2020高考数学(理科)二轮总复习课件:第1部分 层级2 专题5 第3讲 随机变量及其分布列
- 格式:ppt
- 大小:1.02 MB
- 文档页数:52
2020届高三理科数学二轮专题复习讲义(三)《直线、圆、圆锥曲线》 专题一、专题热点透析解析几何是高中数学的重点内容之一,也是高考考查的热点。
高考着重考查基础知识的综合,基本方法的灵活运用,数形结合、分类整合、等价转化、函数方程思想以及分析问题解决问题的能力。
其中客观题为基础题和中档题,主观题常常是综合性很强的压轴题。
本专题命题的热点主要有:①直线方程;②线性规划;③直线与圆、圆锥曲线的概念和性质;④与函数、数列、不等式、向量、导数等知识的综合应用。
二、热点题型范例 题型一、动点轨迹方程问题例1.如图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 2.PM PN -=(Ⅰ)求点P 的轨迹方程; (Ⅱ)设d 为点P 到直线l :12x =的距离,若22PM PN =,求PM d 的值。
解:(I )由双曲线的定义,点P 的轨迹是以M 、N 为焦点,实轴长2a=2的双曲线.,因此半焦距c =2,实半轴a =1,从而虚半轴b x 2-23y =1.(II)由(I )及(21)图,易知|PN|≥1,因|PM|=2|PN|2, ① 知|PM|>|PN|,故P 为双曲线右支上的点,所以|PM|=|PN|+2. ②将②代入①,得2||PN|2-|PN|-2=0,解得|PN|=1144±-舍去,所以|PN|=14+. 因为双曲线的离心率e=c a =2,直线l :x =12是双曲线的右准线,故||PN d =e=2,所以d=12|PN |,因此2||2||4||4||1||||PM PM PN PN d PN PN ====+变式:在平面直角坐标系xOy 中,点P 到两点(0,,(0的距离之和等于4,设点P 的轨迹为C .(Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA ⊥OB ?此时AB 的值是多少?解:(Ⅰ)设P (x ,y ),由椭圆定义可知,点P 的轨迹C是以(0(0,为焦点,长半轴为2的椭圆.它的短半轴1b ==,故曲线C 的方程为2214y x +=. (Ⅱ)设1122()()A x y B x y ,,,,其坐标满足22141.y x y kx ⎧+=⎪⎨⎪=+⎩, 消去y 并整理得22(4)230k x kx ++-=,故1212222344k x x x x k k +=-=-++,. OA OB ⊥,即12120x x y y +=.而2121212()1y y k x x k x x =+++, 于是222121222223324114444k k k x x y y k k k k -++=---+=++++. 所以12k =±时,12120x x y y +=,故OA OB ⊥. 当12k =±时,12417x x +=,121217x x =-.(AB x ==而22212112()()4x x x x x x -=+-23224434134171717⨯⨯=+⨯=,所以465AB =. 题型二、线性规划问题例2.①若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a += 扫过A 中的那部分区域的面积为 ( C ) A .34B .1C .74D .5②在平面直角坐标系中,点A B C ,,的坐标分别为(01)(42)(26),,,,,.如果()P x y ,是ABC △围成的区域(含边界)上的点,那么当w xy =取到最大值时,点P 的坐标是 _____ 5,52⎛⎫ ⎪⎝⎭变式:1.若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪>⎨⎪≤⎩则y x 的取值范围是( D )A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞)2.若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于 ( C ) (A )12 (B )4π (C )1 (D )2π 题型三、圆锥曲线定义的应用例3. 已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点,若1222=+B F A F ,则AB = 8例4. 已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N .(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0NA NB =,若存在,求k 的值;若不存在,说明理由.解:(Ⅰ)如图,设211(2)A x x ,,222(2)B x x ,,把2y k x =+代入22y x =得2220x kx --=,由韦达定理得122kx x +=,121x x =-, ∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫ ⎪⎝⎭,.设抛物线在点N 处的切线l 的方程为284k k y m x ⎛⎫-=- ⎪⎝⎭, 将22y x =代入上式得222048mk k x mx -+-=,直线l 与抛物线C 相切, 2222282()048mk k m m mk k m k ⎛⎫∴∆=--=-+=-= ⎪⎝⎭,m k ∴=.即l AB ∥.(Ⅱ)假设存在实数k ,使0N A N B =,则NA NB ⊥,又M 是AB 的中点,1||||2MN AB ∴=. 由(Ⅰ)知121212111()(22)[()4]222M y y y kx kx k x x =+=+++=++22142224k k ⎛⎫=+=+ ⎪⎝⎭.MN ⊥x 轴,22216||||2488M N k k k MN y y +∴=-=+-=.又2212121||||1()4AB x x kx x x x =-=++-2214(1)11622k k k ⎛⎫=-⨯-=++ ⎪⎝⎭.22161168k k +∴=+,解得2k =±.即存在2k =±,使0NA NB=.变式:已知双曲线2222:1(0,0)x y C a b a b-->>的两个焦点为:(2,0),:(2,0),F F P -点的曲线C 上.(Ⅰ)求双曲线C 的方程; (Ⅱ)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF 的面积为求直线l 的方程解:(Ⅰ)依题意,由a 2+b 2=4,得双曲线方程为142222=--ay a x (0<a 2<4), 将点(3,7)代入上式,得147922=--aa .解得a 2=18(舍去)或a 2=2,故所求双曲线方程为.12222=-y x (Ⅱ)依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理,得(1-k 2)x 2-4kx-6=0.∵直线I 与双曲线C 相交于不同的两点E 、F , ∴⎩⎨⎧-±≠⇔⎪⎩⎪⎨⎧-⨯+-=∆≠-,33,10)1(64)4(,01222<<,>k k k k k ∴k ∈(-1,3-)∪(1,3).设E (x 1,y 1),F (x 2,y 2),则由①式得x 1+x 2=,16,142212kx x k k -=-于是|EF |=2212221221))(1()()(x x k y y x x -+=-+-=|1|32214)(1222212212k k k x x x x k--+=-++∙∙,而原点O 到直线l 的距离d =212k+,∴S ΔOEF =.|1|322|1|32211221||21222222k k k k k k EF d --=--++=∙∙∙∙ 若S ΔOEF =22,即,0222|1|3222422=--⇔=--k k k k 解得k =±2,满足②. 故满足条件的直线l 有两条,其方程分别为y =22+x 和.22+-=x y 题型四、圆锥曲线性质问题例5.①已知双曲线22:1916x y C -=的左右焦点分别为12,F F ,P 为C 的右支上一点,且212PF F F =,则12PF F ∆的面积等于( C )(A)24 (B)36 (C)48 (D)96②已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是( C )A .(0,1)B .1(0,]2 C .(0,2 D .2变式:1.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( B )A .221+ B .231+ C . 21+ D .31+2.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 2题型五、直线与圆锥曲线位置关系问题例6.已知抛物线2y x =和三个点00000(,)(0,)(,)M x y P y N x y -、、2000(,0)y x y ≠>,过点M 的一条直线交抛物线于A 、B 两点,AP BP 、的延长线分别交曲线C 于E F 、. (1)证明E F N 、、三点共线;(2)如果A 、B 、M 、N 四点共线,问:是否存在0y ,使以线段AB 为直径的圆与抛物线有异于A 、B 的交点?如果存在,求出0y 的取值范围,并求出该交点到直线AB 的距离;若不存在,请说明理由.解:(1)设221122(,)(,)A x x B x x 、,(,)(,)E E F F E x y B x y 、则直线AB 的方程:()222121112x x y x x x x x -=-+-,即1212()y x x x x x =+- 因00(,)M x y 在AB 上,所以012012()y x x x x x =+-① 又直线AP 方程:21001x y y x y x -=+由210012x y y x y x x y ⎧-=+⎪⎨⎪=⎩得:221001x y x x y x ---=,所以22100012111,E E E x y y y x x x y x x x -+=⇒=-=同理,200222,F F y y x y x x =-=,所以直线EF 的方程:201201212()y x x y y x x x x x +=--令0x x =-得0120012[()]y y x x x y x x =+- 将①代入上式得0y y =,即N 点在直线EF 上,所以,,E F N 三点共线(2)由已知A B M N 、、、共线,所以()00,)A y B y 以AB 为直径的圆的方程:()2200x y y y +-=,由()22002x y y y x y⎧+-=⎪⎨=⎪⎩得()22000210y y y y y --+-= 所以0y y =(舍去),01y y =- 。
2020届高三理科数学二轮专题复习讲义(一)《函数、导数、不等式》专题一、专题热点透析函数、导数和不等式这三部分内容都是高考考查的重点,题型既有灵活多变的客观性试题,又有具有一定能力要求的主观性试题。
纵观近年的高考试题,对函数的主干知识,函数知识的综合应用,函数与导数、不等式的结合,利用导数研究函数的单调性、求函数的极值和最值等内容是本专题考查的重点,而本专题命题的热点主要是函数的图像与性质,以函数为背景的方程、不等式问题,以函数为模型运用导数解决的应用问题等几个方面。
本专题重在讲解题型和思想方法,所选例题比较简单。
二、热点题型范例题型一、函数的单调性与极值问题例1.已知函数32()1f x x ax x =+++,a ∈R .(1)讨论函数()f x 的单调区间;(2)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 解:(1)32()1f x x ax x =+++求导得2()321f x x ax '=++当23a ≤时,0∆≤,()0f x '≥,()f x 在R 上递增;当23a >,()0f x '=求得两根为x =即()f x在3a ⎛---∞ ⎪⎝⎭,递增,33a a ⎛⎫-- ⎪ ⎪⎝⎭,递减,3a ⎛⎫-++∞ ⎪ ⎪⎝⎭递增。
(2)2313≤-≥-,且23a>,解得2a ≥。
例2.已知定义在R 上的函数32(),,,,f x ax bx cx d a b c d =+++其中 是实数.(1)若函数)(x f 在区间),3()1,(+∞--∞和上都是增函数,在区间(-1,3)上是减函数,并且,18)0(,7)0(-='-=f f 求函数)(x f 的表达式;(2)若2,,30a b c b ac -<满足,求证:函数)(x f 是单调函数.解:(1).23)(2c bx ax x f ++='由.1823)(,1818)0(2-+='-=-='bx ax x f c f 即得又由于)(x f 在区间),3()1,(+∞--∞和上是增函数,在区间(-1,3)上是减函数,所以 -1和3必是0)(='x f 的两个根,从而⎩⎨⎧-==⎩⎨⎧=-+=--.6,2.018627,01823b a b a b a 解得 又根据32(0)77,()26187.f d f x x x x =-=-=---得所以(2)因为)(x f '为二次三项式,并且0)3(4)3(4)2(22<-=-=∆ac b ac b ,当0)(,0>'>x f a 时恒成立,此时函数)(x f 是单调递增函数;当0)(,0<'<x f a 时恒成立,此时函数)(x f 是单调递减函数,因此对任意给定的实数a ,函数)(x f 总是单调函数。