线性代数62维数基与坐标
- 格式:ppt
- 大小:1.49 MB
- 文档页数:20
基变换与坐标变换的关系与应用基变换和坐标变换是线性代数中的重要概念,它们之间存在一定的关系,并且在许多领域中有广泛的应用。
本文将探讨基变换和坐标变换的关系以及它们在实际应用中的应用案例。
1. 基变换与坐标变换的概念在线性代数中,基是向量空间中一组线性无关的向量。
基变换是将一个向量空间的基转换为另一个基的过程。
而坐标是描述向量在某个基下的表示方式。
坐标变换是从一个基的坐标系转换到另一个基的坐标系的过程。
可以说基变换是在向量空间中改变基的方向和大小,而坐标变换是在坐标系中改变坐标的表示。
2. 基变换与坐标变换的关系基变换和坐标变换之间存在紧密的联系。
考虑一个向量在一个基下的坐标表示,如果我们将该基进行变换,那么基相应的坐标系也会发生变化。
而坐标变换是基变换的结果,通过基变换,我们可以得到向量在新基下的坐标表示。
换句话说,基变换决定了坐标变换的方式。
3. 基变换与坐标变换的应用基变换和坐标变换在许多科学领域中有广泛的应用。
3.1 三维坐标变换在三维计算机图形学和计算机视觉中,我们经常需要对三维空间中的对象进行坐标变换。
通过基变换和坐标变换,我们可以将对象从世界坐标系转换到相机坐标系或者屏幕坐标系。
这样可以实现对象在三维空间中的旋转、缩放和平移等操作。
3.2 坐标系的正交化在机器学习领域中,正交化是一个常见的操作。
通过对数据进行基变换,可以将原始数据映射到一个正交基的坐标系中,从而方便进行数据分析和处理。
例如,在主成分分析(PCA)中,我们通过基变换将数据投影到一个新的基上,实现数据的降维和特征提取。
3.3 图像处理中的颜色空间转换在图像处理中,颜色空间的转换是一个重要的任务。
基于RGB颜色模型的图像可以通过基变换和坐标变换转换到其他颜色空间,如HSV、Lab等。
这样可以方便地实现图像的亮度、饱和度和色彩的调整。
3.4 机器人运动规划中的坐标变换在机器人运动规划中,坐标变换是一个关键的步骤。
通过基变换,可以将机器人末端执行器的位置和姿态从机器人局部坐标系转换到全局坐标系,从而方便进行运动轨迹的规划和控制。
在线性代数中,维数基和坐标是紧密相关的概念,用来描述向量空间中的向量。
维数基是一个向量空间中的一组线性无关的向量,它可以作为该向量空间的基础。
一个向量空间可以有多组不同的维数基。
维数基的选择不唯一,但是它们具有一些重要的性质,最重要的一点是,使用维数基可以表示该向量空间中的任何向量。
换句话说,我们可以用维数基上的线性组合来描述向量空间中的每个向量。
坐标是描述一个向量在给定维数基下的表示。
当我们选择一个维数基作为参考,我们可以将向量空间中的任意向量表示为这组基向量的线性组合。
而坐标就是指这些线性组合中各个基向量的系数。
举例来说,假设我们有一个三维向量空间,并选择维数基为{v1, v2, v3},那么任意一个向量v可以表示为 v = a1*v1 + a2*v2 + a3*v3,其中a1、a2、a3分别是v在维数基{v1, v2, v3}下的坐标。
维数基和坐标两者的关系是紧密相连的,通过选择不同的维数基,可以得出不同的坐标表示。
而坐标的选择也是由维数基的选择决定的。
通常我们使用标准基作为维数基,如在三维空间中使用{i, j, k}作为标准基,此时坐标表示就变为(vx, vy, vz)。
但是在不同的情景中可能会选择其他的维数基,而相应的坐标表示也会不同。
在实际应用中,维数基和坐标有着广泛的应用,如线性变换、向量运算、数据分析等。
对于线性代数的深入理解,理解维数基和坐标的概念是非常重要的。
维数基与坐标1. 引言在数学中,维数基和坐标是描述向量空间中向量的重要概念。
维数基是向量空间的一组基础向量,用于表示空间中的任意向量。
坐标则是基于维数基的一种表示方法,通过一组数字来描述向量在各个维度上的大小。
本文将详细介绍维数基和坐标的概念、属性和应用,并通过示例和图表进行解释和说明。
2. 维数基2.1 定义维数基是向量空间的一组基础向量,它们可以线性组合得到空间中的任意向量。
一个向量空间的维数基通常由线性无关的向量组成,并且可以表示空间的维数。
2.2 特性•维数基是线性无关的,即其中任意一个向量不能由其他向量线性表示。
•维数基可以通过线性组合生成空间中的任意向量。
•维数基的数量等于向量空间的维数。
2.3 示例考虑二维平面上的向量空间,我们可以选择两个线性无关的向量作为维数基,比如:v1 = [1, 0]v2 = [0, 1]这两个向量分别表示平面上的 x 轴和 y 轴,它们可以通过线性组合得到平面上的任意向量。
3. 坐标3.1 定义坐标是一种用数字表示向量在各个维度上大小的方法。
坐标是基于维数基的,通过将向量在维数基上的投影来确定各个维度上的大小。
3.2 坐标系坐标系是描述向量空间的一种方式,它由维数基和原点组成。
常见的坐标系有笛卡尔坐标系、极坐标系等。
在笛卡尔坐标系中,维数基通常是正交的单位向量,原点是空间的起点。
以二维平面为例,笛卡尔坐标系的维数基为:e1 = [1, 0]e2 = [0, 1]3.3 坐标表示假设有一个向量 v,它可以由维数基 e1 和 e2 线性组合得到:v = a * e1 + b * e2其中 a 和 b 是向量在 e1 和 e2 上的投影,也就是向量的坐标。
3.4 示例考虑二维平面上的向量 v,它在维数基 e1 和 e2 上的投影分别是 a 和 b。
那么v 的坐标表示为 (a, b)。
4. 应用4.1 线性代数维数基和坐标是线性代数中的重要概念,它们用于描述向量空间和向量的性质和关系。
基变换与坐标变换的理解在线性代数的学习过程中,我们经常会遇到基变换和坐标变换的概念。
这两个概念是线性代数中非常重要的概念,对于理解矩阵变换和向量空间变换起着至关重要的作用。
基变换的概念和意义在向量空间中,基是一个线性无关且张成整个向量空间的向量集合。
基变换指的是由一个基向量集合变换为另一个基向量集合的过程。
当我们进行基变换时,实际上是在改变向量表示的方式,但是向量本身不会发生变化。
基变换的本质是将原向量空间中的向量通过一种线性变换映射到一个新的基向量空间中,从而使得原空间中的向量在新的基下有着不同的坐标表示。
通过基变换,我们可以更加方便地对向量空间进行分析和处理。
在实际应用中,基变换也被广泛应用于图像处理、机器学习等领域。
例如,在计算机图形学中,基变换可以帮助我们更好地理解和描述图形的变化和转换。
坐标变换的概念和意义坐标变换是指在给定基的基础上,改变向量在这个基下的坐标表示的过程。
坐标变换实际上是一种基变换的特例,特别是当基是标准正交基时,坐标变换可以简化为矩阵乘法的形式。
通过坐标变换,我们可以将向量从一个坐标系表示转换为另一个坐标系表示,这在实际应用中具有重要意义。
在机器人学中,坐标变换可以帮助我们描述机器人在不同坐标系下的位置关系,从而控制机器人的运动。
在三维图形学中,坐标变换也是不可或缺的工具,可以帮助我们实现图形对象的平移、旋转等操作。
基变换与坐标变换的关系基变换和坐标变换之间有着密切的联系。
在实际应用中,基变换可以通过矩阵乘法来表示,而坐标变换也可以通过矩阵乘法来表示。
基变换和坐标变换的关系可以从几何和代数的角度进行理解。
从几何上看,基变换可以看作是一种向量空间的旋转、拉伸和压缩等操作,而坐标变换则是在这个基的基础上描述向量的位置关系的操作。
从代数的角度看,基变换可以看作是基向量的线性组合,坐标变换可以看作是向量在不同基向量下的系数表示。
通过矩阵的乘法运算,我们可以很方便地实现基变换和坐标变换的转换。
§3.维数、基、坐标复习1. ⎧⎪⎨⎪⎩线性组合、线性表出基本概念向量组等价线性无关(相关) 1101112210,0,r rk k r r r r k k k k k ααααααα===⎧−−−−−→⎪+++=⎨−−−−−−−→⎪⎩只有存在不全为的,线性无关线性相关2. 性质:1)α线性相关⇔0α=;2)1r αα⇔,,线性相关其中一个向量是其余向量线性组合; 3)s r >且r ααα,,,21 可以用s βββ,,,21 线性表出,则r ααα,,,21 线性相关;r ααα,,,21 可以用s βββ,,,21 线性表出且r ααα,,,21 线性无关,则s r ≤;4)两个等价线性无关向量组含有相同个数向量; 5)r ααα,,,21 线性无关,βααα,,,,21r 线性相关⇒1,,r βαα可以被线性表出;6)1n ,,αα无关则其部分组1,,r αα也无关(整体无关则部分相关,部分相关则整体相关);新课一 线性空间的基与维数定义1 在线性空间V 中,若存在n 个元素n ααα,,,21 ,满足: 1)n ααα,,,21 线性无关,2)V 中任意元素α总可由n ααα,,,21 线性表出,那么n ααα,,,21 就称为线性空间V 的一组基,n 称为线性空间V 的维数.Note :1)维数为n 的线性空间称为n 维线性空间,记作n V ;2)当一个线性空间V 中存在任意多个线性无关的向量时,就称V 是无限维的;例:=V { 所有实系数多项式 } 3)若n ααα,,,21 为n V 的一组基,则n V 可表示为: },,,{212211R x x x x x x V n n n n ∈+++== αααα 4)基不唯一,维数一定.[]n P x 中12,,,,1-n x x x 是n 个线性无关的向量,每一个()[]n f x P x ∈都可以由12,,,,1-n x x x 线性表出,即12,,,,1-n x x x 是[]n P x 的一组基.二 元素在给定基下的坐标定义2 设n ααα,,,21 是线性空间n V 的一组基,对于任意元素n V ∈α,总有且仅有一组有序数n x x x ,,,21 使得n n x x x αααα+++= 2211,则有序数组n x x x ,,,21 称为元素α在基n ααα,,,21 下的坐标,并记为),,,(21'n x x x .例2:在n 维空间n P 中 12(1,0,,0)(0,1,,0)(0,0,,1)n εεε=⎧⎪=⎪⎨⎪⎪=⎩ 是一组基,设12(,,)n n a a a P α=∈,有'1'21122'(1,1,,1)(0,1,,1)(0,0,,1)n n n a a a εεαεεεε⎧=⎪=⎪=++→⎨⎪⎪=⎩基'''112121,()()n n n nP a a a a a ααεεε-∀∈=+-+-则§问题:在n 维线性空间n V 中,任意n 个线性无关的向量都可以作为n V 的一组基.对于不同的基,同一个向量的坐标是不同的,那么不同的基之间有怎样的联系呢?同一个向量在不同基下的坐标有什么关系呢?换句话说,随着基的改变,向量的坐标如何变化呢? 1 基变换公式设12,,n εεε及'''12,,nεεε均是维线性空间n V 的一组基,且有 '11112121'21212222'1122n nn nn n n nn na a a a a a a a a εεεεεεεεεεεε⎧=+++⎪=+++⎪⎨⎪⎪=++⎩↓⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'''n nn nnn n n a a a a a a a a a εεεεεε 2121222121211121↓A n n ),,,(),,,(2121εεεεεε =''' 称此公式为基变换公式. 2 过渡矩阵在基变换公式A n n ),,,(),,,(2121εεεεεε ='''中,矩阵A 称为由基12,,n εεε到基'''12,,nεεε的过渡矩阵. Note :1)过渡矩阵A 是可逆的.2)设n ααα,,,21 和n βββ,,,21 是n V 中两个向量组)(ij a A =,)(ij b B =是两个n n ⨯矩阵,那么))(,,,()),,,((2121AB B A n n αααααα =;))(,,,(),,,(),,,(212121B A B A n n n +=+ααααααααα ; A A A n n n n ),,,(),,,(),,,(22112121βαβαβαβββααα+++=+ . 3 坐标变换公式设向量α是线性空间n V 中的任意元素,在基12,,n εεε下的坐标为),,,(21'n x x x ,在基'''12,,nεεε下的坐标为),,,(21''''n x x x ,于是有12112212(,,,)n n n n x x x x x x αεεεεεε⎛⎫ ⎪ ⎪=+++= ⎪ ⎪⎝⎭'1''''''''11221'(,,)n n n n x x x x x εεεεε⎛⎫⎪=+++= ⎪ ⎪⎝⎭即 ()11121'121222''111'1211,,(,,)(,,)(,,)n n n n n n n n nn n n a a a x a a a A x a a a x x εεεεαεεεε⎛⎫⎛⎫⎪ ⎪ ⎪=→= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎛⎫ ⎪= ⎪⎪⎝⎭而基向量线性无关,则'11'n nx x A x x ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭即1'1112111'2122222'12n n n n nn n n a a a x x a a a x xa a a x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例题分析:在4P 中,求由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵,并求向量ξ在所指基下坐标1234(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)εεεε=⎧⎪=⎪⎨=⎪⎪=⎩ 1234(2,1,1,1)(0,3,1,0)(5,3,2,1)(6,6,1,3)ηηηη=-⎧⎪=⎪⎨=⎪⎪=⎩ 1234(,,,)x x x x ξ=在1234,,,ηηηη下的坐标小结:↓→↓⎧→⎨⎩向量线性相(无)关 基维数 基变换坐标坐标变换。