最新-河北省2018年中考数学试题及参考答案(非课改) 精品
- 格式:doc
- 大小:475.69 KB
- 文档页数:9
2024年中考数学卷含解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60°B.35°C.30.5°D.30°2.如图,以O为圆心的圆与直线y x=-+交于A、B两点,若△OAB 恰为等边三角形,则弧AB的长度为()A.23πB.πC.23πD.13π3.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是()A.方有两个相等的实数根B.方程有一根等于0C.方程两根之和等于0D.方程两根之积等于04.实数213-的倒数是()A.52-B.52C.35-D.35)A.±4B.4C.2D.±26.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的()A.平均数B.中位数C.众数D.方差7.如图,△ABC 中,DE 垂直平分AC 交AB 于E,∠A=30°,∠ACB=80°,则∠BCE 等于()A.40°B.70°C.60°D.50°8.如图,在△ABC 中,∠ACB=90°,沿CD 折叠△CBD,使点B 恰好落在AC 边上的点E 处.若∠A=24°,则∠BDC 的度数为()A.42°B.66°C.69°D.77°9.在Rt ABC ∆中,90︒∠=C ,2AC =,下列结论中,正确的是()A.2sin AB A=B.2cos AB A =C.2tan BC A =D.2cot BC A=10.如图,⊙O 与直线l 1相离,圆心O 到直线l 1的距离=4,将直线l 1绕点A 逆时针旋转30°后得到的直线l 2刚好与⊙O 相切于点C,则OC=()A.1B.2C.3D.411.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.8,9B.8,8.5C.16,8.5D.16,10.512.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为()A.280×103B.28×104C.2.8×105D.0.28×106二、填空题:(本大题共6个小题,每小题4分,共24分.)13.飞机着陆后滑行的距离S(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t﹣1.2t 2,那么飞机着陆后滑行_____秒停下.14.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.15.计算:2111x x x+=--___________.16.若反比例函数y=1m x-的图象在每一个象限中,y 随着x 的增大而减小,则m 的取值范围是_____.17.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为_____.有意义,则x 的取值范围是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)12)﹣2(2)化简:22222()x x y x yx y x y x y +--÷++-.20.(6分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?21.(6分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.填空:∠AHC∠ACG;(填“>”或“<”或“=”)线段AC,AG,AH什么关系?请说明理由;设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.22.(8分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为人,参加球类活动的人数的百分比为(2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为.(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.23.(8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)24.(10分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.25.(10分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.26.(12分)如图,已知点D在反比例函数y=mx的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=2 5.(1)求反比例函数y=mx和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA 与点M,求∠BMC的度数.27.(12分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】根据圆心角、弧、弦的关系定理得到∠AOB=12∠AOC,再根据圆周角定理即可解答.【详解】连接OB,∵点B是弧AC的中点,∴∠AOB=12∠AOC=60°,由圆周角定理得,∠D=12∠AOB=30°,故选D.【点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.2、C【解析】过点O作OE AB⊥,∵y x=-+,∴3,0)D ,3)C ,∴COD 为等腰直角三角形,45ODC ∠=︒,26sin 45322OE OD =⋅︒==,∵OAB △为等边三角形,∴60OAB ∠=︒,∴622sin 6023OE AO ==⋅=︒∴60122π22ππ36063AB r ︒=⋅=⋅=︒.故选C.3、C【解析】试题分析:根据已知得出方程ax 2+bx +c =0(a ≠0)有两个根x =1和x =﹣1,再判断即可.解:∵把x =1代入方程ax 2+bx +c =0得出:a +b +c =0,把x =﹣1代入方程ax 2+bx +c =0得出a ﹣b +c =0,∴方程ax 2+bx +c =0(a ≠0)有两个根x =1和x =﹣1,∴1+(﹣1)=0,即只有选项C 正确;选项A、B、D 都错误;4、D 【解析】因为213-=53,所以213-的倒数是35.故选D.5、B【解析】根据算术平方根的意义求解即可.【详解】=4,故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.6、B【解析】由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.故选B.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7、D【解析】根据线段垂直平分线性质得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【详解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故选D.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.8、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折叠的性质可得:∠BCD=12∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故选C.9、C【解析】直接利用锐角三角函数关系分别计算得出答案.【详解】∵90︒∠=C,2AC=,∴2 cos ACAAB AB==,∴2cosABA=,故选项A,B 错误,∵tan 2BC BC A AC ==,∴2tan BC A =,故选项C 正确;选项D 错误.故选C.【点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.10、B【解析】先利用三角函数计算出∠OAB=60°,再根据旋转的性质得∠CAB=30°,根据切线的性质得OC⊥AC,从而得到∠OAC=30°,然后根据含30度的直角三角形三边的关系可得到OC 的长.【详解】解:在Rt△ABO 中,sin∠OAB=OB OA =4=2,∴∠OAB=60°,∵直线l 1绕点A 逆时针旋转30°后得到的直线l 1刚好与⊙O 相切于点C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=12OA=1.故选B.【点睛】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了旋转的性质.11、A【解析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.故选A.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.12、C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将280000用科学记数法表示为2.8×1.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.【详解】由题意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750即当t=1秒时,飞机才能停下来.故答案为1.【点睛】本题考查了二次函数的应用.解题时,利用配方法求得t=2时,s取最大值.14、127或2【解析】由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x当△B’FC∽△ABC,有'B F CFAB BC=,得到方程434x x-=,解得x=127,故BF=12 7;当△FB’C∽△ABC,有'B F FCAB AC=,得到方程433x x-=,解得x=2,故BF=2;综上BF的长度可以为127或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.15、x+1【解析】先通分,进行分式的加减法,再将分子进行因式分解,然后约分即可求出结果.【详解】解:2111x x x+--=2111x x x ---211x x -=-()()111x x x +-=-1x =+.故答案是:x+1.【点睛】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.16、m>1【解析】∵反比例函数m 1y x-=的图象在其每个象限内,y 随x 的增大而减小,∴m 1->0,解得:m>1,故答案为m>1.17、﹣1【解析】【分析】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k 的值即可.【详解】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,整理得k 2+1k=0,解得k 1=0,k 2=﹣1,因为k≠0,所以k的值为﹣1.故答案为:﹣1.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18、x2【解析】根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.【详解】由题意得:2-x≥0,解得:x≤2,故答案为x≤2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)2;(2)x﹣y.【解析】分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.详解:(1)原式=3﹣4﹣2×+4=2;(2)原式=•=x﹣y.点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.20、(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元.【解析】(1)设商场第一次购进套运动服,根据“第二批所购数量是第一批购进数量的2倍,但每套进价多了10元”即可列方程求解;(2)设每套运动服的售价为y 元,根据“这两批运动服每套的售价相同,且全部售完后总利润率不低于20%”即可列不等式求解.【详解】(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=.答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+,y解这个不等式,得200答:每套运动服的售价至少是200元.【点睛】此题主要考查分式方程的应用,一元一次不等式的应用,解题的关键是读懂题意,找到等量及不等关系,正确列方程和不等式求解. 21、(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面或2或..积不变.②m的值为8【解析】(1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;(3)①△AGH的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题.【详解】(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC ∽△ACG ,∴AH AC AC AG=,∴AC 2=AG •AH .(3)①△AGH 的面积不变.理由:∵S △AGH =12•AH •AG =12AC 2=12)2=1.∴△AGH 的面积为1.②如图1中,当GC =GH 时,易证△AHG ≌△BGC ,可得AG =BC =4,AH =BG =8,∵BC ∥AH ,∴12BC BE AH AE ==,∴AE =23AB =83.如图2中,当CH =HG 时,易证AH =BC =4,∵BC∥AH,∴BE BCAE AH=1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,设BM=BE=m,则CM=m,∴m m=4,∴m﹣1),∴AE,综上所述,满足条件的m的值为83或2或.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.22、(1)7、30%;(2)补图见解析;(3)105人;(3)1 2【解析】试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为1240×100%=30%,故答案为7,30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600×740=105,故答案为105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,则P(选中一男一女)=612=12.点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、操作平台C离地面的高度为7.6m.【解析】分析:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF即可.详解:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH-∠HAF=118°-90°=28°,在Rt△ACF中,∵sin∠CAF=CF AC,∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平台C离地面的高度为7.6m.点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.24、(1)画树状图得:则共有9种等可能的结果;(2)两次摸出的球上的数字和为偶数的概率为:.【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.试题解析:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,∴两次摸出的球上的数字和为偶数的概率为:.考点:列表法与树状图法.25、(1)13;(2)13.【解析】(1)直接根据概率公式求解即可;(2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队的结果数,再根据概率公式即可得出答案.【详解】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=1 3;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是31 93=.26、(1)6yx-=,2y x25=-(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC 的解析式;(2)由条件可证明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC⊥CD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出△ACD为等腰直角三角形,则可求得答案.本题解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=25,∴25OC OA =,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x 轴,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣6x,设直线AC 关系式为y=kx+b,∵过A(1,0),C(0,﹣2),∴052k b b =+⎧⎨-=⎩,解得252k b ⎧=⎪⎨⎪=-⎩,∴y=25x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC 和△BCD 中OA BCAOC DBC OC BD=⎧⎪∠=∠⎨⎪=⎩,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如图,连接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x 轴,∴四边形AEBD 为平行四边形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD 为等腰直角三角形,∴∠BMC=∠DAC=41°.27、共有7人,这个物品的价格是53元.【解析】根据题意,找出等量关系,列出一元一次方程.【详解】解:设共有x 人,这个物品的价格是y 元,83,74,x y x y -=⎧⎨+=⎩解得7,53,x y =⎧⎨=⎩答:共有7人,这个物品的价格是53元.【点睛】本题考查了二元一次方程的应用.。
试卷分析数学(通用5篇)1.试卷分析数学第1篇一、数学试卷结构分析如下:☆数学试卷分值:满分100分,考试时间90分钟;☆题型共有4种:选择题、填空题、计算、化简求值、解答题;共21题;☆题型所占比例:1、选择题分值为10×3′=30′;2、填空题分值为8×3′=24′;3、有理数计算分值为4×4′=16′;4、化简求值分值为3×4′=12′;5、解答题分值为3×6′=18′。
二、题目难易程度区分如下:☆选择题。
共10小题,由浅入深;(1)1-6题为基础题、7-9为强化题,主要考查第一、二章节中的基本概念(相反数、绝对值、系数、同类项、科学记数法)的理解,比较简单、得分率较高;(2)第10小题拓展题比较难,考察求代数式值的应用,错误率较高、不易得分;☆填空题。
共8小题,均为基础强化题,主要考察数轴、绝对值、多项式的应用以及对基本技能的应用;中等难度、得分率较高;☆计算题。
共4小题,考察第一章《有理数》加减乘除乘方的混合☆化简求值题。
共3小题,考察七(上)第二章《整式的加减》去括号、合并同类项、化繁为简代数式求值问题;中等难度、得分率较高;☆解答题。
共3小题;第1小题为相反数、倒数、绝对值及代数式求值的综合计算题,第2小题为多项式的化简求值综合题,重点考察第二章知识点,第3小题解决问题类题目,稍大,不易拿全分。
三、学生考试成绩状况评价今年七年级期中数学卷(满分100分);其中,有90分左右的题目对于大多数学生来说是相对比较容易的,对于基础扎实的学生达到90分以上并不困难。
经过初步调查,今年期中数学成绩的峰值一段是在90~99分之间,另一段在80~89分之间,低于70分者占总人数的5.3%,90分以上者约占54.1%。
2.试卷分析数学第2篇本次测试按照全日制义务教育《数学新课程标准》的年段标准,重在考查学生对本册基本概念、基本内容、基本方法的掌握情况。
开放型试题开放型试题重在开发思维,促进创新,提高数学素养,所以是近几年中考试题的热点考题。
观察、实验、猜想、论证是科学思维方法,是新课标思维能力新添的内容,学习中应重视并应用。
例1.(2005年梅州)如图,四边形ABCD 是矩形,O 是它的中心,E 、F 是对角线AC上的点。
(1)如果 ,则ΔDEC ≌ΔBFA (请你填上能使结论成立的一个条件);(2)证明你的结论。
分析:这是一道探索条件、补充条件的开放型试题,解决这类问题的方法是假设结论成立,逐步探索其成立的条件。
解:(1)AE=CF (OE=OF ;DE ⊥AC ;BF ⊥AC ;DE ∥BF 等等)(2)∵四边形ABCD 是矩形,∴AB=CD ,AB ∥CD ,∠DCE=∠BAF 又∵AE=CF ,∴AC -AE=AC -CF ,∴AF=CE ,∴ΔDEC ≌ΔBAF 说明:考查了矩形的性质及三角形全等的判定。
练习一1. (2005年黑龙江课改)如图, E 、F 是□ABCD 对角线BD 上的两点,请你添加一个适当的条件: ___________ ,使四边形AECF 是平行四边形.2、(2005年金华)如图,在△ABC 中,点D 在AB 上,点E 在BC 上,BD =BE. (1)请你再添加一个条件,使得△BEA ≌△BDC ,并给出证明.你添加的条件是: . 证明:A D E FO F EDCBA(2)根据你添加的条件,再写出图中的一对全等三角形: . (只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程) 3、(2005年玉溪)如图,在梯形ABCD 中,AD ∥BC ,BD =CD ,AB <CD 且∠ABC 为锐角,若AD =4,BC =12,E 为BC 上一点。
问:当CE 分别为何值时,四边形ABED 是等腰梯形?直角梯形?请分别说明理由。
例2、(2005年长沙)己知点E 、F 在ABC ∆的边 AB 所在的直线上,且AE BF =,FH EG AC ,FH 、EG 分别交边BC 所在的直线于点H 、G .⑴如图l ,如果点E 、F 在边AB 上,那么EG FH AC +=;⑵如图2,如果点E 在边AB 上,点F 在AB 的延长线上,那么线段EG 、FH 、AC 的长度关系是_______________ ;⑶如图3,如果点E 在AB 的反向延长线上,点F 在AB 的延长线上,那么线段EG 、FH 、AC 的长度关系是_________ ; 对⑴⑵⑶三种情况的结论,请任选一个给予证明. 分析:这是一道探索、确定结论的开放型试题,解决这类问题的方法是根据条件,结合已学的知识、数学思想方法,通过分析、归纳逐步得出结论,或通过观察、实验、猜想、论证的方法求解。
数学找规律考试题找规律练习题⼀.数字排列规律题1. 4、10、16、22、28……,求第n位数( )。
2. 2、3、5、9,17增幅为1、2、4、8. 第n位数( )3. 观察下列各式数:0,3,8,15,24,……。
试按此规律写出的第100个数是----,第n个数是---------。
4. 1,9,25,49,(),(),的第n项为(),5: 2、9、28、65.....:第n位数()6:2、4、8、16...... 第n位数. ()7:2、5、10、17、26……,第n位数. ()8 : 4,16,36,64,?,144,196,…?第⼀百个数()9、观察下⾯两⾏数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每⾏第⼗个数,求得他们的和。
10、⽩⿊⽩⿊⿊⽩⿊⿊⿊⽩⿊⿊⿊⿊⽩⿊⿊⿊⿊⿊排列的珠⼦,前2002个中有⼏个是⿊的?11. =8 =16 =24 ……⽤含有N的代数式表⽰规律()12. 12,20,30,42,( )127,112,97,82,( )3,4,7,12,( ),2813 . 1,2,3,5,( ),1314. 0,1,1,2,4,7,13,( )15 .5,3,2,1,1,( )16. 1,4,9,16,25,( ),4917. 66,83,102,123,( ) ,18. 1,8,27,( ),12519。
3,10,29,( ),12720, 0,1,2,9,( )21; ( )。
则第n项代数式为:()22 , 2/3 1/2 2/5 1/3 ( )。
则第n项代数式为()23 , 1,3,3,9,5,15,7,( )24. 2,6,12,20,( )25. 11,17,23,( ),35。
26. 2,3,10,15,26,( )。
27. : 1,8,27,64,( )28. :0,7,26,63 ,( )29. -2,-8,0,64,( )30. 1,32,81,64,25,( )31. 1,1,2,3,5,( )。
2021年河北中考数学试题分析1、命题模式突破,强调实战能力今年的中考数学试卷改革力度较大,打破了多年的命题模式。
整套试卷“起点低,坡度缓,尾巴翘”。
试题覆盖面广,内容新颖,较好的落实了“狠抓基础,渗透思想,突出能力,着重创新”新课改的理念。
2、以夯实基础为出发点基本题以常规题型为主,采用了直接考查数与式的运算、有理数大小的比较、二次根式的意义、函数的图像与性质、正方体的展开与折叠、圆的有关知识,方差的特征量、统计与概率等的基本知识。
这类试题的特点,起点低,考查的知识相对单一,内容大都来源于课本,是对教材内容的深入考查,学生很容易上手并正确解答。
如1-8题、13-15题、19-21题,都能在课本上找到源头,这对中学数学教学有良好的导向作用。
3、专项试题突出能力今年试题设计精心,立意凸现了对中学数学的通性通法的重点考查。
如:第14、17题体现了转化的思想,第18题考查了特殊到一般的归纳思想,第19、22题考查了方程思想,第12、20题考查了数形结合的思想,第11、24题考查了函数思想,第25、26题用运动变化中特殊数量关系寻找的研究,这使得整套试卷突出能力立意,为初中数学教学指明了方向。
4、“多思少算”命题新倾向今年开放性、探究性试题的设置分布广泛,通过设置操作、观察、探究、应用等方面的问题,给学生提供了一定的思考研究空间。
如第17题留给学生的思考空间较大,虽然其中一个图形处于运动状态,但是通过转化,使阴影部分的周长形成规律,巧妙解题。
第25题以学生熟悉的平行线为原型,通过扇形的改变和运动,形成一个探究性题目,图形的设置减少了文字量,降低了对学生文字阅读能力的要求。
题目发掘并串联了点与直线的距离、直线与圆的位置关系、三角函数等重要内容,侧重考查了运动变化中的不变量问题、解直角三角形问题、垂径定理和圆心角问题,本题带有浓郁的探究成分,要求学生善于对新情景、新信息进行有效的加工和整合,完成本题要求学生有较好的现场学习、迁移和应用的能力,这类试题多有较好的区分度和可推广性。
中考专题:折叠问题折叠型问题是近年中考的热点问题,通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来命题。
折叠型问题立意新颖,变幻巧妙,对培养学生的识图能力及灵活运用数学知识解决问题的能力非常有效。
图形折叠问题中题型的变化比较多,主要有以下几点:1.图形的翻折部分在折叠前和折叠后的形状、大小不变,是全等形;2.图形的翻折部分在折叠前和折叠后的位置关于折痕成轴对称;3.将长方形纸片折叠,三角形是否为等腰三角形;4.解决折叠问题时,要抓住图形之间最本质的位置关系,从而进一步发现其中的数量关系;5.充分挖掘图形的几何性质,将其中的基本的数量关系,用方程的形式表达出来,并迅速求解,这是解题时常用的方法之一。
折叠问题数学思想:(1)思考问题的逆向(反方向),(2)从一般问题的特例人手,寻找问题解决的思路;(3)把一个复杂问题转化为解决过的基本问题的转化与化归思想;(4)归纳与分类的思想(把折纸中发现的诸多关系归纳出来,并进行分类);(5)从变化中寻找不变性的思想.用“操作”、“观察”、“猜想”、“分析”的手段去感悟几何图形的性质是学习几何的方法。
折叠问题主要有以下题型:题型1:动手问题此类题目考查学生动手操作能力,它包括裁剪、折叠、拼图,它既考查学生的动手能力,又考查学生的想象能力,往往与面积、对称性质联系在一起.题型2:证明问题动手操作的证明问题,既体现此类题型的动手能力,又能利用几何图形的性质进行全等、相似等证明.题型3:探索性问题此类题目常涉及到画图、测量、猜想证明、归纳等问题,它与初中代数、几何均有联系.此类题目对于考查学生注重知识形成的过程,领会研究问题的方法有一定的作用,也符合新课改的教育理论。
典型例题一.折叠后求度数例1.将一张长方形纸片按如图所示的方式折叠,BC、BD为折痕,则∠CBD的度数为()A.600 B.750 C.900 D.950练习1.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50° B.55°C.60° D.65°2.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,则∠1=_______°,∠2=_______°A3. 用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE ,其中∠BAC =度。
精品基础教育教学资料,仅供参考,需要可下载使用!中考数学考点专题精编:统计与概率(2016湖州)21.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表海选成绩x组别A组50≤x<60B组60≤x<70C组70≤x<80D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为15 ,表示C组扇形的圆心角θ的度数为72 度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?【试题答案:解:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补(2)B组人数所占的百分比是 ×100%=15%,则a的值是15;C组扇形的圆心角θ的度数为360× =72°;故答案为:15,72;(3)根据题意得:2000× =700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人. 】【时间:2016-7-18 17:42:24】(2016湖州)7.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,则其结果恰为2的概率是()A. B. C. D.【试题答案:解:∵|x﹣4|=2,∴x=2或6.∴其结果恰为2的概率= = .故选C.】【时间:2016-7-18 17:42:24】(2016湖州)5.数据1,2,3,4,4,5的众数是()A.5B.3C.3.5D.4【试题答案:解:∵数据1,2,3,4,4,5中,4出现的次数最多,∴这组数据的众数是:4.故选:D. 】【时间:2016-7-18 17:42:24】(2016湖州)4.受“乡村旅游第一市”的品牌效应和2015年国际乡村旅游大会的宣传效应的影响,2016年湖州市在春节黄金周期间共接待游客约2800000人次,同比增长约56%,将2800000用科学记数法表示应是()A.28×105B.2.8×106C.2.8×105D.0.28×105【试题答案:B】【时间:2016-7-18 17:42:24】(2016舟山)为了落实省新课改精神,我是各校都开设了“知识拓展类”、“体艺特长类”、“实践活动类”三类拓展性课程,某校为了解在周二第六节开设的“体艺特长类”中各门课程学生的参与情况,随机调查了部分学生作为样本进行统计,绘制了如图所示的统计图(部分信息未给出)根据图中信息,解答下列问题:(1)求被调查学生的总人数;(2)若该校有200名学生参加了“体艺特长类”中的各门课程,请估计参加棋类的学生人数;(3)根据调查结果,请你给学校提一条合理化建议.【试题答案与分析:【分析】(1)根据“总体=样本容量÷所占比例”即可得出结论;(2)根据“样本容量=总体×所占比例”可求出参加C舞蹈类的学生人数,再由总体减去其他各样本容量算出参加E棋类的学生人数,求出其所占总体的比例,再根据比例关系即可得出结论;(3)根据条形统计图的特点,找出一条建议即可.【解答】解:(1)被调查学生的总人数为:12÷30%=40(人).(2)被调查参加C舞蹈类的学生人数为:40×10%=4(人);被调查参加E棋类的学生人数为:40﹣12﹣10﹣4﹣6=8(人);200名学生中参加棋类的学生人数为:200×=40(人).(3)因为参加A球类的学生人数最多,故建议学校增加球类课时量,希望学校多开展拓展性课程等.】【时间:2016-6-29 16:25:05】(2016舟山)一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为.【试题答案与分析:【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵标号为1,2,3,4,5的5个小球中偶数有2个,∴P=.故答案为:.】【时间:2016-6-29 16:25:05】(2016舟山)某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的()A.平均数 B.中位数 C.众数 D.方差【试题答案:B】【时间:2016-6-29 16:25:05】(2016舟山)13世纪数学家斐波那契的(计算书)中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76 D.77【试题答案:C】【时间:2016-6-29 16:25:05】(2016衢州)为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?【试题答案与分析:【分析】(1)根据C类人数有15人,占总人数的25%可得出总人数,求出A类人数,进而可得出结论;(2)直接根据概率公式可得出结论;(3)求出“实践活动类”的总人数,进而可得出结论.【解答】解:(1)总人数=15÷25%=60(人).A类人数=60﹣24﹣15﹣9=12(人).∵12÷60=0.2=20%,∴m=20.条形统计图如图;(2)抽到选“体育特长类”或“艺术特长类”的学生的概率==;(3)∵800×25%=200,200÷20=10,∴开设10个“实验活动类”课程的班级数比较合理.】【时间:2016-6-24 13:03:57】(2016衢州)光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).【试题答案与分析:【分析】(1)设这个月有x天晴天,根据总电量550度列出方程即可解决问题.(2)需要y年才可以收回成本,根据电费≥40000,列出不等式即可解决问题.【解答】解:(1)设这个月有x天晴天,由题意得30x+5(30﹣x)=550,解得x=16,故这个月有16个晴天.(2)需要y年才可以收回成本,由题意得(0.52+0.45)12y≥40000,解得y≥8.6,∵y是整数,∴至少需要9年才能收回成本.】【时间:2016-6-24 13:03:57】(2016衢州)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:5 6 7 8时间(小时)人数10 15 20 5则这50名学生这一周在校的平均体育锻炼时间是 6.4 小时.【试题答案与分析:【分析】根据平均数的计算方法是求出所有数据的和,然后除以数据的总个数进行计算.【解答】解: =6.4.故答案为:6.4.】【时间:2016-6-24 13:03:57】(2016衢州)在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数 D.中位数【试题答案与分析:【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【解答】解:因为7名学生参加决赛的成绩肯定是7名学生中最高的,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的成绩和中位数就可以知道是否进入前3名.故选:D.】【时间:2016-6-24 13:03:57】(2016杭州)18.(8分)某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2120辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?【试题答案:】【时间:2016-6-21 9:17:20】(2016杭州)12. 已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.【试题答案:】【时间:2016-6-21 9:17:20】(2016杭州)4. 如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A. 14℃,14℃B. 15℃,15℃C. 14℃,15℃D. 15℃,14℃【试题答案:A】【时间:2016-6-21 9:17:20】(2016绍兴)18.为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动的天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.A市七年级部分学生参加社会 A市七年级部分学生参加社会实践活动天数的频数分布表实践活动天数的条形统计图根据以上信息,解答下列问题:(l)求出频数分布表中a的值,并补全条形统计图.(2)A市有七年级学生20 000人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.【试题答案:】【时间:2016-6-20 13:47:47】(2016绍兴)10. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是A.84B.336C.510D.1326【试题答案:C】【时间:2016-6-20 13:47:47】(2016绍兴)5.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6.投掷一次,朝上一面的数字是偶数的概率为【试题答案:C】【时间:2016-6-20 13:47:47】(2016丽水)20.(本题8分)为了帮助九年级学生做好体育考试项目的选考工作,某校统计了本县上届九年级毕业生体育考试各个项目参加的男、女生人数及平均成绩,并绘制成如下两个统计图,请结合统计图信息解决问题.(1)“掷实心球”项目男、女生总人数是“跳绳”项目男、女生总人数的2倍.求“跳绳”项目的女生人数.(2)若一个考试项目的男、女生中平均成绩不小于9分为“优秀”,试判断该县上届毕业生的考试项目中达到“优秀”的有哪些项目,并说明理由;(3)请结合统计图信息和实际情况,给该校九年级学生体育考试项目的选择提出合理化建议.【试题答案与分析:】【时间:2016-6-20 8:34:25】(2016丽水)13.箱子里放有2个黑球和2个红球,它们除颜色外其余都相同.现从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概念是.【试题答案:】【时间:2016-6-20 8:34:25】(2016丽水)5.某校全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如右表所示,这下列说法正确的是()A.七年级的各概率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【试题答案:D】【时间:2016-6-20 8:34:25】(2016宁波)24.(本题10分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:A B进价(万元/套) 1.5 1.2售价(万元/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元。
一、选择题1.为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg )分别为1x ,2x ,…,8x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,…,8x 的平均数B .1x ,2x ,…,8x 的方差C .1x ,2x ,…,8x 的中位数D .1x ,2x ,…,8x 的众数2.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定D .无法确定甲、乙的成绩谁更稳定3.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是( ) 年龄 13 14 15 16 人数2341A .15,15B .14,15C .14,14.5D .15,14.54.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D .抛掷一枚硬币100次,一定有50次“正面朝上”5.在学校举行的“我为祖国献首歌”的合唱比赛中,六位评委给初三某班的评分分别是:87、90、83、87、87、83,这组数据的众数和中位数分别是( ) A .87,87B .87,85C .83,87D .83,856.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:C ):-6,-4,-2,0,-2,2.关于这组数据,下列结论不正确的是( )A .平均数是-2B .中位数是-2C .众数是-2D .方差是57.某班七个兴趣小组人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( ) A .6B .6.5C .7D .88.甲、乙两人各射击次,甲所中的环数是,,,,,,且甲所中的环数的平均数是,众数是;乙所中的环数的平均数是,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是( ) A .甲射击成绩比乙稳定 B .乙射击成绩比甲稳定C .甲,乙射击成绩稳定性相同D .甲、乙射击成绩稳定性无法比较9.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( ) A .众数是108 B .中位数是105 C .平均数是101D .方差是9310.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,值周班长小兵每周对各小组合作学习的情况进行综合评分,下表是其中一周的评分结果“分值”这组数据的中位数和众数分别是( ) A .89,90B .90,90C .88,95D .90,9511.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A .甲队员成绩的平均数比乙队员的大B .乙队员成绩的平均数比甲队员的大C .甲队员成绩的中位数比乙队员的大D .甲队员成绩的方差比乙队员的大12.为了解某小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表: 锻炼时间(时) 3 4 5 6 7 人数(人)6131452这40名居民一周体育锻炼时间的众数和中位数是( ) A .14,5B .14,6C .5,5D .5,6第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.14.一组数据1x ,2x ,3x ,4x ,5x 的平均数是5,方差是3,则143x -,243x -,343x -,443x -,543x -的平均数是________,方差是________.15.若这8个数据-3, 2,-1,0,1,2,3,x 的极差是11,则这组数据的平均数是______.16.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某单位使用共享单车的情况,该单位有200名员工,某研究小组随机采访10位员工,得到这10位员工一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是(2)试用平均数估计该单位员工一周内使用共享单车的总次数.17.在一次数学测验中,甲组4名同学的平均成绩是70分,乙组6名同学的平均成绩是80分,则这10名同学的平均成绩是______________.18.甲、乙二人在相同情况下,各射靶10次,两人命中环数的平均数都是7,方差2S 甲=2.8,2S 乙=1.5,则射击成绩较稳定的是______.(填“甲”或“乙”)19.已知一组数据为:5,3,3,6,3则这组数据的方差是______.20.若样本数据1,2,3,2的平均数是a ,中位数是b ,众数是c ,则数据a ,b ,c 的方差是___.三、解答题21.在推进杭州市城乡生活垃圾分类的行动中,某校为了考察该校初中生掌握垃圾分类知识的情况,进行了一次测试,并随机抽取了若干名学生的测试成绩进行整理,绘制了如图所示不完整的频数直方图(每组含前一个边界值,不含后一个边界值)和扇形统计图. (1)求样本容量,并补充完整频数直方图.(2)在抽取的这些学生中,玲玲的测试成绩为85分,你认为85分一定是这些学生成绩的中位数吗?请简要说明理由.(3)若成绩在80分以上(包括80分)为优秀,请估计全校1400名学生中成绩优秀的人数.22.某公司共有三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B 8C5(1)①在扇形图中,C部门所对应的圆心角的度数为___________;②在统计表中,___________,___________;(2)求这个公司平均每人所创年利润.23.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.24.学校为了让同学们走向操场、积极参加体育锻炼,启动了“学生阳光体育运动”,张明和李亮在体育运动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:平均数 中位数 方差 张明13.30.004 李亮13.30.02(1)张明第2次的成绩为: 秒;(2)张明成绩的平均数为: ;李亮成绩的中位数为: ;(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁?请说明理由.25.某区正在积极创建国家模范卫生城市,学校为了普及学生卫生健康知识,提高学生创卫意识,举办了创卫知识竞赛,以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:75 88 93 65 78 94 89 68 95 50 89 88 89 89 77 95 87 88 92 91 初二:74 96 96 89 97 74 69 76 72 78 99 72 97 85 98 74 89 73 98 74 (1)整理、描述数据: 成绩x 5059x ≤≤6069x ≤≤7079x ≤≤8089x ≤≤ 90100x ≤≤初一(频数) 1 2 3 m6 初二(频数)1937(说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下不合格) 分析数据:平均数 中位数 众数 初一 84 a89初二8481.5b请根据上述的数据,填空:m =______;a =______;b =______;(2)得出结论:你认为哪个年级掌握创卫知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).26.为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级: 79,85,73,80, 75,76,87, 70, 75,94,75,79,81,71, 75,80,86,59, 83, 77.八年级: 92,74, 87,82,72,81, 94,83,77, 83,80,81,71,81,72,77,82,80,70,41.整理数据:分析数据:应用数据:(1)由上表填空:a=,b=,c=,d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据方差的意义即可判断.【详解】解:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.故选:B.【点睛】本题考查方差,平均数,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.B解析:B【分析】根据方差的意义求解可得.【详解】∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3.D解析:D【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【详解】在这10名队员的年龄数据里,15岁出现了4次,次数最多,因而众数是15;10名队员的年龄数据里,第5和第6个数据分别为14,15,其平均数141514.52+=,因而中位数是14.5.故选:D.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.C解析:C【分析】可根据调查的选择、中位数和众数的求法、方差及随机事件的意义,逐个判断得结论.【详解】解:因为我国中学生人数众多,其课外阅读的情况也不需要特别精确,所以对我国中学生课外阅读情况的调查,宜采用抽样调查,故选项A不正确;因为B中数据按从小到大排列为1、2、3、3、5、5、5,位于中间的数是3,故该组数据的中位数为3,所以选项B说法不正确;因为0.003<0.1,方差越小,波动越小,数据越稳定,所以甲组数据比乙组数据稳定,故选项C说法正确;因为抛掷硬币属于随机事件,抛掷一枚硬币100次,不一定有50次“正面朝上”故选项D说法不正确.故选:C . 【点睛】本题的关键在于掌握调查的选择、中位数和众数的求法、方差及随机事件的意义.5.A解析:A 【分析】首先对这组数据进行排序,根据中位数和众数的定义回答即可. 【详解】∵这组数据排序后为83,83,87,87,87,90,∴这组数据的众数是87,这组数据的中位数是87872+=87. 故选A . 【点睛】本题考查了中位数和众数的定义.注意找中位数的时候一定要先排好顺序,然后再根据数据个数确定中位数:如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.6.D解析:D 【分析】根据平均数、中位数、众数及方差的定义以及计算公式,依次计算各选项即可作出判断. 【详解】解:A 、平均数是-2,结论正确,故A 不符合题意; B 、中位数是-2,结论正确,故B 不符合题意; C 、众数是-2,结论正确,故C 不符合题意; D 、方差是203,结论错误,故D 符合题意; 故选:D . 【点睛】本题考查平均数、中位数、众数及方差的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.7.C解析:C 【分析】根据平均数求出x 的值,再利用中位数定义即可得出答案. 【详解】∵5,6,6,x ,7,8,9,这组数据的平均数是7, ∴()775667898x =⨯-+++++=, ∴这组数据从小到大排列为:5,6,6,7,8,8,9∵这组数据最中间的数为7, ∴这组数据的中位数是7. 故选C . 【点睛】此题主要考查了中位数,根据平均数正确得出x 的值是解题关键.8.B解析:B 【解析】 【分析】要判断甲,乙射击成绩的稳定性就是要比较两人成绩的方差的大小,关键是求甲的方差.甲的这组数中的众数是8就说明a ,b ,c 中至少有两个是8,而平均数是6,则可以得到a ,b ,c 三个数其中一个是2,另两个数是8,求得则甲的方差,再进行比较得出结果. 【详解】∵这组数中的众数是8, ∴a ,b ,c 中至少有两个是8, ∵平均数是6,∴a ,b ,c 三个数其中一个是2, ∴(4+1+1+4+4+16)=5,∵5>4,∴乙射击成绩比甲稳定. 故选:B . 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.D解析:D 【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论. 【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110, ∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=,方差为()()()()()()222222182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣⎦ 94.393≈≠;故选D . 【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.10.B解析:B 【解析】 【分析】根据中位数和众数的定义找出从小到大排列后最中间的数和出现次数最多的数即可. 【详解】把这组数据从小到大排列:84,89,90,90,90,91,96, 最中间的数是90,则中位数是90;90出现了3次,出现的次数最多,则众数是90; 故选B . 【点睛】此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.11.D解析:D 【解析】 【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案. 【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882+=8, 甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8, 乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环), 甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4; 乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2, 综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差, 故选D . 【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.12.C解析:C【解析】【分析】众数是一组数据中出现次数最多的数据,中位数是将一组数据按大小依次排列,把处在最中间位置的一个数据或者最中间两个数据的平均数叫这组数据的中位数.本组数据中,把数据按照从大到小的顺序排列,最中间的两个数的平均数即为中位数.【详解】由统计表可知:体育锻炼时间最多的是5小时,故众数是5小时;统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间都是5小时,故中位数是5小时.故选C .【点睛】本题考查了确定一组数据的众数和中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数,则找中间两位数的平均数.二、填空题13.2【分析】根据方差是用来衡量一组数据波动大小的量每个数都加3所以波动不会变方差不变【详解】解:设abc 的平均数是d 所以方差不变故答案为:2【点睛】本题主要考查了方差的公式解题的关键是当数据都加上一个 解析:2【分析】根据方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:设a 、b 、c 的平均数是d,()222211S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦ , ()222221S =33(33)(33)23a d b d c d ⎡⎤+-+++-+++-+=⎢⎥⎣⎦ , ()222221S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦, 所以方差不变.故答案为:2.【点睛】本题主要考查了方差的公式,解题的关键是当数据都加上一个数时,方差不变. 14.1748【分析】根据平均数和方差公式的变形即可得到结果【详解】一组数据x1x2x3x4x5的平均数是5则4x1-34x2-34x3-34x4-34x5-3的平均数是4(x1+x2+x3+x4+x5)解析:17 48【分析】根据平均数和方差公式的变形即可得到结果.【详解】一组数据x1,x2,x3,x4,x5的平均数是5,则4x1-3,4x2-3,4x3-3,4x4-3,4x5-3的平均数是15[4(x1+x2+x3+x4+x5)-15]=17,∵新数据是原数据的4倍减3;∴方差变为原来数据的16倍,即48.故答案为:17;48.【点睛】本题考查方差的计算公式的运用:一般地设有n个数据,x1,x2,…x n,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.15.15或-05【分析】根据极差的概念求出x的值然后根据平均数的概念求解【详解】一组数据-32-10123x的极差是11当x为最大值时x﹣(﹣3)=11x=8平均数是:;当x是最小值时3﹣x=11解得:解析:1.5或-0.5【分析】根据极差的概念求出x的值,然后根据平均数的概念求解.【详解】一组数据-3, 2,-1,0,1,2,3,x的极差是11,当x为最大值时,x﹣(﹣3)=11,x=8,平均数是:[3+ 2+1+0+1+2+3+8]8 1.5--÷=();当x是最小值时,3﹣x=11,解得:x=﹣8,平均数是:[3+ 2+1+0+1+2+3+(8)]80.5--÷=-()-,故答案为:1.5或-0.5【点睛】本题考查了极差和平均数,掌握平均数是所有数据的和除以数据的个数;极差就是这组数中最大值与最小值的差,是解题的关键16.(1)1617;(2)这10位居民一周内使用共享单车的平均次数是14次【分析】(1)将数据按照大小顺序重新排列计算出中间两个数的平均数即是中位数出现次数最多的即为众数;(2)根据平均数的概念将所有数解析:(1)16,17;(2)这10位居民一周内使用共享单车的平均次数是14次【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可;【详解】解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案是16,17;(2)110×(0+7+9+12+15+17×3+20+26)=14,答:这10位居民一周内使用共享单车的平均次数是14次;【点睛】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.17.76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩再除以10即可得出答案【详解】这10名同学的平均成绩为:=76(分)故答案为:76分【点睛】本题考查的是加权平均数的求法本解析:76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩,再除以10,即可得出答案.【详解】这10名同学的平均成绩为:7048106⨯+⨯=76(分),故答案为:76分.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求70、80这两个数的平均数.18.乙【解析】【分析】直接利用方差的意义方差越小越稳定进而分析得出答案【详解】∵方差=1515<28∴射击成绩较稳定的是:乙故答案为:乙【点睛】此题主要考查了方差正确把握方差的意义是解题关键解析:乙【解析】【分析】直接利用方差的意义,方差越小越稳定,进而分析得出答案.【详解】∵方差222.8,S S=甲乙=1.5,1.5<2.8,∴射击成绩较稳定的是:乙.故答案为:乙.【点睛】此题主要考查了方差,正确把握方差的意义是解题关键.19.【解析】【分析】先求出平均数再根据方差的公式计算即可【详解】这组数据的平均数是:则这组数据的方差是;故答案为【点睛】此题考查了方差:一般地设n 个数据的平均数为则方差它反映了一组数据的波动大小方差越大 解析:1.6【解析】【分析】先求出平均数,再根据方差的公式计算即可.【详解】这组数据的平均数是:()5336354++++÷=, 则这组数据的方差是(22221S [(54)3(34)64) 1.65⎤=-+⨯-+-=⎦; 故答案为1.6.【点睛】此题考查了方差:一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差(222212n 1S [(x x)(x x)x x)n⎤=-+-+⋯+-⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 20.0【解析】【分析】先确定出abc 后根据方差的公式计算abc 的方差【详解】解:平均数;中位数;众数;bc 的方差故答案是:0【点睛】考查了平均数中位数众数和方差的意义解题的关键是正确理解各概念的含义解析:0.【解析】【分析】先确定出a ,b ,c 后,根据方差的公式计算a ,b ,c 的方差.【详解】解:平均数()123242a =+++÷=;中位数()2222b =+÷=;众数2c =;a ∴,b ,c 的方差(222[(22)(22)22)30⎤=-+-+-÷=⎦.故答案是:0.【点睛】考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义. 三、解答题21.(1)50;见解析;(2)不一定;见解析;(3)728【分析】(1)由总人数为100可得m的值,从而补全图形;(2)根据中位数的定义判断即可得;(3)样本中成绩在80分以上(包括80分)占调查人数的161050+,因此利用样本估计总体的方法列出算式1610140050+⨯,求解可得结果.【详解】解:(1)样本容量是:10÷20%=50.70≤a<80的频数是50−4−8−16−10=12(人),补全图形如下:(2)不一定是这些学生成绩的中位数.理由:将50名学生知识测试成绩从小到大排列,第25、26名的成绩都在分数段80≤a≤90中,他们的平均数不一定是85分,因为25、26的成绩的平均数才是整组数据的中位数.(3)全校1400名学生中成绩优秀的人数为:1610140072850+⨯=(人).【点睛】本题考查了条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)①108°;②9,6;(2)7.6万元.【解析】试题分析:(1)①在扇形图中,由C部门所占比例乘以360°即可得出C部门所对应的圆心角的度数.②先计算出A部门所占比例,再计算出总人数,根据B、C部门所占比例即可求出b、c的值.(2)利用加权平均数的计算公式计算即可.试题(1)①360°×30%=108°;②∵a%=1-45%-30%=25%5÷25%=20∴20×45%=9(人)20×30%=6(人)(2)10×25%+8×45%+5×30%=7.6答:这个公司平均每人所创年利润是7.6万元.考点:1.扇形统计图;2.加权平均数.23.(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.【分析】(1)由题意得出本次调查的样本容量是6118530+++=,由众数的定义即可得出结果;(2)由加权平均数公式即可得出结果;(3)由总人数乘以平均数即可得出答案.【详解】(1)本次调查的样本容量是6118530+++=,这组数据的众数为10元;故答案为30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元);(3)估计该校学生的捐款总数为600127200⨯=(元).【点睛】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.24.(1)13.4;(2)13.3秒,13.3秒;(3)选择张明,理由见解析.【分析】(1)根据统计图给出的数据可直接得出答案;(2)利用平均数的计算公式可得出张明成绩的平均数;先将李亮的成绩按照从小到大排列,然后即可得到这组数据的中位数;(3)在平均数、中位数相同的情况下,再根据方差越小数据越稳定,即可得出答案.【详解】解:(1)根据统计图可知,张明第2次的成绩为13.4秒,故答案为:13.4;(2)张明成绩的平均数为:13.313.413.313.213.35++++=13.3(秒);李亮的成绩是:13.2,13.4,13.1,13.5,13.3,把这些数从小到大排列为:13.1,13.2,13.3,13.4,13.5,则李亮成绩的中位数是:13.3秒;故答案为:13.3秒,13.3秒;(3)选择张明参加比赛,因为张明和李亮成绩的平均数、中位数都相同,但张明成绩的方差小于李亮成绩的方差,张明成绩比李亮成绩稳定.【点睛】本题考查了平均数,中位数,方差的意义.平均数表示一组数据的平均程度;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.25.(1)8,88.5,74;(2)初一的水平较好,理由见解析.【分析】(1)根据所给数据可得出m的值,根据中位数和众数的定义可得a,b的值;(2)从中位数和众数的角度分析可知初一的水平较好.【详解】解:(1)由初一的成绩可知,m=8,将初一的成绩按从低到高排列,第10、11名的成绩分别为:88,89,故初一的中位数a=888988.52;初二的成绩中74分的人数最多,故初二的众数b=74,故答案为:8,88.5,74;(2)初一的水平较好,理由:因为初一和初二的平均数都是84分,但是初一的中位数是88.5分,众数是89分,而初二的中位数是81.5分,众数是74分,即初一年级学生成绩的中位数和众数明显高于初二年级的学生成绩的中位数和众数,故初一的水平较好.【点睛】本题考查了频数分布表、中位数和众数的意义,掌握中位数和众数的求法是解题的关键.26.(1)11,10,78,81;(2)90人;(3)八年级学生对经典文化知识掌握的总体水平较好,理由是八年级学生成绩的中位数较高【分析】(1)根据已知数据及中位数和众数的概念求解即可.(2)利用样本估计总体思想求解可得.(3)答案不唯一,合理即可.【详解】(1)a=11,b=10,c=78,d=81(2)312009040⨯=(人)答:估计七八年级90分以上的学生共90人(3)八年级学生对经典文化知识掌握的总体水平较好,理由:八年级学生成绩的中位数较高【点睛】。
方案设计型试题例1、(常州)七(2)班共有50名学生,老师安排每人制作一件A 型或B 型的陶艺品,学校现有甲种制作材料36kg ,乙种制作材料29kg ,制作A 、B 两种型号的陶(1)设制作型陶艺品件,求的取值范围;(2)请你根据学校现有材料,分别写出七(2)班制作A 型和B 型陶艺品的件数. 分析:本题的背景是与人们的生活息息相关的现实问题,本题的条件较多,要分清楚每个量之间的关系,还有,弄清楚这些陶艺品并不能将料全部用完后,本题目就较容易解决了。
解:(1)由题意得:⎩⎨⎧⋯⋯⋯⋯≤+-⋯⋯⋯≤+-②x x ①x x 27)50(3.0364.0)50(9.0 由①得,x ≥18,由②得,x ≤20,所以x 的取值得范围是18≤x ≤20(x 为正整数) (2)制作A 型和B 型陶艺品的件数为:①制作A 型陶艺品32件,制作B 型陶艺品18件; ②制作A 型陶艺品31件,制作B 型陶艺品19件; ③制作A 型陶艺品30件,制作B 型陶艺品20件; 说明:1.本题考察的是不等式组的应用及解不等式。
练习一1、(黑龙江)某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于万元,但不超过万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?注:利润=售价-成本2.(哈尔滨)双蓉服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,需要1880元。
(1)求A、B两种型号的服装每件分别为多少元?(2)若销售1件A型服装可获利18元,销售1件B型服装可获利30元,根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,且A 型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元,问有几种进货方案?如何进货?3.(河南)某公司为了扩大经营,决定购进6台机器用于生产某种活塞。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共15小题,每小题3分,共45分)1. 3-的倒数是( )A. B. 13C.13- D. 3-2. 下列四个图形中,既是轴对称图形又是中心对称图形是( )A. B. C. D.3. 下列计算正确的是( )A. 212=2 B. 2+3=5 C. 43-33=1 D. 3+22=524. 我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg用科学记数法可表示为( )A. 13×710kg B. 0.13×810kg C. 1.3×710kg D. 1.3×810kg5. 如图所示,AB∥CD,BC平分∠ABD,若∠C=40°,则∠D的度数为( )A. 90°B. 100°C. 110°D. 120°6. 平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为( ).A (﹣2,﹣3) B. (2,﹣3) C. (﹣3,﹣2) D. (3,﹣2)7. 某几何体的主视图、左视图和俯视图分别如图所示,则该几何体的体积为( )A. 3πB. 2πC. πD. 128. 实施新课改以来,某班学生经常采用”小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:组别 1 2 3 4 5 6 7分值90 95 90 88 90 92 85这组数据的中位数和众数分别是A. 88,90B. 90,90C. 88,95D. 90,959. 如图,菱形ABCD中,B60∠=,AB=4,则以AC为边长的正方形ACEF的周长为【】A. 14B. 15C. 16D. 1710. 小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:x-y,a-b,2,x2-y2,a,x+y,分别对应下列六个字:南、爱、我、美、游、济,现将2a(x2-y2)-2b(x2-y2)因式分解,结果呈现的密码信息可能是( )A. 我爱美B. 济南游C. 我爱济南D. 美我济南11. 如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,3),则点B的坐标为( )A. (1-3,3+1)B. (-3,3+1)C. (-1,3+1)D. (-1,3)12. 如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是( )A.312B.36C.33D.3213. 如图,反比例函数kyx的图象经过二次函数y=ax2+bx图象的顶点(–12,m)(m>0),则有()A. a=b+2kB. a=b–2kC. k<b<0D. a<k<014. 一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2017B2017C2017D2017的边长是( )A. (12)2016 B. (12)2017 C. (33)2016 D. (33)201715. 定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是( )A. 当m=-3时,函数图象顶点坐标是(13,83)B. 当m>0时,函数图象截x轴所得的线段长度大于3 2C. 当m≠0时,函数图象经过同一个点D. 当m<0时,函数在x>14时,y随x的增大而减小二、填空题(本大题共6小题,每小题3分,共18分)16. 比较大小:25____32(填”>”、”<”或”=”).17. 若一元二次方程x2十4x+k=0有两个不相等的实数根,则k的取值范围是________18. 在△ABC中,AB=AC,∠A=50°,AB的垂直平分线DE交AC于D,垂足为E,则∠DBC的度数是____.19. 如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是度.20. 如图,M为双曲线y=3x上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于点D、C两点,若直线y=-x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为_______.21. 如图,边长为4的正方形ABCD中,P是BC边上一动点(不含B、C点).将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有_____________(写出所有正确结论的序号).①∠N\AF=45°;②当P为BC中点时,AE为线段NP中垂线;③四边形AMCB的面积最大值为10; ④线段AM的最小值为25;⑤当△ABP≌△ADN时,BP=42-4.三、解答题(本大题共7小题,共57分)22. (1)计算:(a-b)2-a(a-2b);(2)解方程:23x=3x.23. (1)如图,AD、BC相交于点O,OA=OC,∠OBD=∠ODB.求证:AB=CD.(2)如图,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若OD=2,求∠BAC的度数.24. 某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价-进价),这两种服装的进价、标价如表所示:价格类型A型B型进价(元/件) 60 100标价(元/件) 100 160求这两种服装各购进的件数.25. 空气质量倍受人们关注,我市某空气质量监测站点检测了该区域每天的空气质量情况,统计了1月至4月份若干天的空气质量情况,并绘制了如下不完整的统计图,请根据图中信息,解决下列问题:(1)统计图共统计了________天的空气质量情况;(2)请将条形统计图补充完整,并计算空气质量为”优”所在扇形的圆心角度数;(3)小明所在环保兴趣小组共4名同学(2名男同学,2名女同学).随机选取两名同学去该空气质量监涮站点参观,请用列表或画树状图的方法求出恰好选到一名男同学和一名女同学的概率.26. 如图,在平面直角坐标系xOy中,直线y=33x与反比例函数y=k/x在第一象限内图象相交于点A(m,3).(1)求该反比例函数的关系式;(2)将直线y 3x沿y轴向上平移8个单位后与反比例函数在第一象限内的图象相交于点B,连接AB,这时恰好AB⊥OA,求tan∠AOB的值;(3)在(2)的条件下,在射线OA上存在一点P,使△P AB∽△BAO,求点P的坐标.27. 如图1.在菱形ABCD中,AB=25,tan∠ABC=2,∠BCD=α,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转α度,得到对应线段CF,连接BD、EF,BD交EC、EF于点P、Q.(1)求证:△ECF∽△BCD;(2)当t为何值时,△ECF≌△BCD?(3)当t为何值时,△EPQ是直角三角形?28. 如图,已知抛物线y=-14x2+bx+c交x轴于点A(2,0)、B(一8,0),交y轴于点C,过点A、B、C三点的⊙M与y轴的另一个交点为D.(1)求此抛物线的表达式及圆心M的坐标;(2)设P为弧BC上任意一点(不与点B,C重合),连接AP交y轴于点N,请问:AP·AN是否为定值,若是,请求出这个值;若不是,请说明理由;(3)延长线段BD交抛物线于点E,设点F是线段BE上的任意一点(不含端点),连接AF.动点Q从点A出发,沿线段AF以每秒1个单位的速度运动到点F,再沿线段FB5B后停止,问当点F的坐标是多少时,点Q在整个运动过裎中所用时间最少?答案与解析一、选择题(本大题共15小题,每小题3分,共45分)1. 3-的倒数是( )A. B. 13C.13- D. 3-【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】∵1313⎛⎫-⨯-=⎪⎝⎭,∴3-的倒数是13-.故选C2. 下列四个图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A选项:不是轴对称图形.是中心对称图形,故此选项不符合题意;B选项:是轴对称图形,又是中心对称图形,故此选项符合题意;C选项:是轴对称图形,不是中心对称图形,故此选项不符合题意;D选项:不是轴对称图形,不是中心对称图形,故此选项不符合题意.故选B.【点睛】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3. 下列计算正确的是( )A. 122 B. 235 C. 33 D. 22【答案】A 【解析】分析:根据二次根式的计算法则即可得出每一个的正确答案,从而得出.详解:A 、计算正确;B 和D 不是同类二次根式,不能进行加法计算;C 、原式=3,故选A .点睛:本题主要考查的是二次根式的加减法计算法则,属于基础题型.理解计算法则是解决这个问题的关键.4. 我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg 的煤所产生的能量.把130000000kg 用科学记数法可表示为( ) A. 13×710kg B. 0.13×810kgC. 1.3×710kgD. 1.3×810kg【答案】D 【解析】试题分析:科学计数法是指:a×10n ,且110a ≤<,n 为原数的整数位数减一. 5. 如图所示,AB ∥CD,BC 平分∠ABD,若∠C=40°,则∠D 的度数为 ( )A. 90°B. 100°C. 110°D. 120°【答案】B 【解析】∵AB//CD ,∠C=40°, ∴∠ABC=∠C=40°, ∵BC 平分∠ABD , ∴∠DBC=∠ABC=40°,∴∠D=180°-∠C-∠DBC=180°-40°-40°=100°. 故选B.6. 平面直角坐标系中,点P (﹣2,3)关于x 轴对称的点的坐标为( ).A. (﹣2,﹣3)B. (2,﹣3)C. (﹣3,﹣2)D. (3,﹣2)【答案】A【解析】【分析】根据关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论.【详解】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3)故选A.【点睛】此题考查的是求一个点关于x轴对称点的坐标,掌握关于x轴对称的两点坐标关系是解决此题的关键.7. 某几何体的主视图、左视图和俯视图分别如图所示,则该几何体的体积为( )A. 3πB. 2πC. πD. 12【答案】A【解析】【分析】根据三视图可以判断该几何体为倒放的圆柱,圆柱的底面半径为1,高为3,据此求得其体积即可.【详解】解:根据三视图可以判断该几何体为圆柱,圆柱的底面半径为1,高为3,故体积为:πr2h=π×12×3=3π,故选:A.【点睛】本题考查了由三视图判断几何体的知识,解题的关键是了解圆柱的三视图并清楚其体积的计算方法.8. 实施新课改以来,某班学生经常采用”小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:组别 1 2 3 4 5 6 7分值90 95 90 88 90 92 85这组数据的中位数和众数分别是A. 88,90B. 90,90C. 88,95D. 90,95【答案】B 【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,90,90,90,92,95,∴中位数是按从小到大排列后第4个数为:90. 众数是在一组数据中,出现次数最多的数据,这组数据中90出现三次,出现的次数最多,故这组数据的众数为90. 故选B .9. 如图,菱形ABCD 中,B 60∠=,AB=4,则以AC 为边长的正方形ACEF 的周长为【 】A. 14B. 15C. 16D. 17【答案】C 【解析】根据菱形得出AB=BC ,得出等边三角形ABC ,求出AC ,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可:∵四边形ABCD 是菱形,∴AB=BC .∵∠B=60°,∴△ABC 是等边三角形.∴AC=AB=4. ∴正方形ACEF 的周长是AC+CE+EF+AF=4×4=16.故选C .10. 小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:x -y ,a -b ,2, x 2-y 2,a , x +y ,分别对应下列六个字:南、爱、我、美、游、济,现将2a (x 2-y 2)-2b (x 2-y 2)因式分解,结果呈现的密码信息可能是( ) A. 我爱美 B. 济南游 C. 我爱济南 D. 美我济南【答案】C 【解析】分析:首先根据因式分解的方法将原式进行因式分解,然后根据题意得出密码. 详解:原式=()()()()()222a b 2a b x y x y x y,--=-+-密码为:我爱济南. 点睛:本题主要考查的是因式分解的实际应用,属于基础题型.学会因式分解的方法是解决这个问题的关键.11. 如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,3),则点B的坐标为( )A. (1-3,3+1)B. (-3,3+1)C. (-1,3+1)D. (-1,3)【答案】A【解析】分析:过点A作AF⊥x轴,过点C作CD⊥x轴,过点B作BE⊥CE,根据题意得出△AOF≌△COD≌△BCE,从而得出BE、CD和OD的长度,从而得出点B的坐标.详解:过点A作AF⊥x轴,过点C作CD⊥x轴,过点B作BE⊥CE,∵AO=CO=BC,∠F=∠D=∠E=90°,∠AOF=∠OCD=∠BCE,∴△AOF≌△COD≌△BCE,∴AF=OD=BE=3,OF=CD=CE=1,∴点B的坐标为(1-3,1+3),故选A.点睛:本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.12. 如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是( )A.312B.36C.33D.32【答案】B【解析】试题解析:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB33,根据题意得:AD=BC=x,AE=3,作EM⊥AD于M,则AM=12AD=12x,在Rt△AEM中,cos∠EAD=1323xAMAE x==;故选B.【点睛】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.13. 如图,反比例函数kyx=的图象经过二次函数y=ax2+bx图象的顶点(–12,m)(m>0),则有()A a=b+2k B. a=b –2k C. k<b<0 D. a<k<0【答案】D 【解析】 【分析】 把(-12,m )代入y=ax 2+bx 图象的顶点坐标公式得到顶点(-12,-4a ),再把(-12,-4a )代入k x 得到k=8a ,由图象的特征即可得到结论.【详解】解:∵2y ax bx =+图象的顶点(12-,m ), ∴122b a -=-,即b=a , ∴m=24b a-=14a -,∴顶点(12-,14a -),把x=12-,y=14a -代入反比例解析式得:k=8a ,由图象知:抛物线开口向下,∴a <0,∴a <k <0, 故选D .【点睛】本题考查了二次函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数图象上点的坐标特征是解题的关键.14. 一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2017B 2017C 2017D 2017的边长是( )A. (12)2016 B. (12)2017 C.32016 D.32017【答案】C【解析】分析:利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.详解:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=12,则B2C2=223cos30B E=︒,同理可得:B3C323=⎝⎭,故正方形A n B n C n D n的边长是:n133-⎛⎝⎭则正方形A2017B2017C2017D2017的边长为:20163⎝⎭,故选C.点睛:此题主要考查了正方形的性质以及锐角三角函数关系,属于中等难度的题型.得出正方形的边长变化规律是解题关键.15. 定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是( )A. 当m=-3时,函数图象顶点坐标是(13,83)B. 当m>0时,函数图象截x轴所得的线段长度大于3 2C. 当m≠0时,函数图象经过同一个点D. 当m<0时,函数在x>14时,y随x的增大而减小【答案】D【解析】分析:A、把m=-3代入[2m,1-m,-1-m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.详解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣13)2+83,顶点坐标是(13,83);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣12﹣12m,|x2﹣x1|=32+12m>32,所以当m>0时,函数图象截x轴所得的线段长度大于32,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x轴上一个定点此结论正确.D、当m<0时,y=2mx2+(1﹣m)x+(﹣1﹣m) 是一个开口向下的抛物线,其对称轴是:直线x=14mm-,在对称轴的右边y随x的增大而减小.因为当m<0时,11114444mm m-=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D.点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.二、填空题(本大题共6小题,每小题3分,共18分)16. 比较大小:(填”>”、”<”或”=”).【答案】>【解析】分析:首先将系数转化为被开方数,然后比较被开方数的大小,从而得出答案.详解:∵?2018==>,∴>点睛:本题主要考查的是二次根式的大小比较的方法,属于基础题型.比较大小我们可以用平方法,做差法、取倒数法都可以,可以根据实际题目来进行选择.17. 若一元二次方程x2十4x+k=0有两个不相等的实数根,则k的取值范围是________【答案】k<4【解析】分析:根据方程有两个不相等的实数根可以得出根的判别式为正数,从而得出k的取值范围.详解:∵方程有两个不相等的实数根,∴△=16-4k>0,解得:k<4.点睛:本题主要考查的是一元二次方程根的判别式,属于基础题型.明白根的判别式的法则是解决这个问题的关键.18. 在△ABC中,AB=AC,∠A=50°,AB的垂直平分线DE交AC于D,垂足为E,则∠DBC的度数是____.【答案】15【解析】【分析】已知∠A=50°,AB=AC可得∠ABC=∠ACB,再由线段垂直平分线的性质可求出∠ABC=∠A,易求∠DBC.【详解】已知,∠A=50°,AB=AC⇒∠ABC=∠ACB=65°又∵DE垂直且平分AB⇒DB=AD∴∠ABD=∠A=50°∴∠DBC=∠ABC-∠ABD=65°-50°=15°.故答案为15.【点睛】此题考查等腰三角形的性质以及线段垂直平分线的性质.难度一般.解题关键在于了解线段垂直平分线的性质即可求解.19. 如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是度.【答案】144【解析】【详解】连接OE,∵∠ACB=90°,∴A,B,C在以点O为圆心,AB为直径的圆上,∴点E,A,B,C共圆,∵∠ACE=3°×24=72°,∴∠AOE=2∠ACE=144°,∴点E在量角器上对应的读数是:144°,故答案为144.20. 如图,M为双曲线y=3x上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于点D、C两点,若直线y=-x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为_______.【答案】23.【解析】【详解】如图,作CE⊥x轴于E,DF⊥y轴于F,在y=-x+m中,令x=0,则y=m;令y=0,-x+m=0,解得x=m.∴A(0,m),B(m,0).∴△OAB等腰直角三角形.∴△ADF和△CEB都是等腰直角三角形.设M的坐标为(a,b),则ab3,CE=b,DF=a.∴AD=2DF=2a,BC=2CE=2b,∴AD•BC=2a•2b=2ab=23.21. 如图,边长为4的正方形ABCD中,P是BC边上一动点(不含B、C点).将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有_____________(写出所有正确结论的序号).①∠N\AF=45°;②当P为BC中点时,AE为线段NP的中垂线;③四边形AMCB的面积最大值为10; ④线段AM的最小值为25;⑤当△ABP≌△ADN时,BP=42-4.【答案】①③⑤【解析】分析:①正确,只要证明∠APM=90°即可解决问题;③正确,设PB=x,构建二次函数,利用二次函数性质解决问题即可;②错误,设ND=NE=y,在RT△PCN利用勾股定理求出y即可解决问题;④错误,作MG⊥AB 于G,因为AM2=MG2+AG2=16+AG2,所以AG最小时AM最小,构建二次函数,求得AG的最小值为3,AM 的最小值为5;⑤正确,在AB上取一点K使得AK=PK,设PB=z,列出方程即可解决问题.详解:∵∠APB=∠APE,∠MPC=∠MPN,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,∴∠CPM=∠PAB,∵四边形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP∽△BPA.故①正确,设PB=x,则CP=4-x,∵△CMP∽△BPA,∴PB ABCM PC,∴CM=14x(4-x),∴S四边形AMCB=12[4+14x(4-x)]×4=-12(x-2)2+10,∴x=2时,四边形AMCB面积最大值为10,故③正确,当PB=PC=PE=2时,设ND=NE=y,在RT△PCN中,(y+2)2=(4-y)2+22,解得y=43,∴NE≠EP,故②错误,作MG⊥AB于G,∵AM2=MG2+AG2=16+AG2,∴AG最小时AM最小,∵AG=AB-BG=AB-CM=4-14x(4-x)=14(x-1)2+3, ∴x=1时,AG 最小值=3,∴AM 最小值==5,故④错误.∵△ABP ≌△ADN 时,∴∠PAB=∠DAN=22.5°,在AB 上取一点K 使得AK=PK ,设PB=z , ∴∠KPA=∠KAP=22.5°∵∠PKB=∠KPA+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z ,AK=PK=2z , ∴z+2z=4,∴z=42-4,∴PB=42-4,故⑤正确.点睛:本题主要考查的是相似三角形的判定与性质以及二次函数的性质,综合性非常强,难度较大.得出相似三角形,理解相似三角形的性质是解题的关键.三、解答题(本大题共7小题,共57分)22. (1)计算:(a -b )2-a (a -2b );(2)解方程:23x -=3x. 【答案】(1) b 2 (2)9【解析】分析:(1)、根据完全平方公式以及多项式的乘法计算法则将括号去掉,然后进行合并同类项即可得出答案;(2)、收下进行去分母,将其转化为整式方程,从而得出方程的解,最后需要进行验根.详解:(1) 解:原式=a 2-2ab +b 2-a 2+2ab =b 2 ;(2) 解:()233x x =-, 解得:x =9,经检验 x =9为原方程的根, 所以原方程的解为x =9.点睛:本题主要考查的是多项式的乘法以及解分式方程,属于基础题型.理解计算法则是解题的关键.分式方程最后必须要进行验根.23. (1)如图,AD 、BC 相交于点O ,OA =OC ,∠OBD =∠ODB .求证:AB =CD .(2)如图,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若OD =2,求∠BAC的度数.【答案】(1)见解析;(2)22.5°【解析】【分析】(1)证明△AOB和△COD全等即可得出答案;(2)连接OC,根据切线的性质得出OC⊥CD,根据边长得出∠COD=45°,然后根据等腰三角形的性质得出∠BAC的度数.【详解】(1)∵∠OBD=∠ODB.∴OB=OD,在△AOB与△COD中,OA OCAOB ODOB OD=⎧⎪∠=∠⎨⎪=⎩,∴△AOB≌△COD(SAS),AB=CD;(2)解:连接OC,∵CD与⊙O相切,∴OC⊥CD,∵OA=OC,OA=1,∴OC=1.∴CD=OC,∴∠COD=45°,∵OA=OC,∴BAC=12∠COD=22.5°.点睛:本题主要考查的是三角形全等的证明以及圆的基本性质,属于基础题型.理解题目中的隐含条件是解决这个问题的关键.24. 某服装店用6000元购进A ,B 两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价-进价),这两种服装的进价、标价如表所示: 价格 类型A 型B 型 进价(元/件)60 100 标价(元/件) 100 160求这两种服装各购进的件数.【答案】型服装50件,型服装30件【解析】分析:设购进型服装件,型服装件,根据题意列出二元一次方程组,从而得出答案.详解:设购进型服装件,型服装件.由题意得()()601006000100601601003800x y x y +=⎧⎨-+-=⎩, 解得5030x y =⎧⎨=⎩. 答:购进型服装50件,型服装30件.点睛:本题主要考查的是二元一次方程组的应用,属于基础题型.根据题意找出等量关系是解决这个问题的关键.25. 空气质量倍受人们关注,我市某空气质量监测站点检测了该区域每天的空气质量情况,统计了1月至4月份若干天的空气质量情况,并绘制了如下不完整的统计图,请根据图中信息,解决下列问题:(1)统计图共统计了________天的空气质量情况;(2)请将条形统计图补充完整,并计算空气质量为”优”所在扇形的圆心角度数;(3)小明所在环保兴趣小组共4名同学(2名男同学,2名女同学).随机选取两名同学去该空气质量监涮站点参观,请用列表或画树状图的方法求出恰好选到一名男同学和一名女同学的概率.【答案】(1)100天(2)72°(3)2 3【解析】分析:(1)、根据良的天数已经总天数得出答案;(2)、根据总天数和百分比得出优的天数,从而求出圆心角的度数;(3)、根据题意画出树状图,然后根据概率的计算法则得出答案.详解:(1)∵良有70人,占70%,∴统计图共统计了空气质量情况的天数为:70÷70%=100;(2)如图:条形统计图中,空气质量为”优”的天数为100×20%=20(天),空气质量为”优”所在扇形的圆心角度数是:20%×360°=72°,(3)画树状图得:∵共有12种等可能情况,其中符合一男一女的有8种,∴恰好选到一名男同学和一名女同学的概率是:23.点睛:本题主要考查的是扇形统计图与条形统计图以及概率的计算法则,属于基础题型.理解频数、频率以及样本容量之间的关系是解决这个问题的关键.26. 如图,在平面直角坐标系xOy中,直线y=33x与反比例函数y=k/x在第一象限内的图象相交于点A(m,3).(1)求该反比例函数的关系式;(2)将直线y 3x沿y轴向上平移8个单位后与反比例函数在第一象限内的图象相交于点B,连接AB,这时恰好AB⊥OA,求tan∠AOB的值;(3)在(2)的条件下,在射线OA上存在一点P,使△P AB∽△BAO,求点P的坐标.【答案】(1) y =93x (2) 233(3) P (73,7) 【解析】 分析:(1)、首先根据一次函数的解析式求出点A 的坐标,然后将点A 代入反比例函数解析式得出k 的值;(2)、首先得出平移后的解析式,然求出直线AB 的解析式,得出AB 和OA 的长度,从而得出答案;(3)、根据△APB 和△ABO 相似得出AP 和OP 的长度,从而得出点P 的坐标.详解:(1)、∵点A (m ,3)在直线y =33x 上, ∴3=33m ,m =33,∴点A (33,3) ∵点A (33,3)在反比例函数y =上,∴k =33×3=3 ∴y 93 ; (2)、直线向上平移8个单位后表达式为:y 3 +8 ∵AB ⊥OA ,直线AB 过点A (33,3), ∴直线AB 解析式:312y x =+, 38312x x +=+. ∴x 3∴B 3,9) ,∴AB =3; 又∵OA =6,∴tan ∠AOB 4323=; (3)、∵△APB ∽△ABO ,∴AP AB AB OA = , 43643=, ∴AP =8, ∴OP =14, ∴P 37).点睛:本题主要考查的是待定系数法求函数解析式、函数的平移以及三角形相似的应用,综合性比较强.解决这个问题的关键就是得出函数解析式.27. 如图1.在菱形ABCD 中,AB =5tan ∠ABC =2,∠BCD =α,点E 从点D 出发,以每秒1个单位长度的速度沿着射线DA 的方向匀速运动,设运动时间为t (秒),将线段CE 绕点C 顺时针旋转α度,得到对应线段CF,连接BD、EF,BD交EC、EF于点P、Q.(1)求证:△ECF∽△BCD;(2)当t为何值时,△ECF≌△BCD?(3)当t为何值时,△EPQ是直角三角形?【答案】(1)见解析 (2)t=0或者4 (3)t=2或者5【解析】分析:(1)、根据菱形以及旋转的性质得出BC=CD,CE=CF,结合∠FCE=∠DCB得出三角形相似;(2)、根据题意得出△FCE≌△DCB,根据E、D重合,此时t=0;过点C作CM⊥AD,根据Rt△CMD的性质得出MD=2,从而得出t的值;(3)、根据当∠EQD=90°时和当∠EPQ=90°时两种情况分别进行计算得出答案.详解:(1)、菱形ABCD中,BC=CD,∵旋转,∴CE=CF,∴CF CE CD CB=,又∵∠FCE=∠DCB,∴△FCE∽△DCB.(2)、由(1)知,△FCE∽△DCB,∴当CE=CB=CD时,△FCE≌△DCB,I)E、D重合,此时t=0;II)如图,过点C作CM⊥AD,当EM=MD时,EC=CD,Rt△CMD中,MD=CDcos∠CDA=255=2∴t=ED=2MD=4,∴当t=0或者4时,△FCE≌△DCB;(3)∵CE=CF,∴∠CEQ<90°.①当∠EQD=90°时,如图1,∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,在Rt△CDE中,∠CED=90°,∵AB=CD=5tan∠ABC=tan∠ADC=2,∴DE=2,∴t=2秒;②当∠EPQ=90°时,如图2,∵菱形ABCD对角线AC⊥BD,∴EC和AC重合.∴DE=5∴t=5;∴当t=2或者5△APQ为直角三角形.点睛:本题主要考查的是菱形的性质、三角形全等与相似、分类讨论思想的应用,难度较大.根据题意能够画出图形进行分类讨论是解决这个问题的关键.28. 如图,已知抛物线y=-14x2+bx+c交x轴于点A(2,0)、B(一8,0),交y轴于点C,过点A、B、C三点的⊙M与y轴的另一个交点为D.(1)求此抛物线的表达式及圆心M的坐标;(2)设P为弧BC上任意一点(不与点B,C重合),连接AP交y轴于点N,请问:AP·AN是否为定值,若是,请求出这个值;若不是,请说明理由;(3)延长线段BD交抛物线于点E,设点F是线段BE上的任意一点(不含端点),连接AF.动点Q从点A出发,沿线段AF以每秒1个单位的速度运动到点F,再沿线段FB以每秒5个单位的速度运动到点B后停止,问当点F的坐标是多少时,点Q在整个运动过裎中所用时间最少?【答案】(1)M(-3,0) (2)定值是20 (3)F(-2,-3)【解析】分析:(1)、根据点A和点B的坐标得出函数解析式,从而得出点C的坐标以及AB、AC和BC的长度,从而得出△ABC为直角三角形,根据圆的性质得出点M的坐标;(2)、根据题意得出△APB和△AON相似,从而得出答案;(3)、过点B在BE的下面作射线BI,交y轴于点I,过点A做AH⊥BI,垂足为点H,与射线BE 的交点即为运动时间最少时点F的位置,过点D做DK⊥BI,垂足为K,根据勾股定理得出点I的坐标,从而得出BI和AH的函数表达式,根据交点问题列出方程得出点F的坐标.详解:(1)、将A (2,0)、B (-8,0)两点代入21y x bx c 4=-++得:1201680b c b c -++=⎧⎨--+=⎩, 解得: 1.54b c =-⎧⎨=⎩ ,∴抛物线的表达式为:213y x x 442=--+ ,∴ C(0,4), ∴ BC =45, AC =25,AB =10, ∴△ABC 为直角三角形,且∠ACB =90°, ∵∠ACB =90°, ∴AB 为直径, ∴M(-3,0); (2)、如图: ∵AB 为直径, ∴∠APB =90°, ∵∠APB =∠AON, ∠NAO =∠BAP ,∴△APB ∽△AON ,∴AN AO AB AP=, ∴AN·AP =AB·AO =20,∴为定值,定值是20. (3)、过点B 在BE 的下面作射线BI ,交y 轴于点I ,过点A 做AH ⊥BI ,垂足为点H,与射线BE 的交点即为运动时间最少时点F 的位置,过点D 做DK ⊥BI ,垂足为K , ∵BE 平分∠ABI ,∴DI =DO =4,BO =BK =8,设DI =x,则KI =2x -8, ∴16+()22x 8-=2x , 1220x ,x 43==(舍去), ∴I(0,323-) , ∴BI 表达式为:432y x 33=--, ∴AH 表达式为33y x 42=-, ∵BD 表达式为1y x 42=--, ∴331x x 4422-=--, ∴x =-2, ∴F(-2,-3) .点睛:本题主要考查的是圆与二次函数的结合以及一次函数与二次函数的结合,综合性非常强,难度较大.理解圆的性质以及待定系数法求函数解析式是解题的关键.。
河北省2018年中考数学试题及参考答案卷Ⅰ一、选择题1.-3的相反数是A .-13B .13C .-3D .32.计算(x 2y)3,结果正确的是 A .x 5y B .x 6y C .x 2y 3 D .x 6y 3 3.等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的有 A .1个 B .2个 C .3个 D .4个4.已知⊙O 的半径为r ,圆心O 到直线l 的距离为d 。
若直线l 与⊙O 有交点,则下列结论正确的是 A .d =r B .d ≤r C .d ≥r D .d <r5.用换元法解分式方程222(1)672x x x x ++=+时,如果设21x y x+=,那么将原方程化为关于y 的一元二次方程的一般形式是A .22760y y -+=B .22760y y ++=C .2760y y -+=D .2760y y ++=6.已知:如图1,在矩形ABCD 中,E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点。
若AB =2,AD =4,则图中阴影部分的面积为 A .3 B .4 C .6 D .87.某闭合电路中,电源的电压为定值,电流I (A )与电阻R (Ω)成反比例。
图2表示的是该电路中电流I 与电阻R 之间函数关系的图像,则用电阻R 表示电流I 的函数解析式为A .2I R =B .3I R =C .6I R =D .6I R=-8.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了。
下面两个图框使用法国“小九九”计算7×8和8×9的两个示例。
若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是D 图1)图2A .2,3B .3,3C .2,4D .3,49.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的。
驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所托货物的袋数是 A .5 B .6 C .7 D .810.一根绳子弯曲成如图3-1所示的形状。
当用剪刀像图3-2那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图3-3那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段。
若用剪刀在虚线a ,b 之间把绳子再剪(n -1)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是卷Ⅱ二、填空题11.已知甲地的海拔高度是300m ,乙地的海拔高度是-50m ,那么甲地比乙地高 m . 12.已知:如图4,直线a ∥b ,直线c 与a ,b 相交,若∠2=115°,则∠1= 。
13.生物学家发现一种病毒的长度约为0.000 183mm ,用科学计数法表0.000 183的结果为 。
14.将一个平角n 等分,每份是15°,那么n 等于 。
15.分解因式22x y ax ay -++= 。
16.如图5,铁道口栏杆的短臂长为1.2m ,长臂长为8m ,当短臂端点下降0.6m 时,长臂端点升高 m (杆的粗细忽略不计)。
图3-1 图3-2 图3-3………aa b a cb2 1 图417.不等式组21040xx->⎧⎨->⎩的解集是。
18.高温锻烧石灰石(CaCO3)可以制取生石灰(CaO)和二氧化碳(CO2)。
如果不考虑杂质及损耗,生产生石灰14吨就需要锻烧石灰石25吨,那么生产生石灰224万吨,需要石灰石万吨。
19.一种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是。
20.如图6,已知圆锥的母线长OA=8,地面圆的半径r=2。
若一只小虫从A点出发,绕圆锥的侧面爬行一周后又回到A点,则小虫爬行的最短路线的长是(结果保留根式)。
三、解答题21.已知1x,求11()xxx x-÷-的值。
22.已知:如图7,D是△ABC的边AB上一点,AB∥FC,DF交AC于点E,DE=EF。
求证:AE=CE。
23.工人师傅为了检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图8-1所示的工件槽,其中工件槽的两个底角均为90°,尺寸如图(单位:cm)将形状规则的铁球放入槽内时,若同时具有图8-1所示的A,B,E三个接触点,该球的大小就符合要求。
图8-2是过球心O及A,B,E三个接触点的截面示意图。
已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD,BD⊥CD。
请你结合图8-1中的数据。
计算这种铁球的直径。
24.为了解甲、乙两名运动员的体能训练情况,对他们进行了跟踪测试,并把连续十周的测试成绩绘制成如图9所示的折线统计图。
教练组规定:体能测试成绩70分以上(包括70分)为合格。
图6 图7图8-1图8-2(1)请根据图9中所提供的信息填写下表:(2)请从下面两个不同的角度对这两名运动员体能测试结果进行判断: ①依据平均数和成绩合格的次数比较甲和乙, 的体能测试成绩较好; ②依据平均数和中位数比较甲和乙, 的体能测试成绩较好。
(3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好。
25.在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度y (厘米)与燃烧时间x (小时)之间的关系如图10所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是 ,从点燃到燃尽所用的时间分别是 。
(2)分别求甲、乙两根蜡烛燃烧时y 与x 之间的函数关系式;(3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么事件段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低? 26.操作示例对于边长为a 的两个正方形ABCD 和EFGH ,按图11-1所示的方式摆放,在沿虚线BD ,EG 剪开后,可以按图中所示的移动方式拼接为图11-1中的四边形BNED 。
从拼接的过程容易得到结论: ①四边形BNED 是正方形;②S 正方形ABCD +S 正方形EFGH =S 正方形BNED 。
实践与探究(1)对于边长分别为a ,b (a >b )的两个正方形ABCD 和EFGH ,按图11-2所示的方式摆放,连接DE ,过点D 作DM ⊥DE ,交AB 于点M ,过点M作MN ⊥DM ,过点E 作EN ⊥DE ,MN 与EN 相交于点N 。
①证明四边形MNED 是正方形,并用含a ,b 的代数式表示正方形MNED 的面积;②在图11-2中,将正方形ABCD 和正方形EFGH沿虚线剪开后,能够拼接为正方形MNED ,请简略说明你的拼接方法(类比图11-1,用数字表示对应的图11-1图形)。
(2)对于n (n 是大于2的自然数)个任意的正方形,能否通过若干次拼接,将其拼接成为一个正方形?请简要说明你的理由。
27.某机械租赁公司有同一型号的机械设备40套。
经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出。
在此基础上,当每套设备的月租金每提高10元时,这种设备就少租出一套,且没租出的一套设备每月需支出费用(维护费、管理费等)20元。
设每套设备的月租金为x (元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y (元)。
(1)用含x 的代数式表示未出租的设备数(套)以及所有未出租设备(套)的支出费 (2)求y 与x 之间的二次函数关系式;(3)当月租金分别为300元和350元式,租赁公司的月收益分别是多少元?此时应该出租多少套机械设备?请你简要说明理由;(4)请把(2)中所求出的二次函数配方成224()24b ac b y a x a a-=++的形式,并据此说明:当x 为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?28.如图12,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,BC =16,DC =12,AD =21。
动点P 从点D 出发,沿射线DA 的方向以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动。
设运动的时间为t (秒)。
(1)设△BPQ 的面积为S ,求S 与t 之间的函数关系式; (2)当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形? (3)当线段PQ 与线段AB 相交于点O ,且2AO =OB 时,求∠BQP 的正切值;(4)是否存在时刻t ,使得PQ ⊥BD ?若存在,求出t 的值;若不存在,请说明理由。
A BQ P D 图122018年河北省中考数学答案11.350 12.65° 13.4.3×10-5 14.12 15.(x +y)(x -y +a)16.4 17.12<x <4 18.400 19.10% 20. 三、解答题 21.解:原式=11(1)(1)1x x x x x x -⨯=+-+当x1=22.证明:∵ AB ∥FC ,∴ ∠ADE =∠CFE又∵∠AED =∠CEF ,DE =FE ,∴△AED ≌△CEF ∴AE =CE23.解:连结OA 、OE ,设OE 与AB 交于点P ,如图∵AC =BD ,AC ⊥CD ,BD ⊥CD ∴四边形ABDC 是矩形∵CD 与⊙O 切于点E ,OE 为⊙O 的半径, ∴OE ⊥CD ∴OE ⊥AB ∴PA =PB ∴PE =AC∵AB =CD =16,∴PA =8 ∵AC =BD =4 PE =4在Rt △OAP 中,由勾股定理得 222O AP A O P =+,即 2228(4)OA OA =+-∴解得OA =10,所以这种铁球的直径为20cm 。
(1)见表格。
(2)(2)①乙;②甲。
(3)从折线图上看,两名运动员体能测试成绩都成上升趋势,但是,乙的增长速度比甲快,并且后一阶段乙的成绩合格的次数比甲多,所以乙训练的效果较好。
25.解:(1)30厘米,25厘米;2小时,2.5小时。
(2)设甲蜡烛燃烧时y 与x 之间的函数关系式为11b x k y +=。
由图可知,函数的图象过点(2,0),(0,30),∴⎩⎨⎧==+3002111b b k ,解得⎩⎨⎧=-=301511b k∴ y =-15x +30设乙蜡烛燃烧时y 与x 之间的函数关系式为22b x k y +=。
由图可知,函数的图象过点(2.5,0),(0,25),∴⎩⎨⎧==+2502222b b k ,解得⎩⎨⎧=-=251022b k∴ y =-10x +25(3)由题意得 -15x +30=-10x +25,解得x =1,所以,当燃烧1小时的时候,甲、乙两根蜡烛的高度相等。