线性代数§6.2线性空间的维数、基与坐标
- 格式:ppt
- 大小:179.00 KB
- 文档页数:12
§3.维数、基、坐标复习1. ⎧⎪⎨⎪⎩线性组合、线性表出基本概念向量组等价线性无关(相关) 1101112210,0,r rk k r r r r k k k k k ααααααα===⎧−−−−−→⎪+++=⎨−−−−−−−→⎪⎩只有存在不全为的,线性无关线性相关2. 性质:1)α线性相关⇔0α=;2)1r αα⇔,,线性相关其中一个向量是其余向量线性组合; 3)s r >且r ααα,,,21 可以用s βββ,,,21 线性表出,则r ααα,,,21 线性相关;r ααα,,,21 可以用s βββ,,,21 线性表出且r ααα,,,21 线性无关,则s r ≤;4)两个等价线性无关向量组含有相同个数向量; 5)r ααα,,,21 线性无关,βααα,,,,21r 线性相关⇒1,,r βαα可以被线性表出;6)1n ,,αα无关则其部分组1,,r αα也无关(整体无关则部分相关,部分相关则整体相关);新课一 线性空间的基与维数定义1 在线性空间V 中,若存在n 个元素n ααα,,,21 ,满足: 1)n ααα,,,21 线性无关,2)V 中任意元素α总可由n ααα,,,21 线性表出,那么n ααα,,,21 就称为线性空间V 的一组基,n 称为线性空间V 的维数.Note :1)维数为n 的线性空间称为n 维线性空间,记作n V ;2)当一个线性空间V 中存在任意多个线性无关的向量时,就称V 是无限维的;例:=V { 所有实系数多项式 } 3)若n ααα,,,21 为n V 的一组基,则n V 可表示为: },,,{212211R x x x x x x V n n n n ∈+++== αααα 4)基不唯一,维数一定.[]n P x 中12,,,,1-n x x x 是n 个线性无关的向量,每一个()[]n f x P x ∈都可以由12,,,,1-n x x x 线性表出,即12,,,,1-n x x x 是[]n P x 的一组基.二 元素在给定基下的坐标定义2 设n ααα,,,21 是线性空间n V 的一组基,对于任意元素n V ∈α,总有且仅有一组有序数n x x x ,,,21 使得n n x x x αααα+++= 2211,则有序数组n x x x ,,,21 称为元素α在基n ααα,,,21 下的坐标,并记为),,,(21'n x x x .例2:在n 维空间n P 中 12(1,0,,0)(0,1,,0)(0,0,,1)n εεε=⎧⎪=⎪⎨⎪⎪=⎩ 是一组基,设12(,,)n n a a a P α=∈,有'1'21122'(1,1,,1)(0,1,,1)(0,0,,1)n n n a a a εεαεεεε⎧=⎪=⎪=++→⎨⎪⎪=⎩基'''112121,()()n n n nP a a a a a ααεεε-∀∈=+-+-则§问题:在n 维线性空间n V 中,任意n 个线性无关的向量都可以作为n V 的一组基.对于不同的基,同一个向量的坐标是不同的,那么不同的基之间有怎样的联系呢?同一个向量在不同基下的坐标有什么关系呢?换句话说,随着基的改变,向量的坐标如何变化呢? 1 基变换公式设12,,n εεε及'''12,,nεεε均是维线性空间n V 的一组基,且有 '11112121'21212222'1122n nn nn n n nn na a a a a a a a a εεεεεεεεεεεε⎧=+++⎪=+++⎪⎨⎪⎪=++⎩↓⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'''n nn nnn n n a a a a a a a a a εεεεεε 2121222121211121↓A n n ),,,(),,,(2121εεεεεε =''' 称此公式为基变换公式. 2 过渡矩阵在基变换公式A n n ),,,(),,,(2121εεεεεε ='''中,矩阵A 称为由基12,,n εεε到基'''12,,nεεε的过渡矩阵. Note :1)过渡矩阵A 是可逆的.2)设n ααα,,,21 和n βββ,,,21 是n V 中两个向量组)(ij a A =,)(ij b B =是两个n n ⨯矩阵,那么))(,,,()),,,((2121AB B A n n αααααα =;))(,,,(),,,(),,,(212121B A B A n n n +=+ααααααααα ; A A A n n n n ),,,(),,,(),,,(22112121βαβαβαβββααα+++=+ . 3 坐标变换公式设向量α是线性空间n V 中的任意元素,在基12,,n εεε下的坐标为),,,(21'n x x x ,在基'''12,,nεεε下的坐标为),,,(21''''n x x x ,于是有12112212(,,,)n n n n x x x x x x αεεεεεε⎛⎫ ⎪ ⎪=+++= ⎪ ⎪⎝⎭'1''''''''11221'(,,)n n n n x x x x x εεεεε⎛⎫⎪=+++= ⎪ ⎪⎝⎭即 ()11121'121222''111'1211,,(,,)(,,)(,,)n n n n n n n n nn n n a a a x a a a A x a a a x x εεεεαεεεε⎛⎫⎛⎫⎪ ⎪ ⎪=→= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎛⎫ ⎪= ⎪⎪⎝⎭而基向量线性无关,则'11'n nx x A x x ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭即1'1112111'2122222'12n n n n nn n n a a a x x a a a x xa a a x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例题分析:在4P 中,求由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵,并求向量ξ在所指基下坐标1234(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)εεεε=⎧⎪=⎪⎨=⎪⎪=⎩ 1234(2,1,1,1)(0,3,1,0)(5,3,2,1)(6,6,1,3)ηηηη=-⎧⎪=⎪⎨=⎪⎪=⎩ 1234(,,,)x x x x ξ=在1234,,,ηηηη下的坐标小结:↓→↓⎧→⎨⎩向量线性相(无)关 基维数 基变换坐标坐标变换。
基、维数与坐标⏹基、维数的概念⏹坐标的概念基、维数与坐标定义2(1) α1,α2, …,αm 线性无关;(2) V 中任一向量都能由α1,α2, …,αm 表示,则称α1,α2, …,αm 为空间V 的一组基(或基底), 基与维数m 称为向量空间V 的维数,记为dim V =m ,设V 是数域p 上的向量空间,向量α1,α2, …,αm V ,如果并称V 是数域p 上的m 维向量空间.零空间的维数规定为零.基、维数与坐标2. 将向量空间V 的基的定义与向量组的极大线性无关组的定义相比较,不难看出,1. 向量空间的维数和该空间中向量的维数是两个不同的概念.若把向量空间V 看作一个向量组,那么它的基就是V 的一个极大线性无关组,dim V 就是V 的秩.3. 容易证明,若向量空间V 的维数是m ,那么V 中任意m 个线性无关的向量都是V 的一组基;对于向量空间V 的任一子空间V 1,dim V 1≤dim V .基、维数与坐标对于向量空间R n ,基本单位向量ε1, ε2, …, εn 就是它的一组基,有dim R n =n , 则称R n 为n 维实向量空间.在四维向量空间R 4中,向量组α1=(0, 0,0,1),α2=(0,1,0,1), α3=(-1,2,0,1),α4=(1,0,2,1)线性无关,所以它们也是R 4的一组基.基、维数与坐标定义3设α1,α2, …,αm 为向量空间V 的一组基,1122m m x x x ,则称有序数组由定理3.2.2,向量α的表示也是唯一的, α V , 有因此α基下α1,α2, …,αm 的坐标也是唯一的.坐标的概念x 1,x 2, …,x m 为向量α在基α1,α2, …,αm 下的坐标.记为(x 1,x 2, …,x m ).基、维数与坐标例4证明111002210A设α1=( 1,0,2),α2=(1,0,1), α3=(-1,2,0),证明α1,α2, α3是向量空间R 3的一组基,并求向量α=( 2,-3,5)在这组基下的坐标.以向量α1T ,α2 T , α3 T 为列向量做矩阵基、维数与坐标因为A 的行列式|A |=2≠0,,把α1,α2, α3代入,比较等式两端向量的对应分量,可得线性方程组112233x x x 设所以α1,α2, α3线性无关, 故它们是R 3的一组基.12331222325x x x x x x基、维数与坐标解之,得于是向量在α基α1,α2, α3下的坐标为12393,4,22x x x 93,4,22 ()。