复合材料专业复习要点整理-经典汇总
- 格式:pdf
- 大小:977.15 KB
- 文档页数:12
复合材料期末复习资料复合材料C 复习第一章概论1. 复合材料的定义?复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
三要素:基体(连续相)增强体(分散相)界面(基体起粘结作用并起传递应力和增韧作用)复合材料的特点:(明显界面、保留各组分固有物化特性、复合效应,可设计性)(嵌段聚合物、接枝共聚物、合金:是不是复合材料??)2、复合材料的命名/Alf(纤维),w(晶须),p(颗粒)比如:TiO2p3. 复合材料的分类:1) 按基体材料类型分为:聚合物基复合材料;金属基复合材料;无机非金属基复合材料(陶瓷基复合材料)。
2)按增强材料分为:玻璃纤维增强复合材料;碳纤维增强复合材料;有机纤维增强复合材料;晶须增强复合材料;陶瓷颗粒增强复合材料。
3) 按用途分为:功能复合材料和结构复合材料。
结构复合材料主要用做承载力和此承载力结构,要求它质量轻、强度和刚度高,且能承受一定温度。
功能复合材料指具有除力学性能以外其他物理性能的复合材料,即具有各种电学性能、磁学性能、光学性能、声学性能、摩擦性能、阻尼性能以及化学分离性能等的复合材料。
第二章增强体1、增强体定义:结合在基体内、用以改进其力学等综合性能的高强度材料。
要求: 1) 增强体能明显提高基体某种所需性能;2) 增强体具有良好的化学稳定性;3) 与基体有良好润湿性。
分类: f,w,p2、纤维类增强体特点:长径比较大;柔曲性;高强度。
v玻璃纤维主要成分:SiO2性能:拉伸强度高;较强耐腐蚀;绝热性能好。
(玻璃纤维高强的原因(微裂纹)及影响因素(强度提升策略:减小直径、减少长度、降低含碱量,缩短存储时间、降低湿度等))分类:无碱(E玻璃)、有碱(A玻璃)制备:坩埚法(制球和拉丝)、池窑法(熔融拉丝)。
浸润剂作用:(i) 粘结作用,使单丝集束成原纱或丝束;(ii) 防止纤维表面聚集静电荷;(iii)进一步加工提供所需性能;(iv) 防止摩擦、划伤。
复合材料原理考试总结整理复合材料原理第一章1.聚合物基复合材料的性能特点是什么?(1) 密度低;(2) 耐腐蚀;(3) 易氧化、老化;(4) 聚合物的耐热性通常较差;(5) 易燃;(6) 低的摩擦系数;(7) 低的导热性和高的热膨胀性;(8) 极佳的电绝缘性和静电积累;(9) 聚合物可以整体着色而制得带色制品。
(10) 聚合物的一些力学性能随其分子结构的改变而变化。
2.复合材料区别于单一材料的主要特点是什么?1、不仅保持原组分的部分优点,而且具有原组分不具备的特性2、区别于单一材料的另一显著特性是材料的可设计性3、材料与结构的一致性3.增强体和功能体在复合材料中代表性的作用是什么?(1)填充,用廉价的增强体,特别是颗粒状填料可降低成本。
(2)增强,纤维状或片状增强体可提高聚合物基复合材料的力学性能和热性能。
其效果在很大程度上取决于增强体本身的力学性能和形态等。
(3)赋予功能,功能体可赋予聚合物基体本身所没有的特殊功能。
功能体的这种作用主要取决于它的化学组成和结构第二章1.复合效应特点?1.线性效应:平均效应平行效应互补效应相抵效应2.非线性效应:相乘效应诱导效应共振效应系统效应线性效应:线性指量与量之间成正比关系。
非线性效应:非线性指量与量之间成曲线关系。
1.平均效应:是复合材料所显示的最典型的一种复合效应。
2.平行效应:增强体(如纤维)与基体界面结合很弱的复合材料所显示的复合效应,可以看作是平行效应。
3.相补效应:组成复合材料的基体与增强体,在性能上能互补,从而提高了综合性能,则显示出相补效应。
4.相抵效应:基体与增强体组成复合材料时,若组分间性能相互制约,限制了整体性能提高,则复合后显示出相抵效应。
1.相乘效应:两种具有转换效应的材料复合在一起,有可能发生相乘效应。
2.诱导效应:在一定条件下,复合材料中的一组分材料可以通过诱导作用使另一组分材料的结构改变而改变整体性能或产生新的效应。
3.共振效应:两相邻的材料在一定条件下,会产生机械的或电、磁的共振。
复合材料(第二版)知识点复习第一章概论1.1物质与材料材料:具有满足指定工作条件下使用要求的形态和物理性状的物质人类(材料)发展的四大阶段:石器时代→青铜时代→铁器时代→人工合成时代1.2复合材料的定义与特点复合材料:由两种或两种以上物理和化学性质不同的物质,用适当的工艺方法组合起来,而得到的具有复合效应的多相固体材料。
特点:①人为选择复合材料的组分和比例,具有极强的可设计性。
②组分保留各自固有的物化特性③复合材料的性能不仅取决于各组分性能,同时与复合效应有关④组分间存在这明显的界面,并可在界面处发生反应形成过渡层,是一种多相材料简述复合材料的特点。
①比强度、比模量大②耐疲劳性能好,聚合物基复合材料中,纤维与基体的界面能阻止裂纹的扩展,破坏是逐渐发展的,破坏前有明显的预兆。
③减震性好,复合材料中的基体界面具有吸震能力,因而振动阻尼高。
④耐烧蚀性能好,因其比热大、熔融热和气化热大,高温下能吸收大量热能,是良好的耐烧蚀材料。
⑤工艺性好,制造制品的工艺简单,并且过载时安全性好。
1.3组成与命名以增强体和基体共同命名时:玻璃纤维增强环氧树脂基复合材料p、w、f下标→颗粒、晶须、纤维M MCs金属基复合材料,聚合物基复合材料PMCs, 陶瓷基复合材料CMCs1.4分类按基体:聚合物基,金属基,无机非金属基(陶瓷、玻璃、水泥、石墨)复合材料按纤维增强体种类:玻璃纤维、碳纤维、有机纤维、陶瓷纤维按增强体形态:连续纤维,短纤维,颗粒,晶须增强近代的复合材料以1942年制出的玻璃纤维增强塑料为起点第二章增强体2.1增强体(起到增韧、耐磨、耐热、耐蚀等提高和改善性能的作用)纤维是具有较大长径比的材料,具有较高的强度,良好的柔曲性,高比强度,高比模量,与基体相容性好,成本低工艺学好2.1.1玻璃纤维:非晶型无机纤维,二氧化硅(形成骨架,高熔点)和其他元素的碱金属氧化物(二氧化硅提高GF化学稳定性,碱金属降低熔点和稳定性,改善制备工艺)①性能→力学:无屈服无塑性,脆性特征,拉伸强度高,模量较低,直径越小,长度越短,含碱量越低,拉伸强度越高,与水作用强度降低→热性能:耐热性较高,玻璃纤维热处理使微裂纹增加,强度降低→电性能:电绝缘性能优,在纤维表面涂石墨或金属成为导电纤维→玻璃耐酸碱、有机溶剂性能好,玻璃纤维耐蚀性能变差E无碱玻璃纤维:绝缘,机械性能强,耐水性好C中碱玻璃纤维:耐酸性好(酸与硅酸盐生成氧化硅保护膜),耐水性差,A有碱玻璃纤维②结构:微晶结构假说和网络结构假说,GF为无定形结构,三维网状结构,各向同性。
120114班聚合物基复合材料复习总结(初)出品人:黄程程你们复习的时候可以把重点记在空白处n(*叁VW *)n,欢迎补充UD:unidirectional 单向性的Quasi-isotropic准各向同性的Cure固化precure预固化stiffness 刚度strength 强度toughness韧性ILSS层间剪切强度CTE 热膨胀系数(coefficient of thermal expansion)carbon fiber 碳纤维VGCF 气相生长碳纤维(vapor-phase growth)SNCB气相生长纳米碳纤维CNT碳纳米管(carbon nanotube)sizing 上浆Torayca日本东丽台塑Tairyfil 三菱树脂DialeadPCF:沥青基碳纤维(pitched-based carbon fiber)Glass fiber玻璃纤维C-GF:耐化学腐蚀玻璃纤维A-GF:普通玻纤D-GF:低介玻纤,雷达罩材料E-GF:电工用玻纤(碱金属含量<1%)S-GF高强M-GF高模AF:芳纶纤维(Aramid fiber)「「丁人:聚对苯二甲酰对苯二胺poly-p-phenylene terephthamide对位芳酰胺纤维Kevlar) PMIA:间位芳酰胺纤维(代表Nomex)DuPont杜邦Boron Fiber 硼纤维Alumina Fiber氧化铝纤维Basalt Fiber玄武岩纤维UHMWPE Fiber(ultrahigh molecular weight polyethylene超高分子量聚乙烯纤维8”1:双马来酰亚胺树脂curing agent固化剂PEEK:聚醚醚酮树脂PEK:聚醚酮树脂PES:聚醚砜树脂PEI:聚醚酰亚胺树脂PPS:聚苯硫醚树脂Epoxy resin 环氧树脂Unsaturated polyester resin丁£丁人:三乙烯四胺(triethylene tetramine)DDS:二氨基二苯基砜(diaminodiphenyl sulfone);DDM 二氨基二苯基甲烷Vinyl ester resin:乙烯基环氧树脂Phenolic resin 酚醛树脂RTM: (resin transfer molding)树脂传递模塑CAI:压缩后冲击强度Individual tows:单向带laminate 层压板Multiaxielmultiply fabric 多轴向织物或者Non-crimp fabric :NCF无皱褶织物Prepreg 预浸料unidirectional prepreg 单向预浸料Pot life 适用期(树脂)workinglife(纤维)Shelf life储存期Resin flowability 树脂流动度Lay Up铺贴Gel time凝胶时间Tack粘性drape铺覆性resin content树脂含量Fiber areal density 纤维面密度volatile content 挥发分含量Separation film 分离膜Honeycomb sandwich construction 蜂窝夹心结构Infrared spectroscopy 红外光谱ATL: Automated tape-laying自动铺带法(CATL曲面铺带;FATL平面铺带)AFP:纤维自动铺放技术Automated fiber placementPultrusion拉挤成型OoA:非热压罐成型工艺out of autoclaveAllowables 许用值design Allowables 设计许用值Robustness 鲁棒性BVID目视勉强可检ISO国际标准ASTM美国标准HB中国航空标准JC中国建筑材料工业部标准FTIR-ATR傅里叶变换衰减全反射红外光谱法1.碳纤维PAN 一般采用湿法纺丝?因为干纺生产的纤维中溶剂不易洗净,在预氧化及碳化的过程将会由于残留溶剂的挥发或者分解而造成纤维粘结,产生缺陷。
聚合物基复合材料的小复习-西安交通大学注意:正如老师所言48学时每学时2分,看书为主。
第一部分:组份材料一.增强材料:重点为玻璃纤维(GF),碳纤维(CF)和高模量有机纤维的代表芳纶(Kevlar纤维)三种的组成,制备方法,结构与性能均要了解,并且对一些品种规格能够知晓,例如知道T300是指什么并且知道其强度的数量级,知晓一些特点如碳纤维高强高刚但是脆。
二.基体材料基体材料种类繁杂,考试不要求对品种进行掌握,对于其性质,作用和影响要知晓。
1.复合材料的横向拉伸性能、压缩性能、剪切性能、耐热性能和耐介质性能,复合材料的工艺性、成型方法和工艺参数都主要取决于基体材料。
2.基体材料的组分:合成树脂、辅助剂(包括固化剂、引发剂和促进剂;稀释剂)、稀释剂、增韧剂和增塑剂、触变剂(能够提高基体在静止状态下的粘度)、填料、颜料。
3.在复合材料受力时,基体起着均衡载荷、传递载荷的作用;其选配原则:使用性、工艺性能和经济性。
4.基体的基本性能与工艺性:看书了解三.界面1.三种主要纤维(即CF,GF,KF)的表面处理:对其处理方法有几种要知晓(考试内容):玻璃纤维:脱蜡处理、化学处理;碳纤维:气相氧化法、液相氧化法、阳极氧化法、等离子体氧化法、表面涂层改性法等;芳纶:氧化还原处理、表面化学接枝处理、冷等离子体表面处理。
2.偶联剂作用P1473.影响界面的粘结强度的因素:纤维表面晶体大小及比表面积;浸润性;界面反应性;残余应力对界面粘结强度的影响。
4.界面力(强度)的测定方法:单丝拔脱实验,l rl P 22max max σπτ==其中τ—界面的平均剪切强度,max P —对单丝或细棒施加的最大载荷,r —单丝或细棒的半径,l —单丝或细棒埋在基体中的长度,max σ—单丝或细棒的最大拉伸应力。
5.水对复合材料及界面的破坏作用:①水的浸入②水对玻璃纤维表面的化学腐蚀作用③水对树脂的降解腐蚀作用④水溶胀树脂导致界面脱粘破坏⑤水进入孔隙产生渗透压导致界面脱粘破坏。
1.复合材料:是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料2.复合材料的命名:①强调基体时,以基体材料的名称为主,如金属基复合材料②强调增强体时,以增强体材料的名称为主如碳纤维增强复合材料③集体与增强体材料名称并用,一般表示具体的复合材料,分散相+基体相3.复合材料的分类:①按基体材料类型分类:金属基复合材料;聚合物基复合材料;无机非金属基复合材料。
②按增强材料种类分类:玻璃纤维、碳纤维、有机纤维、金属纤维、陶瓷纤维复合材料。
③按增强材料形态分类:连续纤维、短纤维、粒状填料、编织复合材料。
④按用途分类:结构复合材料,功能复合材料4.复合材料的特性:①比强度、比模量大②耐疲劳性好③减震性好④各向异性⑤性能可设计⑥材料结构一致性5.复合材料缺点:①工艺稳定性不好②性能分散③不耐高温④易老化⑤抗冲击性能较低⑥层间抗剪切强度低⑦横向强度低6.复合材料增强体的三种形式:颗粒、纤维、晶须7.颗粒增强与弥散增强的区别:颗粒增强是指在基体中引入第二相颗粒,使材料的力学性能得到改善,它使基体材料的断裂功能提高。
弥散增强是指一种通过在均匀材料中加入硬质颗粒的一种材料的强化手段8.颗粒增强原理根据粒子尺寸大小分两类:①弥散增强纳米级颗粒粒径小于0.1µm ②颗粒增强颗粒粒径大于1µm9.复合效应:加和效应、乘积效应、成分结构相关性10.单向复合材料:弹性模量 EC =EfVf+Em(1-Vf)≈EfVfVf—纤维用量Em为基体临界强度σC =σfVf+σM1(1-Vf)﹠σM(1-Vf) σM—基体强度(前面是纤维断裂称为脆性断裂,后面为延续断裂,它们与纤维用量有关)临界纤维用量 Vfc =(σM-σM1)/(σM-σM1+σf)最小纤维用量 Vfmin =(σM-σM1)/(σf-σM1)σf—纤维强度横向模量 1/EC = Vf/EC+(1- Vf)/ EmEC≈Em/VMEm—基体模量横向强度σT =min(σM,ST) ST—界面粘接强度短纤复合材:EC =υEfVf+ Em(1-Vf)υ=ηLηθηb L,θ,b—长度,角度,表面粘接σC=(1-LC/2L)σfVf+σM1(1-Vf) LC/d=0.5σf/τi不同纤维长度的临界纤维强度:L=LC σC=τi·LC/d·Vf+σM1(1- Vf) LC/d—临界长径比L<LC σC=τi·L/d·Vf+σM1(1- Vf) L—无穷连续纤维10.玻璃纤维的分类:①按其原料组成:无碱玻璃纤维:国内规定碱金属氧化物含量不大于0.5%,国外为1%左右,强度较高,耐热性和电性能优良,称“电气玻璃”,能抗大气侵蚀,化学稳定性好,但不耐酸;中碱玻璃纤维:碱金属氧化物的含量11.5%~12.5%,耐酸性好,价格便宜;低碱玻璃纤维:强度低,对潮气侵蚀敏感11.玻璃纤维中碱金属氧化物的作用:①降低玻璃的熔化温度和熔融粘度②使玻璃溶液中的气泡易于排除③通过破坏玻璃骨架,使结构疏松,达到助熔的目的12.纤维支数的表示方法:①定质量法是用质量为1g的原纱的长度来表示即纤维支数=纤维长度/纤维质量如40支纱是指质量为1g的原纱长40m。
复合材料考试重点1、复合材料的概念:由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
a.性能—取长补短,协同作用;b.基体—连续相2、聚合物基复合材料:1)、热固性聚合物基复合材料性能特点:(1)比强度、比模量高。
(2)加工性能好(流动性好),可采用手糊成型、模压成型、缠绕成型、注射成型和挤拉成型等。
(3)过载安全性好:过载而有少数纤维断裂时,载荷迅速重,新分配到未破坏的纤维上。
(4)可具有多种功能性:耐烧蚀性、摩擦学性能、电绝缘性、耐腐蚀性、特殊的光、电、磁学性能。
2)、热塑性聚合物基复合材料性能特点:断裂韧性好;可重复再加工。
3、金属基复合材料特点:导电、导热、耐高温、抗老化好。
4、无机非金属基复合材料特点:耐高温(>1000℃),耐磨,强度高,硬度大,抗氧化,耐化学腐蚀,热膨胀系数小,但是脆性大。
5、复合材料的增强材料分类:纤维及其织物、晶须、颗粒。
特点:提高抗张强度和刚度、减少收缩,提高热变形温度和低温冲击强度等。
6、芳纶纤维(PPT A:聚芳酰胺纤维)-----聚对苯二甲酰对苯二胺,通过液晶纺丝方法制成,分子链伸直平行排列结且晶度很高。
性能特点:1)、芳纶纤维的力学性能:拉伸强度高,冲击性能好,弹性模量高,断裂伸长高,密度小,有高的比强度与比模量;2)、热稳定性: 180℃下可长期使用;低温下(-60℃)不发生脆化亦不降解, T>487℃时,不熔化,但开始碳化→高温下直至分解也不变形;3)、化学性能:耐介质性良好,但易受酸碱侵蚀,耐水性不好。
7、聚乙烯纤维(Polyethylene, PE)优点:高比强度、高比模量以及耐冲击、耐耐腐蚀、耐紫外线、耐低温、电绝缘等。
缺点:熔点低、易蠕变。
8、高强高模PE纤维:又叫超高分子量聚乙烯(UHMWPE)纤维。
与碳纤维、芳纶并称为当今世界三大高科技纤维。
性能特点:强度更高;质量更轻,密度只有0.97g/cm ;化学稳定性更好;具有很好的耐候性;耐低温性好,使用温度可以低至-150℃。
复合材料考试复习资料1、复合材料的定义:由两种或两种以上不同性能、不同形态的组分通过复合工艺组合而成的一种多相材料,它既保持了原组分材料的主要特点又显示了原组分材料所没有的新性能。
2、复合材料的特征:可设计性:即通过对原材料的选择、各组分分布设计和工艺条件的保证等,使原组分材料优点互补,因而呈现了出色的综合性能;由基体组元与增强体或功能组元所组成;非均相材料:组分材料间有明显的界面;有三种基本的物理相(基体相、增强相和界面相);组分材料性能差异很大;组成复合材料后的性能不仅改进很大,而且还出现新性能.3、复合材料的分类:按基体材料分类①聚合物基复合材料:以有机聚合物(热固性树脂、热塑性树脂及橡胶等)为基体;②金属基复合材料:以金属(铝、镁、钛等)为基体;③无机非金属基复合材料:包括陶瓷基、碳基和水泥基复合材料。
按增强材料形态分类:①纤维增强复合材料:a.连续纤维复合材料:作为分散相的长纤维的两个端点都位于复合材料的边界处;b.非连续纤维复合材料:短纤维、晶须无规则地分散在基体材料中;②颗粒增强复合材料:微小颗粒状增强材料分散在基体中;③板状增强体、编织复合材料:以平面二维或立体三维物为增强材料与基体复合而成。
其他增强体:层叠、骨架、涂层、片状、天然增强体按用途分类:①结构复合材料:用于制造受力构件;②功能复合材料:具备各种特殊性能(如阻尼、光、电、磁、摩擦、屏蔽等)③智能复合材料④混杂复合材料4、复合材料的命名:复合材料可根据增强材料和基体材料的名称来命名,通常将增强材料放在前面,基体材料放在后面,再加上“复合材料”而构成。
5、复合材料的结构设计层次:一次结构:单层设计--- 微观力学方法:取决于增强相、基体相和结合界面的力学性能,增强相的含量、分布方向等;二次结构:层合体设计--- 宏观力学方法:取决于单层材料的力学性能和铺层方法(厚度、纤维交叉方式、顺序等);三次结构:产品结构设计--- 结构力学方法:取决于层合体的力学性能、结构几何、组合与连接方式6、增强体的定义:增强体是结构复合材料中能提高材料力学性能的组分,在复合材料中起着增加强度、改善性能的作用。