2017-2018学年普通高等学校招生全国统一考试衡水金卷压轴卷理科数学(二)(解析版)
- 格式:docx
- 大小:388.68 KB
- 文档页数:14
2018年普通高等学校招生全国统一考试模拟试题理数 (二) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,2,3,0,1,2,3,4A B =-=,则()B C A B I =( ) A .{}0,4 B .{}0,1,4 C .{}14, D .{}0,12.已知i 是虚数单位,复数z 满足132z ii∙=+,则3z +=( )A . D .53.已知具有线性相关的两个变量x y ,之间的一组数据如下表所示:若x y ,满足回归方程 1.5y x a =+,则以下为真命题的是( ) A.x 每增加1个单位长度,则y 一定增加1.5 个单位长度 B.x 每增加1个单位长度,y 就减少1.5 个单位长度 C.所有样本点的中心为(1,4.5) D.当8x =时,y 的预测值为13.54.已知点(),4P n 为椭圆2222:1(0)x y C a b a b+=>>上一点,12,F F 是椭圆C 的两个焦点,若12PF F ∆的内切圆的直径为3,则此椭圆的离心率为( )A .57 B .23 C.35 D .455.如图,已知ABC ∆与AMN ∆有一个公共顶点A ,且MN 与BC 的交点O 平分BC ,若,AB mAM AC nAN ==u u u r u u u r u u u r u u u r ,则12m n+的最小值为( )A .4B .2C.32.66.我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧梭垂直于底面的四棱锥.现有一如图所示的堑堵111,ABC A B C AC BC -⊥,若12A A AB ==,当阳马11B A ACC -体积最大时,则堑堵111ABC A B C -的外 接球的体积为( )A .B .3 C.3D . 7.“34πϕ=”是“函数= 2y cos x 与函数()=2y sin x ϕ+在区间04π⎡⎤⎢⎥⎣⎦,,上的单调性相同”的( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件8.执行如图所示的程序框图,若输出1007S =-,则判断框内应填的内容是( )A .2015?k <B .2016?k < C.2017?k < D .2014?k <9.如图所示,直线l 为双曲线()2222:10,0x y C a b a b-=>>的一条渐近线,12,F F 是双曲线C 的左、右焦点,1F 关于直线的对称点为1'F ,且1'F 是以2F 为圆心,以半焦距c 为半径的圆上的一点,则双曲线C 的离心率为( )A.310.某单位现需要将“先进个人”、“业务精英”、“道德模范”、“新长征突击手”“年度优秀员工”5种荣誉分配给3个人,且每个人至少获得一种荣誉,五种荣誉中“道德模范”与“新长征突击手”不能分给同一个人,则不同的分配方法共有( ) A .114种 B .150种 C. 120种 D .118种11.如图,正方体1111ABCD A BC D -的对角线BD 上存在一动点P ,过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于,M N 两点.设,BP x BMN =∆的面积为S ,则当点P由点B 运动到1BD 的中点时,函数()S f x =的图象大致是( )A .B . C. D .12.已知()'f x 为函数()= y f x 的导函数,当02x x π⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝∈⎭,是斜率为k 的直线的倾斜角时,若不等式()()'0f x f x k -∙<恒成立,则( )A()3()4f f ππ>B .(1)2()sin16f f π<()()064f ππ-> D()()063f ππ-<第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()()2221f x cosx sinx sin x =+-+,则其最小正周期为 .14.过()()3,1,0,M N a -两点的光线经y 轴反射后所在直线与圆221x y +=存在公共点,则实数a 的取值范围为 .15.如图,将正方形ABCD 沿着边BC 抬起到一定位置得到正方形BCEF ,并使得平面ABCD 与平面BCEF 所成的二面角为45°,PQ 为正方形BCEF 内一条直线,则直线PQ与BD 所成角的取值范围为 .16..已知菱形ABCD ,E 为AD 的中点,且3BE =,则菱形ABCD 面积的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知数列{}n a 的前n 项和221,S n n n N *=++∈n . (1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和Tn .18.如图所示,已知三棱锥P ABC -中,底面ABC 是等边三角形,且=2,,PA PB AC D E ==分别是,AB PC 的中点.(1)求证:AB ⊥平面CDE ;(2)若PC =求二面角A PB C --的余弦值19.伴随着智能手机的深入普及,支付形式日渐多样化,打破了传统支付的局限性和壁垒,有研究表明手机支付的使用比例与人的年龄存在一定的关系,某调研机构随机抽取了50 人,对他们一个月内使用手机支付的情况进行了统计,如下表:(1)若以“年龄55 岁为分界点”,由以上统计数据完成下面的22⨯列联表,并判断是否有99%的把握认为“使用手机支付”与人的年龄有关:(2)若从年龄在[)55,65,[]65,75内的被调查人中各随机选取2 人进行追踪调查.记选中的4人中“使用手机支付”的人数为ξ. ①求随机变量ξ的分布列; ②求随机变量ξ的数学期望. 参考数据如下:参考公式:22(),()()()()n ad bd K n a b c d a b c d a c b d -==+++++++20. 已知点()0,1A ,过点()0,1D -作与x 轴平行的直线1l ,点B 为动点M 在直线1l 上的投影,且满足MA AB MB BA ∙=∙uuu r uu u r uuu r uu r(1)求动点M 的轨迹C 的方程;(2)已知点P 为曲线C 上的一点,且曲线C 在点P 处的切线为2l ,若的与直线2l 相交于点Q ,试探究在y 轴上是否存在点N ,使得以PQ 为直径的圆恒过点N ? 若存在,求出点N 的坐标,若不存在,说明理由.21.已知函数()1f x x nx =.(1)若函数()()()()2 '20g x f x ax a x a ==+-+>,试研究函()g x 数的极值情况; (2)记函数()() x x F x f x e =-在区间(1,2)内的零点为o x ,记()(),x x m x min f x e ⎧⎫=⎨⎬⎩⎭,若 ()() m x n n R =∈在区间()1,+∞内有两个不等实根()1212, x x x x <,证明∴122o x x x +>. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知圆cos 1:x C y xin αα=+⎧⎨=⎩(α为参数).以O 为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,圆C 2的极坐标方程为4 sin ρθ=. (1)分别写出圆1C 的普通方程与圆2C 的直角坐标方程;(2)设圆1C 与圆2C 的公共弦的端点为,A B ,圆1C 的圆心为1C ,求1AC B ∆的面积. 23.选修4-5:不等式选讲已知,a b 均为正实数,且 1a b +=.(1)求2的最大值; (2)求1aba+的最大值.2018年普通高等学校招生全国统一考试模拟试题理数 (二)一、选择题1-5:BADCC 6-10:BAACA 11、12:DD 二、填空题13.π【解析】因为()21 221= 2 +?cos 21214f x sin x sin x sin x x x π⎛⎫ ⎪⎝⎭=+-++=++,所以其最小正周期为22T ππ==. 14.5,14⎡⎤-⎢⎥⎣⎦[解析]点() 3,1M -关于y 轴的对称点为()'3,1M ,则直线'M N 的方程为11?(303)a y x -=---,即()1330a x y a -+-=,由题意可知,圆心(0,0)到直线()1330a x y a -+-=的距离1d =≤,即282100a a +-≤,解得5-14a ≤≤,故实数a 的取值范围为5,14⎡⎤-⎢⎥⎣⎦15.30,90⎡⎤⎣⎦【解析】不妨设正方形的边长为1,作DG CE ⊥,垂足为G ,由,BC CE BC CD ⊥⊥,得BC ⊥平面CDG .故BC DG ⊥.又BC CE C = ,得DG ⊥平面BCEF ,故直线BD 在平面BCEF BCEF 内的射影为BG .易知2DG =,则BD 与平面BCEF 所成的角为30DBG ∠= ,所以BD 与平面BCEF 内的直线所成的最小角为30°,而直线PQ 与BD 所成角的最大角为90°(当PQ 与CF 重合时,PQ 与BD 所成角为90°),所以直线PQ 与BD 所成角的取值范围为30,90⎡⎤⎣⎦16.12【解析】设AE x =,则2AB AD x ==,因为两边之和大于第三边,两边之差小于第三边,所以+>,<,AB AE BE AB AE BE ⎧⎨-⎩即231233x x x x x x +>>⎧⎧⇒⎨⎨-<<⎩⎩,所以(1,3)x ∈.设BAE θ∠=,在ABE ∆中,由余弦定理可知()229222x x x xcos θ=+-∙∙,即22594x cos x θ-=,2 2.4ABCD S x x sin xθ=∙∙==菱形2t x =,则()1,9t∈,则A B C D S =菱形当5t=,即x =,ABCD S 菱形有最大值12.三、解答题17.解:(1)当1n =时,114a S ==; 当2n ≥时,()2211221,n n n a S S n n n -=-=--+=+对14a =不成立,所以数列{}n a 的通项公式为4,121,2,n an n n nN*=⎧=⎨+≥⎩ (2)当1n =时,1120T = 当2n ≥时,111(21(23)n n a a n n +=++ =111)22n+123n -+(所以111111111161(...)2025779212320101520(23)n n n T n n n n --=+-+-++-=+=++++ 又1n =时,1120T =符合上式, 所以61()20(23)N n n n n T *=-∈+18.解:(1)连接PD ,因为PA PB AC ==,底面ABC 是等边三角形, 又因为D 是AB 的中点, 所以,PD AB AB CD ⊥⊥. 又因为CD PD D = , 所以AB ⊥平面CDE . (2)因为2PA PB AC === 由(1),可知PD CD ==而PC ,所以PD CD ⊥.以D 为原点,以DB uu u r的方向为x 轴正方向建立空间直角坐标系,如图所示,则()()()(1,0,0,1,0,0,,A B C P -,由题意,得平面ABP 的一个法向量为()0,1,0m =u r. 设平面BCP 的一个法向量为(),,n x y z =r.因为()(,BC PC =-=-uu u r uu u r,所以((,,)0(,,)0BC n x y z PC n x y z ⎧∙=-∙=⎪⎨∙=∙=⎪⎩uu u r,即00x ⎧-+=⎪= 令1z =,得1,x y =.所以)n =,所以,cos m n <>==由题意知二面角A PB C --为锐角, 所以二面角A PB C --的余弦值为519.解:(1)22⨯列联表如下:2K 的观测值250(38732)9.524 6.63510403515k ⨯⨯-⨯=≈>⨯⨯⨯ 所以有99%的把握认为“使用手机支付”与人的年龄有关. (2)①由题意,可知ξ所有可能取值有0,1,2,3,()229340225055C C P C C ξ==∙=,()1122112234340+2222255555C C C C C P C C C C ξ==∙∙=,()221113242342+2222105555CC C C C P C C C C ξ==∙∙=,()211243222555CC P C C ξ==∙=, 所以ξ的分布列是②912316()0123502510255E ξ=⨯+⨯+⨯+⨯= 20.解:(1)设(),M x y ,由题得(),1B x -.又()0,1A ,∴()-, 1MA x y =-uuu r ,()()0, 1 ,, 2MB y AB x =--=-uuu r uu u r ,由MA AB MB BA ∙=∙uuu r uu u r uuu r uu r ,得()0MA MB AB =∙+uuu r uuu r uu u r . 即()()2,2,204x y x x y --∙-=⇒=, ∴轨迹C 的方程为24x y =. (2)设点()0200,,4x N n P x ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭,, 由214y x =,得1'2y x =, ∴201 '2l k y x x x == ∴直线2l 的方程为0020)4(2xx y x x -=-).令-1y =,可得0020()42xx x x x ==- ∴Q 点的坐标为2,12o o x x ⎛⎫-- ⎪⎝⎭. ∴220=,,,142o o o x x NP x n NQ n x ⎛⎫ ⎪⎛⎫ ⎪-=--- ⎪ ⎪⎝⎭ ⎪⎝⎭uu u r uuu r ∵点N 在以PQ 为直径的圆上 ∴22002(1+)()24x x NP NQ n n ∙=---uu u r uuu r =220(1-)()+20()4xn n n n -+-=* 要使方程(* )对o x R ∈恒成立,则必有21020n n n -=⎧⎨+-=⎩,解得1n =. 即在y 轴上存在点N ,使得以PQ 为直径的圆恒过点N ,其坐标为(0,1).21.解:(1)由题意,得()'1f x lnx =+,故()()221g x ax a x lnx =-+++, 故()()()()2111 '22x ax g x ax a x x--=-++=, 00.x a >>, 令()'0g x =,得2111,2x x a== ①当02a <<时,112a >, ()1 '002g x x >⇒<<或1x a >;()11'02g x a<⇒<, 所以() g x 在12x =处取极大值1 ln 224a g =-- ②当2a =时,()11,'02g x a =≥恒成立,所以不存在极值; ③当2a >时,112a , ()1'00g x x a >⇒<<或12x >, ()11'02g x x a <⇒<, 所以()g x 在1x a =处取极大值11()ln g a a a=-- 在12x =处取极小值1()1224a g n =--. 综上,当02a <<时,()g x 在12x =处取极大值,124a n --,在1x a =处取极小值ln 4a a --; 当2a =时,不存在极值;当2a >时,() g x 在1x a =处取极大值ln 4a a --, 在12x =处取极小值ln 24a --. (2)()x x F x xlnx e=-,定义域为()0,x ∈+∞, ()1'1x x F x lnx e-=++,而()1,2x ∈, 故()'0F x >,即()F x 在区间(1,2)内单调递增.又()()21210,2220F F ln e e=-<=->, 且)(F x )在区间(1,2)内的图象连续不断,故根据零点存在性定理,有)(F x 在区间(1,2)内有且仅有唯一零点.所以存在()1,2o x ∈,使得()()000o o x x F x f x e =-=, 且当1o x x <<时,()x x f x e <; 当o x x >时,()xx f x e >,所以()ln ,1,o o x x x x m x x x x ex <≤⎧⎪=⎨>⎪⎩当01x x <<时,() m x xln x =,由()'1 0m x ln x =+>,得()m x 单调递增; 当o x x >时,()x x m x e =, 由()1'0x x m x e-=<,得()m x 单调递减. 若()m x n =在区间()1,+∞内有两不等实根1212,()x x x x <, 则 ()()211, ,,o o x x x x ∈∈+∞. 要证122o x x x +>,即证212o x x x >-. 又12o o x x x ->,而()m x 在区间()o x +∞,内单调递减, 故可证()()212o m x m x x <-,又由()()12m x m x =,即证()()112o m x m x x <-, 即111212 o o x x x ln x e x x -<-. 记()22 ,1o o o x x h x xln x x x e x x-=-<<-,,其中()=0o h x ()220121'1 1ln o o x x h x ln x x e x x e x x +-=++=++---022o x x e x x --, 记()t t t e ϕ=,则()1't t t eϕ-=. 当()0,1t ∈时,()'0t ϕ>;当()1,t ∈+∞时,()'0t ϕ<',故()1max t eϕ=.而()0t ϕ>,故()10t eϕ<<, 而21xo x ->, 所以2021-0o x x e e x x-<-<- 因此()22211 '1 10o o o x x h x ln x e x x e x x e -=++->->-- 即()h x 单调递增.故当1o x x <<时,()()0o h x h x <= 即111212 o o x x e x x x x ln -<- 故122o x x x +>,得证.22.解:(1)因为圆1cos 1:sin x C y αα=+⎧⎨=⎩,(α为参数), 所以圆1C 的普通方程是()2211x y -+=. 因为圆2:4C sin ρθ=,所以圆2C 的直角坐标方程是224 0x y y +-=.(2)因为圆()221:11C x y -+=, 圆222:40C x y y +-=,两式相减,得-20x y =,即公共弦所在直线为20x y -=,所以点(1,0)到-20x y =所以公共弦长为=,所以1122555Ac B S ∆=⨯=23.解:(l)2=211( 221+14141)a b ≤∙+++()( =()()242241212a b ⎡⎤⎣⎦++=⨯+=,=即12a b ==时,取等号, 故原式的最大值为12.(2)原式=112122ab b a b a ab a b==+++. 因为1212()()a b a b a b+=++ =221+23()b a b a a b a b ++=++3≥=+a 当且仅当2b a a b=,即12a b ⎧=⎪⎨=⎪⎩,取等号.所以原式≤故原式的最大值为。
2018年普通高等学校招生全国统一考试模拟试题理科数学(二)本试卷共4页,23题(含选考题)。
全卷满分1 50分。
考试用时120分钟。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中。
只有一项是符合 题目要求的。
1.已知集合{}{}1,1,2,3,5,6,210xA B x Z =-=∈<,则AB=A .{1}B .{l ,2}C .{1,2,3}D .{一1,1,2,3}2.设i 为虚数单位,复数z 满足2(13)(3)i z i +=-+,则共轭复数z 的虚部为 A .3i B .3i - C .3 D .3- 3.学生李明上学要经过4个路口,前三个路口遇到红灯的概率均为12,第四个路口遇到 红灯的概率为13,设在各个路口是否遇到红灯互不影响,则李明从家到学校恰好遇到 一次红灯的概率为 A .724 B .14 C . 124 D . 184.已知双曲线方程为22221(0,0)x y a b a b-=>>,F 1,F 2为双曲线的左、右焦点,P 为渐近线上一点且在第一象限,且满足120PF PF ⋅=,若1230PF F ︒∠=,则双曲线的离心率为 A .2 B .2 C .22 D .3 5.已知θ为锐角,1cos 211cos 22θθ-=+,则sin()3πθ+的值为A .264+ B .624- C .366+ D .3236+ 6.执行如图所示的程序框图,则输出的s 的值为A .一1B .一2C .1D .27.2101211011112(1)(2)(1)(1)(1)x x a x a x a x a +-=-+-++-+,则01211a a a a ++++的值为A .2B .0C .一 2D .一48.某几何体三视图如图所示,则该几何体的表面积为 A .2052π-B .203π-C .24π-D .12π+9.已知34a b ==12,则a ,b 不可能满足的关系是 A .a +b >4 B .ab >4C .(a 一1)2+(b —1)2>2D .a 2+b 2<8 10.若函数()sin()(0)6f x x πωω=+>在区间(π,2π)内没有最值,则ω的取值范围是 A .112(0,][,]1243 B .(0,16][13,23] C .[12,43] D .[12,33] 11.过抛物线x 2=2p y (p>0)上两点A ,B 分别作抛物线的切线,若两切线垂直且交于点 P(1,一2),则直线AB 的方程为 A .122y x =+ B .124y x =+ C .132y x =+ D .134y x =+ l 2.在正三棱锥(底面是正三角形,顶点在底面的射影是底面三角形的中心的 三棱锥)O 一ABC 中,OA ,OB ,OC 三条侧棱两两垂直,正三棱锥O —ABC 的内切球与三个侧面切点分别为D ,E ,F ,与底面ABC 切于点G ,则三棱 锥G —DEF 与O —ABC 的体积之比为 A .23318+ B .23318- C .6239+ D .6239- 第Ⅱ卷本卷包括必考题和选考题两部分。
模拟试卷】衡水金卷2018年普通高等学校招生全国统一考试模拟试卷理科数学(二)试题Word版含答案2018年普通高等学校招生全国统一考试模拟试题理数(二)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合$A=\{x|y=x^2-2x\}$,$B=\{y|x^2+1\}$,则$A\cap B=$()A。
$[1,+\infty)$B。
$[2,+\infty)$C。
$(-\infty,2]\cup[2,+\infty)$D。
$(-\infty,+\infty)$2.已知$a\in R$,且$a>0$,$i$是虚数单位,$\frac{a+i}{2+i}=2$,则$a=$()A。
4B。
32C。
19D。
253.已知$\theta$为直线$y=3x-5$的倾斜角,若$A(\cos\theta,\sin\theta)$,$B(2\cos\theta+\sin\theta,5\cos\theta-\sin\theta)$,则直线AB的斜率为()A。
3B。
-4C。
$\frac{11}{3}$D。
$-\frac{3}{4}$4.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的渐近线与抛物线$y=x^2+1$相切,则双曲线的离心率为()A。
2B。
3C。
$\sqrt{2}$D。
$\sqrt{5}$5.袋中装有4个红球、3个白球,甲、乙按先后次序无放回地各摸取一球,在甲摸到了白球的条件下,乙摸到白球的概率是()A。
$\frac{3}{11}$B。
$\frac{1}{2}$C。
$\frac{7}{25}$D。
$\frac{9}{25}$6.《算法统宗》是中国古代数学名著,由XXX所著,其中记载这样一首诗:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?请XXX算莫迟疑!其含义为:用九百九十九文钱共买了一千个甜果和苦果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个,请问究竟甜、苦果各有几个?现有如图所示的程序框图,输入$m,n$分别代表钱数和果子个数,则符合输出值$p$的为()A。
【衡水金卷】2018年衡水金卷调研卷全国卷 I A模拟试题(二)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】,,,,故选B.2. 已知是虚数单位,复数满足,则()A. B. C. D. 5【答案】A【解析】,,,故选A.3. 已知具有线性相关的两个变量之间的一组数据如下表所示:若满足回归方程,则以下为真命题的是()A. 每增加1个单位长度,则一定增加1.5个单位长度B. 每增加1个单位长度,就减少1.5个单位长度C. 所有样本点的中心为D. 当时,的预测值为13.5【答案】D【解析】由,得每增一个单位长度,不一定增加,而是大约增加个单位长度,故选项错误;由已知表格中的数据,可知,,回归直线必过样本的中心点,故错误;又,回归方程为,当时,的预测值为,故正确,故选D.4. 已知点为椭圆:上一点,是椭圆的两个焦点,如的内切圆的直径为3,则此椭圆的离心率为()A. B. C. D.【答案】C【解析】由椭圆的定义可知的周长为,设三角形内切圆半径为,所以的面积,整理得,又,故得椭圆的离心率为,故选C.【方法点睛】本题主要考查椭圆的定义、性质及离心率,属于中档题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.本题中,根据三角形的面积可以建立关于焦半径和焦距的关系.从而找出之间的关系,求出离心率.5. 如图,已知与有一个公共顶点,且与的交点平分,若,则的最小值为()A. 4B.C.D. 6【答案】C【解析】,又,,又三点共线,,即得,易知,,当且仅当,即时,取等号,故选C.【易错点晴】本题主要考查平面向量基本定理的应用以及利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).6. 我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的堑堵,,若,当阳马体积最大时,则堑堵的外接球的体积为()A. B. C. D.【答案】B【解析】设,则,由题意,得四棱锥的体积为,当且仅当,即时,取等号,设的中点分别为,则堑堵的外接球的球心应恰为线段的中点,又,则堑堵的外接球的半径满足,故,故堑堵的外接球的体积为,故选B.7. “”是“函数与函数在区间上的单调性相同”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】函数在区间上是单调递减的,当时,函数在区间上也是单调递减的,所以充分性成立,当时,在区间上也是单调递减的,故必要性不成立,“”是“函数与函数在区间上的单调性相同”的充分不必要条件,故选A.8. 执行如图所示的程序框图,若输出,则判断框内应填的内容是()A. B. C. D.【答案】A【解析】由程序框图的功能可知,输出,此时,判断框内应填,故选A.9. 如图所示,直线为双曲线:的一条渐近线,是双曲线的左、右焦点,关于直线的对称点为,且是以为圆心,以半焦距为半径的圆上的一点,则双曲线的离心率为()A. B. C. 2 D. 3【答案】C【解析】设焦点关于渐近线的对称点为,则,又点在圆上,,故选C.10. 某单位现需要将“先进个人”、“业务精英”、“道德模范”、“新长征突击手”、“年度优秀员工”5种荣誉分配给3个人,且每个人至少获得一种荣誉,五种荣誉中“道德模范”与“新长征突击手”不能分给同一个人,则不同的分配方法共有()A. 114种B. 150种C. 120种D. 118种【答案】A【解析】将种荣誉分给人,共有和两类. ①当为时,共有,“道德模范”与“新长征突击手”分给一个人共有种,故有;②当为时,共有,“道德模范”与“新长征突击手”分给一个人共有种,故有种,综上,不同的分配方法共有种,故选A.11. 如图,正方体的对角线上存在一动点,过点作垂直于平面的直线,与正方体表面相交于两点.设,的面积为,则当点由点运动到的中点时,函数的图象大致是()A. B. C. D.【答案】D【解析】设,而由运动到的中点的过程中,,由相似三角形,可知为定值,设正方体的边长为,当为线段的中点时,,则的面积为,故选D.12. 已知为函数的导函数,当是斜率为的质询案的倾斜角时,若不等式恒成立,则()A. B.C. D.【答案】D【解析】由题可知,,,,即,令,则,即在区间内单调递增,由,可知不正确,由可得,正确,故选D.【方法点睛】利用导数研究函数的单调性、构造函数比较大小,属于难题.联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.二、填空题(每题4分,满分20分,将答案填在答题纸上)13. 已知函数,则其最小正周期为_______.【答案】【解析】因为函数,函数,则其最小正周期为,故答案为.14. 过,两点的光线经轴反射后所在直线与圆存在公共点,则实数的取值范围为_______.【答案】【解析】点关于轴的对称点为,则直线的方程为,即,因为反射后所在直线与圆存在公共点,所以圆心到直线的距离,即,解得,故实数的取值范围是,故答案为.15. 如图,将正方形沿着边抬起到一定位置得到正方形,并使得平面与平面所成的二面角为,为正方形内一条直线,则直线与所成角的取值范围为_______.【答案】【解析】不妨设正方形的边长为,作,垂足为,由,得平面,故,又,得平面,故直线在平面内的射影为,易知,则与平面所成的角为与平面内的直线所成的最小角为,而直线与所成角的最大角为(当与重合时,与所成角为的),所以直线与所成角的取值范闱为,故答案为.16. 已知菱形,为的中点,且,则菱形面积的最大值为_______.【答案】12【解析】设,则两边之和大于第三边,两边之差小于第三边,,即,,设,在中,由余弦定理可知,即,,令,则,则,当时,即时,有最大值,故答案为.【方法点睛】本题主要考查余弦定理的应用以及最值问题,属于难题.求最值的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数最值,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法:常用代数或三角代换法,用换元法求值域时需认真分析换元参数的范围变化;③不等式法;④单调性法;⑤图象法.本题(2)求值域时主要应用方法①求解的.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列的前项和.(1)求数列的通项公式;(2)求数列的前项和.【答案】(1)见解析;(2).【解析】试题分析:(1)当时,;当时,,对不成立,从而可得数列的通项公式;(2)当时,,当时,,利用裂项相消法可得,再验证时,是否成立即可.试题解析:(1)当时,;当时,,对不成立,所以数列的通项公式为.(2)当时,,当时,所以又时,符合上式,所以().【方法点晴】本题主要考查数列的通项公式与求和,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误......................18. 如图所示,已知三棱锥中,底面是等边三角形,且,分别是的中点.(1)证明:平面;(2)若,求二面角的余弦值.【答案】(1)见解析;(2).【解析】试题分析:(1)连接,因为是的中点,由等腰三角形及等边三角形的性质可得,从而利用线面垂直的判定定理可得结果;(2)先根据勾股定理证明与垂直,再以为轴建立空间直角坐标系,平面的一个法向量为,利用向量垂直数量积为零,列方程组求出平面的一个法向量,根据空间向量夹角余弦公式可求得二面角的余弦值.试题解析:(1)连接,因为,底面等边三角形,又因为是的中点,所以又因为,所以平面.(2)因为,由(1)可知,而,所以以为原点,以的方向为轴正方向建立空间直角坐标系,如图所示,则,,,,由题得平面的一个法向量为.设平面的一个法向量为所以,即令得所以,所以由题意知二面角为锐角,所以二面角的余弦值为.【方法点晴】本题主要考查线面垂直的判定定理以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19. 伴随着智能手机的深入普及,支付形式日渐多样化,打破了传统支付的局限性和壁垒,有研究表明手机支付的使用比例与人的年龄存在一定的关系,某调研机构随机抽取了50人,对他们一个月内使用手机支付的情况进行了统计,如下表:(1)若以“年龄55岁为分界点”,由以上统计数据完成下面的列联表,并判断是否有的把握认为“使用手机支付”与人的年龄有关;(2)若从年龄在,内的被调查人中各随机选取2人进行追踪调查,记选中的4人中“使用手机支付”的人数为.①求随机变量的分布列;②求随机变量的数学期望.参考数据如下:参考格式:,其中【答案】(1)见解析;(2)①见解析.②见解析.【解析】试题分析:(1)根据表格中数据可完成列联表,利用公式:求得,与邻界值比较,即可得到结论;(2)①选中的人中“使用手机支付”的人数为的可能取值为利用组合知识,根据古典概型概率公式公式求出各随机变量对应的概率,从而可得分布列;②由①利用期望公式可得的数学期望.试题解析:(1)列联表如下:的观测值,所以有的把握认为“使用手机支付”与人的年龄有关.(2)①由题意,可知所有可能取值有0,1,2,3,,,,,所以的分布列是②.20. 已知点,过点作与轴平行的直线,点为动点在直线上的投影,且满足.(1)求动点的轨迹的方程;(2)已知点为曲线上的一点,且曲线在点处的切线为,若与直线相交于点,试探究在轴上是否存在点,使得以为直径的圆恒过点?若存在,求出点的坐标,若不存在,说明理由.【答案】(1);(2)见解析.【解析】试题分析:(1)设,由题得,则,,由化简即可得动点的轨迹的方程;(2)设点,,根据导数的几何意义,结合直线的点斜式方程可得直线的方程为,从而得点的坐标为,由恒成立得解得,进而可得结果.试题解析:(1)设,由题得又,∴,,由,得,即,∴轨迹的方程为.(2)设点,,由,得,∴,∴直线的方程为令,可得,∴点的坐标为,∴,(*)要使方程(*)对恒成立,则必有解得.即在轴上存在点,使得以为直径的圆恒过点,其坐标为.21. 已知函数.(1)若函数,试研究函数的极值情况;(2)记函数在区间内的零点为,记,若在区间内有两个不等实根,证明:.【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)由求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,根据单调性可得函数的极值情况;(2)先证明,即在区间内单调递增,根据零点存在性定理,存在,使得,可得以,要证,只需证,即,记,其中,利用导数可证明单调递增,故当时,,即可得,进而可得结果.试题解析:(1)由题意,得,故,故,.令,得①当时,,或;,所以在处取极大值,在处取极小值.②当时,,恒成立,所以不存在极值;③当时,,或;,所以在处取极大值,在处取极小值.综上,当时,在处取极大值,在处取极小值;当时,不存在极值;时,在处取极大值,在处取极小值.(2),定义域为,,而,故,即在区间内单调递增又,,且在区间内的图象连续不断,故根据零点存在性定理,有在区间内有且仅有唯一零点.所以存在,使得,且当时,;当时,,所以当时,,由得单调递增;当当时,,由得单调递减;若在区间内有两个不等实根()则.要证,即证又,而在区间内单调递减,故可证,又由,即证,即记,其中记,则,当时,;当时,,故而,故,而,所以,因此,即单调递增,故当时,,即,故,得证.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系中,已知圆:(为参数),以为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,圆的极坐标方程.(1)分别写出圆的普通方程与圆的直角坐标方程;(2)设圆与圆的公共弦的端点为,圆的圆心为,求的面积.【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)圆的参数方程利用平方法消去参数可得出圆的普通方程,,圆的极坐标方程两边同乘以利用即可得圆的直角坐标方程;(2)两圆的直角坐标方程相减可得公共弦所在直线方程为,利用点到直线距离公式及勾股定理求出弦长,由三角形面积公式可得结果.试题解析:(1)因为圆:(为参数),所以圆的普通方程是因为圆:,所以圆的直角坐标方程是.(2)因为圆:,圆:,两式相减,得,即公共弦所在直线为,所以点到的距离为,所以公共弦长为,所以.23. 选修4-5:不等式选讲已知均为正实数,且.(1)求的最大值;(2)求的最大值.【答案】(1)12;(2).【解析】试题分析:(1)利用柯西不等式可得,结合即可得的最大值;(2)原式,因为,从而可得结果.试题解析:(1),当且仅当,即时,取等号,故原式的最大值为12.(2)原式因为,当且仅当,即时,取等号所以原式,故原式的最大值为.。
2018年普通高等学校招生全国统一考试模拟试题理数(二)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. )B. C.【答案】B【解析】∵故选:B2. )【答案】C【解析】由题意知:,解得:故选:C3. ,则直线( )【答案】D【解析】由题意知:故选:D4. )B.【答案】D由相切,得故选:D点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.5. 袋中装有4个红球、3个白球,甲、乙按先后次序无放回地各摸取一球,在甲摸到了白球的条件下,乙摸到白球的概率是()C. D.【答案】B【解析】用A表示甲摸到白球,B故选:B6. 《算法统宗》是中国古代数学名著,由程大位所著,其中记载这样一首诗:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?请君布算莫迟疑!其含义为:用九百九十九文钱共买了一千个甜果和苦果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个,请问究竟甜、苦果各有几个?现有如图所示的程序框图,分别代表钱数和果子个数,()343657【答案】B【解析】由题意知,即若按全是甜果来算钱超出文,一个苦果和一个甜果差价位则p故选:B在区间)B. C.【答案】C【解析】函数零点即在区间内,得:,可知两个交点关于对称,故两个零点的和,.故选:C8. 恒成立,若为真命题,则实数)A. 2B. 3C. 4D. 5【答案】A【解析】,即,又时,2,故由存在性的意义知. 2.故选:A9. 已知某几何体的三视图如图所示,则该几何体的体积为()B.【答案】B【解析】由三视图,可知该几何体为一个半圆柱与一个三棱锥结合而成的(如图所示).半圆柱的底面半径为1,侧棱长为2,三棱锥的底面为半圆柱的底面的内接直角三角形,两个侧面是全等的等腰三角形,腰长为2,底边为2的等边三角形,因此故选:B点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.10.,运动过程种,点与平面的距离保持不变,运动的路程关系,则此函数图象大致是()A. B. C. D.【答案】CN,计算得:同理,当N为线段AC或的中点时,计算得符合C项的图象特征.故选:C11. 的准线交,则直线)C.【答案】D【解析】易知直线.,带入,,由韦达定理得,带入整理,得故选:D12.的取值范围是()D.【答案】C时,a值:解得:②再求a值:一的解,此时,把1个单位,再向上平移a个单位(或向下平移-a个单位),由图象可知:时,综上,实数的取值范围是故选:C点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 是椭圆_________.【答案】【解析】设当故答案为:14. 满足__________.【答案】【解析】如图,阴影部分即为不等式表示的区域,为1,最大值为过点.设切点为代入,解得5的取值范围为故答案为:点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围..【答案】【解析】当且仅当,取等号,∴∠C的最大值为75°,此时sinC=,故答案为:16. 3位逻辑学家分配10枚金币,因为都对自己的逻辑能力很自信,决定按以下方案分配:(1)抽签确定各人序号:1,2,3;(2)1号提出分配方案,然后其余各人进行表决,如果方案得到不少于半数的人同意(提出方案的人默认同意自己方案),就按照他的方案进行分配,否则1好只得到2枚金币,然后退出分配与表决;(3)再由2号提出方案,剩余各人进行表决,当且仅当不少于半数的人同意时(提出方案的人默认同意自己方案),才会按照他的提案进行分配,否则也将得到2枚金币,然后退出分配与表决;(4)最后剩的金币都给3号.每一位逻辑学家都能够进行严密的逻辑推理,并能很理智的判断自身的得失,1号为得到最多的金币,提出的分配方案中1号、2号、3号所得金币的数量分别为__________.【答案】9,0,1【解析】先看一下个人的利益最大化:①3号:如果1号的方案被否定,此时剩余金币有8枚,那么2号的方案必然是2号8枚,3号0枚,然后2号方案不低于半数通过,②由①的分析可知,只要1号的分配方案分配给3号的金币数量多于0,3号就会同意,方案就会通过,所以1号的利益最大化的分配方案是1号,2号,3号所得金币数量分别是9,0,1.故答案为:9,0,1三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(1)(2).【答案】【解析】试题分析:(1,作差易得:,(2的值.试题解析:(1)两式相减得,得,2..(2)两式相减得,所以点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-qS n”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.18. 某校高三年级有1000且所有得分都是整数.(1)求全班平均成绩;(2)计算得分超过141的人数;(精确到整数)(3)甲同学每次考试进入年级前1004100名的次数,写.参考数据:【答案】人;(3)见解析.【解析】试题分析:(1)(2),从而计算出得分超过141的人数;(3)0,1,2,3,4,计算出相应的概率值,利用公式即可算得期望与方差.试题解析:(1)故141分以上的人数为.0,1,2,3,4,,,故的分布列为19. 已知在直角梯形中,.(1)(2).【答案】(1)见解析;(2【解析】试题分析:(1)要证平面平面,转证平面即可;(2)建立空间直角坐标系计算平面的法向量,利用二面角为45°建立等量关系求出的值............................试题解析:(1)折起后,∵二面角(2)由(1)立如图所示的空间直角坐标系.取线段的中点的一个法向量为,,则.,∴.20.(1)(2)的面积为若是,求出此定值,若不是,请说明理由.【答案】(1)曲线(2【解析】试题分析:(1)可得M(﹣2,2λ),N(﹣2+4λ,2)Q(x,y,即可得曲线P的轨迹方程为;(2)设直线的斜率为,把代入椭圆方程,化简整理得利用韦达定理易得四边形GFHE,试题解析:(1),,整理得的轨迹为第二象限的椭圆,由对称性可知曲线(2,当直线的斜率为,把.∴∵,,∴.当直线斜率不存在或为零时,∴为定值点睛:求定值问题常见的方法①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.21. .(1)(2)【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)易知,设,(2,即证.试题解析:(1),有极值点,或,..(2)∴只需证,∴只需证,∴当时,为增函数,∴原不等式成立.22.(1)(2)2,求直线.【答案】(1(2的斜率为【解析】试题分析:(1把极坐标方程化为直角坐标方程;(2(为参数,,利用韦达定理可得.的斜率.试题解析:(1)(2),代入曲线..同向共线..由,得的斜率为.23.((2)证明:【答案】(1)最小值为9;(2)见解析.【解析】试题分析:(1(2累加即可得结果.试题解析:(1)当且仅当.的最小值为9. (2)由同理得,.三式相加得,当且仅当.。
2018年普通高等学校招生全国统一考试模拟试题理数 (二) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,2,3,0,1,2,3,4A B =-=,则()B C A B I =( ) A .{}0,4 B .{}0,1,4 C .{}14, D .{}0,12.已知i 是虚数单位,复数z 满足132z ii∙=+,则3z +=( )A . D .53.已知具有线性相关的两个变量x y ,之间的一组数据如下表所示:若x y ,满足回归方程 1.5y x a =+,则以下为真命题的是( ) A.x 每增加1个单位长度,则y 一定增加1.5 个单位长度 B.x 每增加1个单位长度,y 就减少1.5 个单位长度 C.所有样本点的中心为(1,4.5) D.当8x =时,y 的预测值为13.54.已知点(),4P n 为椭圆2222:1(0)x y C a b a b+=>>上一点,12,F F 是椭圆C 的两个焦点,若12PF F ∆的内切圆的直径为3,则此椭圆的离心率为( )A .57 B .23 C.35 D .455.如图,已知ABC ∆与AMN ∆有一个公共顶点A ,且MN 与BC 的交点O 平分BC ,若,AB mAM AC nAN ==u u u r u u u r u u u r u u u r ,则12m n+的最小值为( )A .4B .2C.32.66.我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧梭垂直于底面的四棱锥.现有一如图所示的堑堵111,ABC A B C AC BC -⊥,若12A A AB ==,当阳马11B A ACC -体积最大时,则堑堵111ABC A B C -的外 接球的体积为( )A .B .3 C.3D . 7.“34πϕ=”是“函数= 2y cos x 与函数()=2y sin x ϕ+在区间04π⎡⎤⎢⎥⎣⎦,,上的单调性相同”的( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件8.执行如图所示的程序框图,若输出1007S =-,则判断框内应填的内容是( )A .2015?k <B .2016?k < C.2017?k < D .2014?k <9.如图所示,直线l 为双曲线()2222:10,0x y C a b a b-=>>的一条渐近线,12,F F 是双曲线C 的左、右焦点,1F 关于直线的对称点为1'F ,且1'F 是以2F 为圆心,以半焦距c 为半径的圆上的一点,则双曲线C 的离心率为( )A.310.某单位现需要将“先进个人”、“业务精英”、“道德模范”、“新长征突击手”“年度优秀员工”5种荣誉分配给3个人,且每个人至少获得一种荣誉,五种荣誉中“道德模范”与“新长征突击手”不能分给同一个人,则不同的分配方法共有( ) A .114种 B .150种 C. 120种 D .118种11.如图,正方体1111ABCD A BC D -的对角线BD 上存在一动点P ,过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于,M N 两点.设,BP x BMN =∆的面积为S ,则当点P由点B 运动到1BD 的中点时,函数()S f x =的图象大致是( )A .B . C. D .12.已知()'f x 为函数()= y f x 的导函数,当02x x π⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝∈⎭,是斜率为k 的直线的倾斜角时,若不等式()()'0f x f x k -∙<恒成立,则( )A()3()4f f ππ>B .(1)2()sin16f f π<()()064f ππ-> D()()063f ππ-<第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()()2221f x cosx sinx sin x =+-+,则其最小正周期为 .14.过()()3,1,0,M N a -两点的光线经y 轴反射后所在直线与圆221x y +=存在公共点,则实数a 的取值范围为 .15.如图,将正方形ABCD 沿着边BC 抬起到一定位置得到正方形BCEF ,并使得平面ABCD 与平面BCEF 所成的二面角为45°,PQ 为正方形BCEF 内一条直线,则直线PQ与BD 所成角的取值范围为 .16..已知菱形ABCD ,E 为AD 的中点,且3BE =,则菱形ABCD 面积的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知数列{}n a 的前n 项和221,S n n n N *=++∈n . (1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和Tn .18.如图所示,已知三棱锥P ABC -中,底面ABC 是等边三角形,且=2,,PA PB AC D E ==分别是,AB PC 的中点.(1)求证:AB ⊥平面CDE ;(2)若PC =求二面角A PB C --的余弦值19.伴随着智能手机的深入普及,支付形式日渐多样化,打破了传统支付的局限性和壁垒,有研究表明手机支付的使用比例与人的年龄存在一定的关系,某调研机构随机抽取了50 人,对他们一个月内使用手机支付的情况进行了统计,如下表:(1)若以“年龄55 岁为分界点”,由以上统计数据完成下面的22⨯列联表,并判断是否有99%的把握认为“使用手机支付”与人的年龄有关:(2)若从年龄在[)55,65,[]65,75内的被调查人中各随机选取2 人进行追踪调查.记选中的4人中“使用手机支付”的人数为ξ. ①求随机变量ξ的分布列; ②求随机变量ξ的数学期望. 参考数据如下:参考公式:22(),()()()()n ad bd K n a b c d a b c d a c b d -==+++++++20. 已知点()0,1A ,过点()0,1D -作与x 轴平行的直线1l ,点B 为动点M 在直线1l 上的投影,且满足MA AB MB BA ∙=∙uuu r uu u r uuu r uu r(1)求动点M 的轨迹C 的方程;(2)已知点P 为曲线C 上的一点,且曲线C 在点P 处的切线为2l ,若的与直线2l 相交于点Q ,试探究在y 轴上是否存在点N ,使得以PQ 为直径的圆恒过点N ? 若存在,求出点N 的坐标,若不存在,说明理由.21.已知函数()1f x x nx =.(1)若函数()()()()2 '20g x f x ax a x a ==+-+>,试研究函()g x 数的极值情况; (2)记函数()() x x F x f x e =-在区间(1,2)内的零点为o x ,记()(),x x m x min f x e ⎧⎫=⎨⎬⎩⎭,若 ()() m x n n R =∈在区间()1,+∞内有两个不等实根()1212, x x x x <,证明∴122o x x x +>. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知圆cos 1:x C y xin αα=+⎧⎨=⎩(α为参数).以O 为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,圆C 2的极坐标方程为4 sin ρθ=. (1)分别写出圆1C 的普通方程与圆2C 的直角坐标方程;(2)设圆1C 与圆2C 的公共弦的端点为,A B ,圆1C 的圆心为1C ,求1AC B ∆的面积. 23.选修4-5:不等式选讲已知,a b 均为正实数,且 1a b +=.(1)求2的最大值; (2)求1aba+的最大值.2018年普通高等学校招生全国统一考试模拟试题理数 (二)一、选择题1-5:BADCC 6-10:BAACA 11、12:DD 二、填空题13.π【解析】因为()21 221= 2 +?cos 21214f x sin x sin x sin x x x π⎛⎫ ⎪⎝⎭=+-++=++,所以其最小正周期为22T ππ==. 14.5,14⎡⎤-⎢⎥⎣⎦[解析]点() 3,1M -关于y 轴的对称点为()'3,1M ,则直线'M N 的方程为11?(303)a y x -=---,即()1330a x y a -+-=,由题意可知,圆心(0,0)到直线()1330a x y a -+-=的距离1d =≤,即282100a a +-≤,解得5-14a ≤≤,故实数a 的取值范围为5,14⎡⎤-⎢⎥⎣⎦15.30,90⎡⎤⎣⎦ 【解析】不妨设正方形的边长为1,作DG CE ⊥,垂足为G ,由,BC CE BC CD ⊥⊥,得BC ⊥平面CDG .故BC DG ⊥.又BC CE C =,得DG ⊥平面BCEF ,故直线BD 在平面BCEF BCEF 内的射影为BG .易知2DG =,则BD 与平面BCEF 所成的角为30DBG ∠=,所以BD 与平面BCEF 内的直线所成的最小角为30°,而直线PQ 与BD 所成角的最大角为90°(当PQ 与CF 重合时,PQ 与BD 所成角为90°),所以直线PQ 与BD 所成角的取值范围为30,90⎡⎤⎣⎦16.12【解析】设AE x =,则2AB AD x ==,因为两边之和大于第三边,两边之差小于第三边,所以+>,<,AB AE BE AB AE BE ⎧⎨-⎩即231233x x x x x x +>>⎧⎧⇒⎨⎨-<<⎩⎩,所以(1,3)x ∈.设BAE θ∠=,在ABE ∆中,由余弦定理可知()229222x x x xcos θ=+-∙∙,即22594x cos x θ-=,2 2.4ABCD S x x sin xθ=∙∙==菱形2t x =,则()1,9t∈,则A B C D S =菱形当5t=,即x =,ABCD S 菱形有最大值12.三、解答题17.解:(1)当1n =时,114a S ==; 当2n ≥时,()2211221,n n n a S S n n n -=-=--+=+对14a =不成立,所以数列{}n a 的通项公式为4,121,2,n an n n nN*=⎧=⎨+≥⎩ (2)当1n =时,1120T = 当2n ≥时,111(21(23)n n a a n n +=++ =111)22n+123n -+(所以111111111161(...)2025779212320101520(23)n n n T n n n n --=+-+-++-=+=++++ 又1n =时,1120T =符合上式, 所以61()20(23)N n n n n T *=-∈+18.解:(1)连接PD ,因为PA PB AC ==,底面ABC 是等边三角形, 又因为D 是AB 的中点, 所以,PD AB AB CD ⊥⊥. 又因为CDPD D =,所以AB ⊥平面CDE . (2)因为2PA PB AC === 由(1),可知PD CD ==而PC ,所以PD CD ⊥.以D 为原点,以DB uu u r的方向为x 轴正方向建立空间直角坐标系,如图所示,则()()()(1,0,0,1,0,0,,A B C P -,由题意,得平面ABP 的一个法向量为()0,1,0m =u r. 设平面BCP 的一个法向量为(),,n x y z =r.因为()(,BC PC =-=-uu u r uu u r,所以((,,)0(,,)0BC n x y z PC n x y z ⎧∙=-∙=⎪⎨∙=∙=⎪⎩uu u r,即00x ⎧-+=⎪= 令1z =,得1,x y =.所以)n =,所以,cos m n <>==由题意知二面角A PB C --为锐角, 所以二面角A PB C --的余弦值为519.解:(1)22⨯列联表如下:2K 的观测值250(38732)9.524 6.63510403515k ⨯⨯-⨯=≈>⨯⨯⨯ 所以有99%的把握认为“使用手机支付”与人的年龄有关. (2)①由题意,可知ξ所有可能取值有0,1,2,3,()229340225055C C P C C ξ==∙=,()1122112234340+2222255555C C C C C P C C C C ξ==∙∙=,()221113242342+2222105555CC C C C P C C C C ξ==∙∙=,()211243222555CC P C C ξ==∙=, 所以ξ的分布列是②912316()0123502510255E ξ=⨯+⨯+⨯+⨯= 20.解:(1)设(),M x y ,由题得(),1B x -.又()0,1A ,∴()-, 1MA x y =-uuu r ,()()0, 1 ,, 2MB y AB x =--=-uuu r uu u r ,由MA AB MB BA ∙=∙uuu r uu u r uuu r uu r ,得()0MA MB AB =∙+uuu r uuu r uu u r . 即()()2,2,204x y x x y --∙-=⇒=, ∴轨迹C 的方程为24x y =. (2)设点()0200,,4x N n P x ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭,, 由214y x =,得1'2y x =, ∴201 '2l k y x x x == ∴直线2l 的方程为0020)4(2xx y x x -=-).令-1y =,可得0020()42xx x x x ==- ∴Q 点的坐标为2,12o o x x ⎛⎫-- ⎪⎝⎭. ∴220=,,,142o o o x x NP x n NQ n x ⎛⎫ ⎪⎛⎫ ⎪-=--- ⎪ ⎪⎝⎭ ⎪⎝⎭uu u r uuu r ∵点N 在以PQ 为直径的圆上 ∴22002(1+)()24x x NP NQ n n ∙=---uu u r uuu r =220(1-)()+20()4xn n n n -+-=* 要使方程(* )对o x R ∈恒成立,则必有21020n n n -=⎧⎨+-=⎩,解得1n =. 即在y 轴上存在点N ,使得以PQ 为直径的圆恒过点N ,其坐标为(0,1).21.解:(1)由题意,得()'1f x lnx =+,故()()221g x ax a x lnx =-+++, 故()()()()2111 '22x ax g x ax a x x--=-++=, 00.x a >>, 令()'0g x =,得2111,2x x a== ①当02a <<时,112a >, ()1 '002g x x >⇒<<或1x a >;()11'02g x a<⇒<, 所以() g x 在12x =处取极大值1 ln 224a g =-- ②当2a =时,()11,'02g x a =≥恒成立,所以不存在极值; ③当2a >时,112a , ()1'00g x x a >⇒<<或12x >, ()11'02g x x a <⇒<, 所以()g x 在1x a =处取极大值11()ln g a a a=-- 在12x =处取极小值1()1224a g n =--. 综上,当02a <<时,()g x 在12x =处取极大值,124a n --,在1x a =处取极小值ln 4a a --; 当2a =时,不存在极值;当2a >时,() g x 在1x a =处取极大值ln 4a a --, 在12x =处取极小值ln 24a --. (2)()x x F x xlnx e=-,定义域为()0,x ∈+∞, ()1'1x x F x lnx e-=++,而()1,2x ∈, 故()'0F x >,即()F x 在区间(1,2)内单调递增. 又()()21210,2220F F ln e e=-<=->, 且)(F x )在区间(1,2)内的图象连续不断,故根据零点存在性定理,有)(F x 在区间(1,2)内有且仅有唯一零点.所以存在()1,2o x ∈,使得()()000o o x x F x f x e =-=, 且当1o x x <<时,()x x f x e <; 当o x x >时,()xx f x e >,所以()ln ,1,o o x x x x m x x x x ex <≤⎧⎪=⎨>⎪⎩当01x x <<时,() m x xln x =,由()'1 0m x ln x =+>,得()m x 单调递增; 当o x x >时,()x x m x e =, 由()1'0x x m x e-=<,得()m x 单调递减. 若()m x n =在区间()1,+∞内有两不等实根1212,()x x x x <, 则 ()()211, ,,o o x x x x ∈∈+∞. 要证122o x x x +>,即证212o x x x >-. 又12o o x x x ->,而()m x 在区间()o x +∞,内单调递减, 故可证()()212o m x m x x <-, 又由()()12m x m x =,即证()()112o m x m x x <-, 即111212 o o x x x ln x e x x -<-. 记()22 ,1o o o x x h x xln x x x e x x-=-<<-,,其中()=0o h x ()220121'1 1ln o o x x h x ln x x e x x e x x +-=++=++---022o x x e x x --, 记()t t t e ϕ=,则()1't t t eϕ-=. 当()0,1t ∈时,()'0t ϕ>;当()1,t ∈+∞时,()'0t ϕ<',故()1max t eϕ=.而()0t ϕ>,故()10t eϕ<<, 而21xo x ->, 所以2021-0o x x e e x x-<-<- 因此()22211 '1 10o o o x x h x ln x e x x e x x e -=++->->-- 即()h x 单调递增.故当1o x x <<时,()()0o h x h x <= 即111212 o o x x e x x x x ln -<- 故122o x x x +>,得证.22.解:(1)因为圆1cos 1:sin x C y αα=+⎧⎨=⎩,(α为参数), 所以圆1C 的普通方程是()2211x y -+=. 因为圆2:4C sin ρθ=,所以圆2C 的直角坐标方程是224 0x y y +-=.(2)因为圆()221:11C x y -+=, 圆222:40C x y y +-=,两式相减,得-20x y =,即公共弦所在直线为20x y -=,所以点(1,0)到-20x y =所以公共弦长为=,所以1122555Ac B S ∆=⨯=23.解:(l)2=211( 221+14141)a b ≤∙+++()( =()()242241212a b ⎡⎤⎣⎦++=⨯+=,=即12a b ==时,取等号, 故原式的最大值为12.(2)原式=112122ab b a b a ab a b==+++. 因为1212()()a b a b a b+=++ =221+23()b a b a a b a b ++=++3≥=+a 当且仅当2b a a b=,即12a b ⎧=⎪⎨=⎪⎩,取等号.所以原式≤故原式的最大值为。
衡水金卷2018届全国高三大联考理科第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )A. B.C. D.【答案】C【解析】.所以,.故选C.2. 记复数的虚部为,已知复数(为虚数单位),则为( )A. 2B. -3C.D. 3【答案】B【解析】.故的虚部为-3,即.故选B.3. 已知曲线在点处的切线的倾斜角为,则( )A. B. 2 C. D.【答案】C【解析】由,得,故.故选C.4. 2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币,如图所示是一枚8克圆形金质纪念币,直径22mm,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )A. B. C. D.【答案】B【解析】根据题意,可估计军旗的面积大约是.故选B.5. 已知双曲线:的渐近线经过圆:的圆心,则双曲线的离心率为( )A. B. C. 2 D.【答案】A【解析】圆:的圆心为,双曲线的渐近线为. 依题意得.故其离心率为.故选A.6. 已知数列为等比数列,且,则( )A. B. C. D.【答案】A【解析】依题意,得,所以.由,得,或(由于与同号,故舍去).所以..故选A.7. 执行如图的程序框图,若输出的的值为-10,则①中应填( )A. B. C. D.【答案】C【解析】由图,可知. 故①中应填.故选C.8. 已知函数为内的奇函数,且当时,,记,,,则,,间的大小关系是( )A. B. C. D.【答案】D【解析】根据题意得,令.则为内的偶函数,当时,.所以在内单调递减.又,,.故,选D.9. 已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为( )A. B. C. D.【答案】A【解析】由三视图可知该几何体是一个半圆柱与一个地面是等腰直角三角形的三棱锥构成的组合体,故其体积.故选A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.10. 已知函数的部分图象如图所示,其中.记命题:,命题:将的图象向右平移个单位,得到函数的图象.则以下判断正确的是( )A. 为真B. 为假C. 为真D. 为真【答案】D【解析】由,可得.解得.因为,所以,故为真命题;将图象所有点向右平移个单位,.............................. 所以为假,为真,为假,为真.故选D.11. 抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为,一条平行于轴的光线从点射出,经过抛物线上的点反射后,再经抛物线上的另一点射出,则的周长为( )A. B. C. D.【答案】B【解析】令,得,即.由抛物线的光学性质可知经过焦点,设直线的方程为,代入. 消去,得.则,所以..将代入得,故.故.故的周长为.故选B.点睛:抛物线的光学性质:从抛物线的焦点发出的光线或声波在经过抛物线周上反射后,反射光线平行于抛物线的对称轴.12. 已知数列与的前项和分别为,,且,,,若恒成立,则的最小值是( )A. B. C. 49 D.【答案】B【解析】当时,,解得或.由得.由,得.两式相减得.所以.因为,所以.即数列是以3为首项,3为公差的等差数列,所以.所以.所以.要使恒成立,只需.故选B.点睛:由和求通项公式的一般方法为.数列求和的常用方法有:公式法;分组求和;错位相减法;倒序相加法;裂项相消法;并项求和.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每题5分.13. 已知在中,,,若边的中点的坐标为,点的坐标为,则__________.【答案】1【解析】依题意,得,故是以为底边的等腰三角形,故,所以.所以.14. 已知的展开式中所有项的二项式系数之和、系数之和分别为,,则的最小值为__________.【答案】16【解析】显然.令,得.所以.当且仅当.即时,取等号,此时的最小值为16.15. 已知,满足其中,若的最大值与最小值分别为,,则实数的取值范围为__________.【答案】【解析】作出可行域如图所示(如图阴影部分所示)设,作出直线,当直线过点时,取得最小值;当直线过点时,取得最大值. 即,当或时,.当时,.所以,解得.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.16. 在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao).已知在鳖臑中,平面,,则该鳖臑的外接球与内切球的表面积之和为__________.【答案】【解析】设的中点为,如图,由,且为直角三角形,得.由等体积法,知.即,解得.故该鳖臑的外接球与内切球的表面积之和为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知函数,.(Ⅰ)求函数的最小正周期及其图象的对称轴方程;(Ⅱ)在锐角中,内角,,的对边分别为,,,已知,,,求的面积.【答案】(1)最小正周期,对称轴方程为;(2).【解析】试题分析:(1)化简函数得,其最小正周期,令即可解得对称轴;(2)由,解得,由正弦定理及,得,利用即可得解.试题解析:(1)原式可化为,,,,故其最小正周期,令,解得,即函数图象的对称轴方程为,.(2)由(1),知,因为,所以.又,故得,解得.由正弦定理及,得.故.18. 如图,在四棱锥中,底面为直角梯形,其中,侧面平面,且,动点在棱上,且. (1)试探究的值,使平面,并给予证明;(2)当时,求直线与平面所成的角的正弦值.【答案】(1)见解析;(2).【解析】试题分析:(1)连接交于点,连接通过证得,即可证得平面;(2)取的中点,连接,可得两两垂直,建立空间直角坐标系,设与平面所成的角为,则,为平面的一个法向量.试题解析:(1)当时,平面.证明如下:连接交于点,连接.∵,∴.∵,∴.∴.又∵平面,平面,∴平面.(2)取的中点,连接.则.∵平面平面,平面平面,且,∴平面.∵,且,∴四边形为平行四边形,∴.又∵,∴.由两两垂直,建立如图所示的空间直角坐标系.则,,,,,.当时,有,∴可得.∴,,.设平面的一个法向量为,则有即令,得,.即.设与平面所成的角为,则.∴当时,直线与平面所成的角的正弦值为.点睛:高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.19. 如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在市的普及情况,市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到下表:(单位:人)(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用网络外卖的情况与性别有关?(Ⅱ)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠卷,求选出的3人中至少有2人经常使用网络外卖的概率②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.参考公式:,其中.参考数据:【答案】(1)见解析;(2)①,②见解析.【解析】试题分析:(1)计算的值,进而可查表下结论;(2)①由分层抽样的抽样比计算即可;②由列联表,可知抽到经常使用网络外卖的网民的频率为,将频率视为概率,即从市市民中任意抽取1人,恰好抽到经常使用网络外卖的市民的概率为,由题意得.试题解析:(1)由列联表可知的观测值,.所以不能在犯错误的概率不超过0.15的前提下认为市使用网络外卖情况与性别有关.(2)①依题意,可知所抽取的5名女网民中,经常使用网络外卖的有(人),偶尔或不用网络外卖的有(人).则选出的3人中至少有2人经常使用网络外卖的概率为.②由列联表,可知抽到经常使用网络外卖的网民的频率为,将频率视为概率,即从市市民中任意抽取1人,恰好抽到经常使用网络外卖的市民的概率为.由题意得,所以;.20. 已知椭圆:的左、右焦点分别为点,,其离心率为,短轴长为.(Ⅰ)求椭圆的标准方程;(Ⅱ)过点的直线与椭圆交于,两点,过点的直线与椭圆交于,两点,且,证明:四边形不可能是菱形.【答案】(1);(2)见解析.【解析】试题分析:(1)由,及,可得方程;(2)易知直线不能平行于轴,所以令直线的方程为与椭圆联立得,令直线的方程为,可得,进而由是菱形,则,即,于是有由韦达定理代入知无解.试题解析:(1)由已知,得,,又,故解得,所以椭圆的标准方程为.(2)由(1),知,如图,易知直线不能平行于轴.所以令直线的方程为,,.联立方程,得,所以,.此时,同理,令直线的方程为,,,此时,,此时.故.所以四边形是平行四边形.若是菱形,则,即,于是有.又,,所以有,整理得到,即,上述关于的方程显然没有实数解,故四边形不可能是菱形.21. 已知函数,其中为自然对数的底数.(Ⅰ)讨论函数的单调性及极值;(Ⅱ)若不等式在内恒成立,求证:.【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)函数求导得,讨论和演技单调性及极值即可;(2)当时,在内单调递增,可知在内不恒成立,当时,,即,所以.令,进而通过求导即可得最值.试题解析:(1)由题意得.当,即时,,在内单调递增,没有极值.当,即,令,得,当时,,单调递减;当时,,单调递增,故当时,取得最小值,无极大值.综上所述,当时,在内单调递增,没有极值;当时,在区间内单调递减,在区间内单调递增,的极小值为,无极大值.(2)由(1),知当时,在内单调递增,当时,成立.当时,令为和中较小的数,所以,且.则,.所以,与恒成立矛盾,应舍去.当时,,即,所以.令,则.令,得,令,得,故在区间内单调递增,在区间内单调递减.故,即当时,.所以.所以.而,所以.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22. 选修4-4:坐标系与参数方程在平面直角坐标系中,已知曲线的参数方程为(,为参数).以坐标原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.(Ⅰ)当时,求曲线上的点到直线的距离的最大值;(Ⅱ)若曲线上的所有点都在直线的下方,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)将直线的极坐标方程化为普通方程,进而由圆的参数方程得曲线上的点到直线的距离,,利用三角函数求最值即可;(2)曲线上的所有点均在直线的下方,即为对,有恒成立,即(其中)恒成立,进而得.试题解析:(1)直线的直角坐标方程为.曲线上的点到直线的距离,,当时,,即曲线上的点到直线的距离的最大值为.(2)∵曲线上的所有点均在直线的下方,∴对,有恒成立,即(其中)恒成立,∴.又,∴解得,∴实数的取值范围为.23. 选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)记函数的值域为,若,证明:. 【答案】(1);(2)见解析.【解析】试题分析:(1)分段去绝对值解不等式即可;(2)利用绝对值三角不等式得..用作差法比较大小得到,即可证得.试题解析:(1)依题意,得于是得或或解得.即不等式的解集为.(2),当且仅当时,取等号,∴.原不等式等价于,.∵,∴,.∴.∴.。
绝密★启封前2017全国卷Ⅱ高考压轴卷理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
注意事项: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.设集合{}{}2220,2,A x x x B y y x x x A =-≤==-∈,则A B =()A .[]0,2B .[]1,2-C .(,2]-∞D .[0,)+∞ 2.复数()20173z i i i =-+(为虚数单位),则复数的共轭复数为( )A .2i -B .2i +C .4i -D .4i +3.袋中有大小、形状相同的红球、黑球各一个,现依次有放回地随机摸取3次,每次摸取一个球.若摸到红球时得2分,摸到黑球时得1分,则3次摸球所得总分为5的概率为( )A.57. B .67 C 38 D.584.已知向量AB →与向量a =(1,-2)的夹角为π,|AB →|=25,点A 的坐标为(3,-4),则点B 的坐标为( )A .(1,0)B .(0,1)C .(5,-8)D .(-8,5)5.已知点P ⎝⎛⎭⎫sin 3π4,cos 3π4落在角θ的终边上,且θ∈10,2π),则θ的值为( ) A.π4 B.3π4 C.5π4 D.7π46.《九章算术》是我国古代著名数学经典.其中对勾股定理的论术比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦AB =1尺,弓形高CD =1寸,估算该木材镶嵌在墙中的体积约为( )(注:1丈=10尺=100寸,π≈3.14,sin 22.5°≈513)A .600立方寸B .610立方寸C .620立方寸D .633立方寸7.已知MOD 函数是一个求余函数,记MOD()m n ,表示m 除以n 的余数,例如MOD(83)2=,.右图是某个算法的程序框图,若输入m 的值为48时,则输出的值为 (A) 8 (B) 9 (C) 10 (D) 118.已知由不等式0,0,2,40x y y kx y x ≤⎧⎪≥⎪⎨-≤⎪⎪--≤⎩确定的平面区域Ω的面积为7,则的值()A .-1或3B .1-C .3-D .39.已知双曲线22221(0,0)x y a b a b-=>>与函数y =P ,若函数y =P 处的切线过双曲线左焦点(1,0)F -,则双曲线的离心率是A. 12B. 522C. 312D. 3210.设B A ,在圆122=+y x 上运动,且3=AB ,点P 在直线01243=-+y x上运动,则+的最小值为 A . B .517 C .519D . 11已知球错误!未找到引用源。