系以及内在统计规律的一门统计学科。
二、多元统计分析的内容和方法❖1、简化数据结构(降维问题)将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。
(1)主成分分析(2)因子分析(3)对应分析等❖2、分类与判别(归类问题)对所考察的变量按相似程度进行分类。
(1)聚类分析:根据分析样本的各研究变量,将性质相似的样本归为一类的方法。
(2)判别分析:判别样本应属何种类型的统计方法。
例5:根据信息基础设施的发展状况,对世界20个国家和地区进行分类。
考察指标有6个:1、X1:每千居民拥有固定电话数目2、X2:每千人拥有移动电话数目3、X3:高峰时期每三分钟国际电话的成本4、X4:每千人拥有电脑的数目5、X5:每千人中电脑使用率6、X6:每千人中开通互联网的人数❖3、变量间的相互联系一是:分析一个或几个变量的变化是否依赖另一些变量的变化。
(回归分析)二是:两组变量间的相互关系(典型相关分析)❖4、多元数据的统计推断点估计参数估计区间估计统 u检验计参数 t检验推 F检验断假设相关与回归检验卡方检验非参秩和检验秩相关检验❖1、假设检验的基本原理小概率事件原理❖ 小概率思想是指小概率事件(P<0.01或P<0.05等)在一次试验中基本上不会发生。
反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立;反之,则认为假设成立。
❖ 2、假设检验的步骤 (1)提出一个原假设和备择假设❖ 例如:要对妇女的平均身高进行检验,可以先假设妇女身高的均值等于 160 cm (u=160cm )。
这种原假设也称为零假设( null hypothesis ),记为 H 0 。
多元统计分析笔记附实例1.主成分分析,因⼦分析,对应分析可以⽤来简化数据结构⼜不会损失太多信息2.聚类分析和判别分析是对所考察的变量按相似程度进⾏分类。
3.回归分析⽤来判断⼀些变量的变化是不是依赖于另外⼀些变量的变化,如果是,建⽴变量之间的定量关系式,并⽤于预测4.典型相关分析⽤来分析两组变量之间的相互关系5.多元数据的统计推断参数估计假设检验6.参数估计:⽤样本值估计总体X中的某些参数。
点估计:区间估计:7.数学期望的置信区间分为⽅差已知和⽅差未知置信区间:估计参数的取值范围8.假设检验:对总体的分布律或分布参数作某种假设,根据抽样得到的值,俩判断假设是否成⽴。
9.假设检验分为参数检验和⾮参数检验。
参数检验是在总体分布类型已经知道情况下进⾏的,其⽬的是对总体的参数及其有关性质做出明确判断。
⾮参数检验这是总体分布类型未知的情况下进⾏的检验10.相关系数是⽤来描述两个变量间的线性相关程度的。
简单线性相关系数:Pearson11.标准化:(1)min-max标准化对原始数据进⾏线性变换适⽤于最⼤值和最⼩值已知⽬的是把所有制映射到[0,1] 区间。
(2)Z-zcore 标准化适⽤于最⼤值和最⼩值未知,或者超出取值范围的离群数据的值。
12. 聚类分析:分析-----分类—系统聚类---检验聚类分析显著性:/doc/f89672b26294dd88d0d26b9a.html/article/e8cdb32b7a2daf37052bade5.html⽤SPSS做相关分析的应⽤⽰例【例】表1是某市从1978年⾄1992年社会商品零售总额、居民收⼊和全市总⼈⼝统计数字表,试分析它们之间是否存在线性关系。
表1某市统计表第⼀步:建⽴数据⽂件。
定义变量:序号为Number,假设年份⽤y表⽰,零售总额⽤r表⽰,居民收⼊⽤i表⽰,全市总⼈⼝⽤p表⽰,输⼊数据,如下截图⽰:第⼆步:进⾏数据分析。
在数据⽂件管理窗⼝中,点击Analyze,展开下拉菜单,再点击Correlate中的Bivariate项,进⼊Bivariate Correlations对话框,请童鞋们看下图:(1)在左边的这个东东为源变量列框,右边的Variables框为待分析的变量列框,就是这个东东:(2)再看下边的Correlation Coefficients选项,也就是分析⽅法选择项,就是这个东东。
对应分析法一、简介对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,是近年新发展起来的一种多元相依变量统计分析技术,是一种多元统计分析技术,主要分析定性数据的方法,也是强有力的数据图示化技术。
对应分析是一种数据分析技术,它能够帮助我们研究由定性变量构成的交互汇总表来揭示变量间的联系。
交互表的信息以图形的方式展示。
主要适用于有多个类别的定类变量,可以揭示同一个变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系,适用于两个或多个定类变量。
对应分析是由法国人Benzenci于1970年提出的,起初在法国和日本最为流行,然后引入到美国。
对应分析法是在R型和Q型因子分析的基础上发展起来的一种多元统计分析方法,因此对应分析又称为R-Q型因子分析。
在因子分析中,如果研究的对象是样品,则需采用Q型因子分析;如果研究的对象是变量,则需采用R型因子分析。
但是,这两种分析方法往往是相互对立的,必须分别对样品和变量进行处理。
因此,因子分析对于分析样品的属性和样品之间的内在联系,就比较困难,因为样品的属性是变值,而样品却是固定的。
于是就产生了对应分析法。
对应分析就克服了上述缺点,它综合了R型和Q型因子分析的优点,并将它们统一起来使得由R型的分析结果很容易得到Q型的分析结果,这就克服了Q 型分析计算量大的困难;更重要的是可以把变量和样品的载荷反映在相同的公因子轴上,这样就把变量和样品联系起来便于解释和推断。
对应分析数据的典型格式是列联表或交叉频数表。
常表示不同背景的消费者对若干产品或产品的属性的选择频率。
背景变量或属性变量可以并列使用或单独使用。
两个变量间——简单对应分析;多个变量间——多元对应分析。
对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。
应用多元统计分析第8章 对应分析- 1-对应分析(Correspondence Analysis)是在因子分析的基础上发展起来的一种视觉化的数据分析方法,目的是通过定位点图直观地揭示样品和变量之间的内在联系。
R型因子分析是对变量(指标)进行因子分析,研究的是变量之间的相互关系;Q型因子分析是对样品作因子分析,研究的是样品之间的相互关系。
但无论是R型或Q型分析都不能很好地揭示变量和样品之间的双重关系。
而在许多领域错综复杂的多维数据分析中,经常需要同时考虑三种关系,即变量之间的关系、样品之间的关系以及变量与样品之间的交互关系。
法国学者苯参次(J.P.Benzecri)于1970年提出了对应分析方法,这个方法对原始数据采用适当的标度化处理,把R型和Q型分析结合起来,通过R型因子分析直接得到Q型因子分析的结果,同时把变量和样品反映到同一因子平面上,从而揭示所研究的样品和变量之间的内在联系。
在因子分析中,R型因子分析和Q型因子分析都是从分析观测数据矩阵出发的,它们是反映一个整体的不同侧面,因而它们之间一定存在内在联系。
对应分析就是通过某种特定的标准化变换后得到的对应变换矩阵Z将两者有机地结合起来。
具体地,就是首先给出变量的R型因子分析的协方差阵 和样品的Q型因子分析的协方差阵 。
由于矩阵 和 有相同的非零特征值,记为 ,如果 的对应于特征值 的标准化特征向量为 ,则容易证明, 的对应于同一特征值的标准化特征向量为当样本容量n很大时,直接计算矩阵 的特征向量会占用相当大的容量,也会大大降低计算速度。
利用上面关系式,很容易从 的特征向量得到 的特征向量。
并且由 的特征值和特征向量即可得到R 型因子分析的因子载荷阵A和Q型因子分析的因子载荷阵B,即有由于 和 具有相同的非零特征值,而这些特征值又是各个公因子的方差,因此设有p个变量的n个样品观测矩阵 ,这里要求所有元素 ,否则对所有数据同时加上一个适当的正数,以使它们满足以上要求。
多元统计分析介绍1.因子分析(Factor Analysis)因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。
运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。
2.主成分分析主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。
主成分分析一般很少单独使用:a,了解数据。
(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。
(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。
***************************************************************************************************** *************主成分分析和因子分析的区别1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。
2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。
3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。
因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。
多元统计分析对应分析学生实验报告学院:统计学院课程名称:多元统计分析专业班级:统计123班姓名:叶常青学号: 0124253学生实验报告学生姓名叶常青学号0124253同组人实验项目对应分析的上机操作□必修□选修□演示性实验□验证性实验□操作性实验□综合性实验实验地点实验仪器台号指导教师李燕辉实验日期及节次一、实验目的及要求:目的熟悉和掌握对应分析的原理和上机操作方法内容及要求本次操作就父母与孩子的受教育程度的关系进行对应分析,分别对父亲与孩子和母亲与孩子的受教育程度做对应分析,最后再对输出结果进行详细的分析。
二、仪器用具: 仪器名称规格/型号数量 备注计算机 1 有网络环境 SPSS 软件 1三、实验方法与步骤:打开GSS93 subset .sav 数据,对变量Degree 与变量padeg 和madeg 进行对应分析,依次选择 分析→降维 …进入 对应分析 对话框,进行进行如下设置, 便可输出想要的数据的:四、实验结果与数据处理:按照上述方法和步骤得出以下输出结果.对父亲受教育程度与孩子受教育程度的关系进行分析如下:表1对应表Father' s Highest Degree R's Highest Degree Less than HS High school Junior college Bachel orGraduate有效边际LT High School 15630829 4525563High School 27 24834 7937425Junior College 1 11 2 8 3 25Bachelo r 6 43 7 4718121Graduat e 3 22 3 271671有效边际19363275 206991205表2 摘要维数奇异值惯量卡方Sig.惯量比例置信奇异值解释累积标准差相关21 .400.160.846.846.025.2562 .164.027.142.988.0263 .047.002.0121.0004 .006.000.0001.000总计.189228.193.000a1.0001.000a. 16 自由度,表3摘要维数奇异值惯量卡方Sig.惯量比例置信奇异值解释累积标准差相关21 .400.160.846.846.025.2562 .164.027.142.988.0263 .047.002.0121.0004 .006.000.0001.000总计.189228.193.000a1.0001.000a. 16 自由度第二部分摘要给出了惯量,卡方值以及每一维度所解释的总惯量的百分比信息。
总惯量为0.189,卡方值为228.193 ,有关系式228.193=0.189*1205,由此可以清楚的看到总惯量和卡方的关系。
Sig.是假设卡方值为0成立的概率,它的值几乎为0说明列联表之间有较强的相关性。
表注表明的自由度为(5-1)*(5-1)=16。
惯量部分是四个公共因子分别解释总惯量的百分比。
表4行简要表Father' s Highest Degree R's Highest Degree Less than HS High school Junior college Bachel orGraduate有效边际LT High School .277.547.052.080.0441.000High School.064.584.08.186.0871.000Junior College.040.440.08.320.1201.000Bachelo r.050.355.058.388.1491.000Graduat e.042.310.042.380.2251.000质量.160.524.062.171.082表5列简要表Father' s Highest Degree R's Highest Degree Less than HS High school Junior college Bachel orGraduate质量LT High School .808.487.387.218.253.467High School.140.392.453.383.374.353Junior College.005.017.027.039.030.021Bachelo r.031.068.093.228.182.100Graduat e.016.035.04.131.162.059有效边际1.0001.0001.0001.0001.000第三部分的结果是在对应分析中点击Statistics按钮,进入Statistics对话框,选中Row profiles和Column profiles 交友程序运行所得到的。
表6概述行点aFa ther's Highes t Degree 质量维中的得分惯量贡献1 2 点对维惯量维对点惯量1 2 1 2 总计LT High School .467-.608.188.072.432.100.963.0371.000Hi gh School .353.269-.509.025.064.559.406.593.999Ju nior Colleg e.021.786.007.005.032.000.965.000.965Ba chelor .1001.019.476.046.261.139.901.080.981Gr aduate .0591.199.749.040.211.202.838.134.971有效总计1.000.1891.0001.000a. 对称标准化表7概述列点aR' s Highes t Degree 质量维中的得分惯量贡献1 2 点对维惯量维对点惯量1 2 1 2 总计Le ss than HS.160-.998.652.075.399.416.851.1491.000Hi gh school .524-.165-.305.014.036.298.417.582.998Ju nior colleg e.062.127-.512.003.003.100.127.845.972Ba chelor .171.976.321.069.406.108.948.042.990Gr aduate .082.874.395.029.157.078.875.073.949有效总计1.000.1891.0001.000a. 对称标准化第四部分是概述行点和概述列点,是对列联表行与列各状态有关信息的概括. 其中质量是行与列的边缘概率,也就是PI与PJ。
惯量是每一行(列)与其重心的加权距离平方,可以看到II=IJ=0.189。
由概述行点表可知变量degree的状态Less than HS和Bachelor在第一维度中贡献较大分别为0.399和0.406。
状态Less than HS 对第二维度贡献最大为0.416。
概述列表可知变量padeg的状态LT High School在第一维度贡献最大为0.432。
状态High School对第二维度贡献最大为0.559。
第五部分是degree各状态和paged各状态同时在一张二维表上的投影. 由图可以看到父亲初中的教育程度、高中的教育程度与孩子的教育程度有较强的关联性。
表1对应表Mothe r's Highest DegreeR's Highest DegreeLessthanHSHighschoolJuniorcollegeBachelorGraduate有效边际LT High School16928625 3723540High School437441 13356644Junio r College 2 136 155 41Bache lor 3 3311 341596Gradu ate 2 8 1 18 29有效边际21671484 2291071350第一部分是对应表,对应表是由原始数据按degree与padeg分类的列连表,可以看到总有效观测值为1350,而不是原始数据1500。
说明有效的观测数据有1350个,这是因为原始数据中有150个数据缺失。
表2摘要维数奇异值惯量卡方Sig.惯量比例置信奇异值解释累积标准差相关21 .400.160.846.846.025.2562 .164.027.142.988.0263 .047.002.0121.0004 .006.000.0001.000总计.189228.193.000a1.0001.000a. 16 自由度第二部分是摘要表。
第二部分摘要给出了惯量,卡方值以及每一维度所解释的总惯量的百分比信息。
总惯量为0.189,卡方值为228.193 ,有关系式228.193=0.189*1205,由此可以清楚的看到总惯量和卡方的关系。
Sig.是假设卡方值为0成立的概率,它的值几乎为0说明列联表之间有较强的相关性。
表注表明的自由度为(5-1)*(5-1)=16。
惯量部分是四个公共因子分别解释总惯量的百分比。
.概述行点aMo ther's 质量维中的得分惯量贡献Highes t Degree 1 2 点对维惯量维对点惯量1 2 1 2 总计LT High School .400-.744.143.091.546.052.986.0141.000Hi gh School .477.371-.339.035.162.350.755.243.998Ju nior Colleg e.030.941.807.016.066.126.683.194.877Ba chelor .071.992.733.035.173.244.817.172.989Gr aduate .0211.0041.285.018.053.227.479.303.781有效总计1.000.1951.0001.000a. 对称标准化概述列点aR' s Highes t Degree 质量维中的得分惯量贡献1 2 点对维惯量维对点惯量1 2 1 2 总计Le ss than HS.160-1.188.504.098.557.260.935.0651.000Hi gh school .529-.073-.365.012.007.450.093.901.994Ju nior colleg e.062.416.296.008.027.035.514.100.614Ba chelor .170.858.283.053.308.087.956.040.996Gr aduate .079.721.576.024.102.168.706.174.881有效总计1.000.1951.0001.000a. 对称标准化第三部分是概述行点和概述列点,是对列联表行与列各状态有关信息的概括.由贡献部分可以看出 LT High School这一状态对第一维度的贡献最大.在表的最后维度部分对各状态特征值的贡献部分,看到除了Graduate外,其余各最高学历的特征值的分布大部分集中在第一维度上,说明第一维度反映了最高学历各状态大部分的差异.把母亲受教育程度和子女受教育程度的各状态投影到同一张二维图上,如上图所示。