橡胶快速硫化技术
- 格式:doc
- 大小:16.00 KB
- 文档页数:5
橡胶硫化原理橡胶硫化是指将橡胶原料加入一定量的硫化剂,在一定的温度和时间下,使其产生化学反应,从而使橡胶原料发生交联,形成橡胶制品的过程。
橡胶硫化的目的是提高橡胶原料的物理力学性能、抗老化性能和耐热性能,从而保证橡胶制品的使用寿命和安全性。
硫化剂的种类及作用常见的硫化剂包括硫、硫代硫酸酯、硫化氢、过硫酸盐、亚硝基化合物等。
其中硫化氢为典型的亲核试剂,为硫化反应提供活化的硫端;过硫酸盐为一种自由基引发剂,可以加速硫化反应的进行。
不同的硫化剂具有不同的反应机理和反应速度,且选用的硫化剂与橡胶种类和用途有关。
一般情况下,硫化速度越快、交联密度越高,橡胶制品的物理力学性能越优良。
硫化工艺的参数橡胶硫化的工艺参数包括硫化温度、硫化时间、硫化剂用量、交联密度、交联结构等。
这些参数之间相互影响,必须合理协调,才能得到优良的橡胶制品。
硫化温度是指橡胶制品在硫化过程中所经历的温度。
温度过高会导致硫化过程过快,造成橡胶制品内部交联密度不均、外部硫化层脆化;温度过低则会导致硫化速度缓慢、硫化程度不足、物理力学性能不好。
一般情况下,橡胶硫化的温度范围为120℃-180℃,不同的硫化剂对应不同的合理温度范围。
硫化剂用量是指在一定的温度、时间下,为了达到预定的交联密度所需的硫化剂量。
硫化剂的用量和硫化剂种类、硫化温度、硫化时间、交联密度等参数有关。
硫化剂用量过多会导致硫化密度过高、物理力学性能不足、成本增加;硫化剂用量过少则会导致硫化程度低、交联密度不足、物理力学性能不好。
一般情况下,硫化剂用量为1%-10%左右。
交联密度是指在橡胶硫化过程中,橡胶分子链之间所形成的交联点的数量和密度。
交联密度直接影响橡胶制品的物理力学性能、热化学性能和耐磨性能等。
交联密度越高,橡胶制品的物理力学性能越好,但过高的交联密度可能导致橡胶制品在低温下脆化;交联密度越低,橡胶制品的导电性和热传导性等性能越好,但是物理力学性能不好,容易脱层、开裂等。
橡胶硫化促进剂M合成技术摘要:橡胶促进剂是一类非常重要的添加助剂,促进剂 M可以使橡胶在硫化时迅速硫化,并表现出较好的硫化性;硫化橡胶是一种性能优良、用途广泛的材料。
此外,促进剂M还可作为其它后效应催化剂(例如磺酰胺催化剂)的原料。
由于像橡胶这样的基本工业的蓬勃发展,对助剂的要求也在不断提高。
但近几年,随着我国环保工作的不断加强,部分橡胶助剂的生产企业被迫停产,造成了橡胶助剂的供求矛盾不断加剧。
目前,国内促进剂M的制造技术还不完善,尤其是对母液污水、硫化氢等含硫气体等的后处理技术还很薄弱,对环境的影响也很大。
因此,从根本上解决促进剂M存在的问题,必须大力发展、推行清洁生产、减少原料消耗。
关键词:橡胶硫化;促进剂;合成技术引言硫化促进剂 M是一种在橡胶工业中应用非常普遍的一种助进剂,其化学名是2-巯基苯并噻唑类,是世界上最大的一种橡胶硫化助剂,也是制造氨基磺基助剂的主要原材料。
然而,无论采用何种方法,均存在着大量“三废”的问题。
在橡胶促进剂 M的生产中,环境污染问题已经成为限制其进一步发展的一个重要因素。
如何有效地处理和回收利用“三废”,是目前橡胶助剂工业所关注的问题。
一、苯胺法合成技术研究(一)苯胺法促进剂M合成反应机理研究在此基础上,对反应体系中各物种尤其是中间物种种类、数量的变化进行辨识,从而揭示其作用机制。
采用28 ml小型反应器对促进剂M的合成机理进行了研究。
反应器被浸泡在熔盐中用于加热,并且通过调整熔盐的温度,可以调整反应温度,使之符合要求的温度范围。
当温度上升到室温时,将硫化氢释放,将该混合物溶于乙酸乙酯中,并将该混合物的体积固定为500毫升。
采用 HPLC对混合液进行组分分析。
在各个步骤中,反应液除了含有苯胺和 MBT外,还含有苯并噻唑,二苯硫醚和苯胺基苯并噻唑。
在促进剂M含量未达到峰值(91.1%)以前,促进剂M与残留的苯胺,中间体二苯基硫化物,苯胺基苯并噻唑,以及苯并噻唑等全部被转换成苯胺,占原料苯胺总量的96%-99%。
橡胶未硫化以前,单个分子间没有产生交联,因此缺乏良好的物理机械性能,实用价值不大。
当橡胶配以硫化剂经过硫化(交联)以后,由于立体结构的形式从而使性能大大改善,尤其是橡胶的定伸强度、弹性、硬度、拉伸强度等一系列物理机械性能都会大幅度提高,成为具有宝贵作用价值的硫化胶。
橡胶的硫化就是通过橡胶分子间的化学交联作用将基本上呈塑性的生胶转化成弹性的和尺寸稳定的产品,硫化后的橡胶的物性稳定,使用温度范围扩大。
“硫化过程(Curing)”一词在整个橡胶工业中普遍使用,在橡胶化学中占有重要地位。
橡胶分子链间的硫化(交联)反应能力取决于其结构。
不饱和的二烯类橡胶(如天然橡胶、丁苯橡胶和丁腈橡胶等)分子链中含有不饱和双键,可与硫黄、酚醛树脂、有机过氧化物等通过取代或加成反应形成分子间的交联。
饱和橡胶一般用具有一定能量的自由基(如有机过氧化物)和高能辐射等进行交联。
含有特别官能团的橡胶(如氯磺化聚乙烯等),则通过各种官能团与既定物质的特定反应形成交联,如橡胶中的亚磺酰胺基通过与金属氧化物、胺类反应而进行交联。
不同类型的橡胶与各种交联剂反应生成的交联键结构各不相同,硫化胶性能也各有不同。
第①种是使用硫黄或硫给予体作交联剂的情况,生成的可以是单硫键(x=1)、双硫键(x=2)和多硫键(x=3~8);第②种是使用树脂交联和肟交联的情况;第③种是使用过氧化物交联的过氧化物硫化和利用辐射交联的辐射硫化的情况,生成碳-碳键。
多数的通用橡胶采用硫黄或硫给予体硫化,即在生胶中加入硫黄或硫给予体以及缩短硫化时间的促进剂和保证硫黄交联效率的氧化锌和硬脂酸组成的活性剂。
在实际中通常按硫黄用量及其与促进剂的配比情况划分成以下几种典型的硫化体系:①普通硫磺硫化体系由常用硫黄量(>1.5份)和常用促进剂量配合组成。
使用这种硫化体系能使硫化胶形成较多的多硫键,和少量的低硫键(单硫键和双硫键)。
硫化胶的拉伸强度较高,耐疲劳性好。
缺点是耐热和耐老化性能较差。
橡胶硫化转移膜橡胶硫化转移膜是一种用于研究橡胶硫化反应的技术。
在橡胶制品的生产中,硫化是必不可少的步骤,它可以使橡胶具有良好的弹性和耐热性。
然而,硫化反应是一个复杂的过程,需要对其进行深入的研究。
橡胶硫化转移膜技术可以帮助我们更好地理解这个过程。
一、什么是橡胶硫化转移膜橡胶硫化转移膜是一种实验技术,用于研究橡胶硫化反应中发生的物质转移过程。
在这个过程中,将一层聚四氟乙烯(PTFE)或其他材料涂在未固化的橡胶表面上,并在其上施加压力和温度。
随着时间的推移,未固化的橡胶将通过扭曲、拉伸和压缩等形变方式与PTFE接触,并将其中一些成分转移到PTFE上形成一个“转移膜”。
二、为什么要使用橡胶硫化转移膜使用橡胶硫化转移膜技术可以帮助我们更好地理解橡胶硫化反应中发生的物质转移过程。
这些转移过程包括:1. 橡胶分子与硫化剂之间的反应,形成交联结构。
2. 硫化剂和其他添加剂在橡胶中的扩散和迁移。
3. 不同种类的橡胶分子之间的相互作用,如交联、聚集和分散等。
通过使用橡胶硫化转移膜技术,可以直接观察这些过程,并对它们进行定量分析。
这有助于我们更好地了解橡胶硫化反应的机理,并为优化生产工艺提供指导。
三、如何制备橡胶硫化转移膜制备橡胶硫化转移膜需要以下步骤:1. 准备未固化的橡胶样品。
通常使用未加工或未热压缩的样品。
2. 准备PTFE片。
PTFE片应该足够大,以覆盖整个样品表面,并且要保证表面光滑平整。
3. 将PTFE片放在未固化的橡胶表面上,并施加适当的压力和温度。
压力和温度的选择应该根据橡胶样品的性质和硫化反应的要求进行调整。
4. 在一定时间内,将PTFE片从橡胶表面上取下,并将其放入适当的溶剂中进行分析。
五、如何分析橡胶硫化转移膜对于制备好的橡胶硫化转移膜,可以通过以下方法进行分析:1. 扫描电子显微镜(SEM):SEM可以用来观察转移膜表面的形貌和结构,并提供有关橡胶硫化反应机理的信息。
2. 能谱分析(EDS):EDS可以用来确定转移膜中不同元素的含量和分布情况。
丁腈橡胶快速硫化体系
丁腈橡胶快速硫化体系是一种用于丁腈橡胶的加硫工艺,能够在较短的时间内实现橡胶的硫化。
该体系通常包括以下成分:
1. 主硫化剂:主要指硫化剂,常用的有硫磺和加速器硫化铜。
2. 辅助硫化剂:常用的辅助硫化剂有加速剂和促进剂。
加速剂可提高硫化反应速度,常用的加速剂有硫化氮、硫化羰基、硫醇等。
促进剂主要用于提高硫化效率,常用的促进剂有金属氧化物和有机化合物。
3. 防老剂:常用的防老剂有抗氧化剂和紫外线吸收剂,用于延缓橡胶老化过程。
丁腈橡胶快速硫化体系的实现需要合适的工艺条件,如适宜的温度和时间。
此外,体系中各成分的配比也需要经过实验和优化,以保证最佳的硫化效果和橡胶性能。
橡胶怎么快速凝固的原理一、原料制备
1. 选择好质量的天然橡胶或合成橡胶作为主要原料。
2. 加入硫化剂、促进剂、老化防护剂等配料。
3. 使用开式混炼机充分混炼,使配料均匀分散。
二、加速硫化原理
1. 硫化反应是形成橡胶网络结构的关键过程。
2. 加入硫化促进剂,可以缩短硫化反应时间,提高硫化速率。
3. 常用的硫化促进剂有肽类、硫脲类等有机物。
4. 促进剂可与硫化剂生成活性硫化中间体,加速硫化反应。
三、提高温度
1. 硫化反应属于化学反应,反应速率随温度升高而加快。
2. 通过选择高温硫化工艺,可以大幅缩减硫化用时。
3. 一般采用140-160C进行高温硫化,速度比常温快数倍。
4. 但温度过高会引起橡胶TEXTURE劣化,需控制适宜温度。
四、使用高能辐射
1. 采用电子束或γ射线辐照混炼橡胶,可引发硫化反应。
2. 高能辐射产生的自由基可直接发生硫化反应。
3. 辐射硫化法快速、环保,可精确调控,是新兴的快速硫化技术。
五、注意事项
1. 硫化速率过快会影响产品质量,需要控制适宜。
2. 不同配方及硫化工艺要进行定制优化。
3. 保证硫化均匀一致非常关键,否则会影响制品性能。
4. 快速硫化技术投入使用还需大量数据支撑。
橡胶与金属粘接硫化工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!橡胶与金属粘接硫化工艺的深度解析在工业生产中,橡胶与金属的粘接硫化工艺是一项重要的技术,它广泛应用于汽车、航空航天、医疗器械等多个领域。
橡胶硫化粘接、粘接理论与粘接技术知识一、粘接的理论技术1、机械理论机械理论认为,胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上吸附的空气,才能产生粘接作用。
在粘接如发泡橡胶的多孔被粘物时,机械嵌定是重要因素。
胶粘剂粘接经表面打磨的致密材料效果要比表面光滑的致密材料好,这是因为(1)机械镶嵌;(2)形成清洁表面;(3)生成反应性表面;(4)表面积增加。
由于打磨确使表面变得比较粗糙,可以认为表面层物理和化学性质发生了改变,从而提高了粘接强度。
2、吸附理论吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的。
粘接力的主要来源是分子间作用力包括氢键力和范德华力。
胶粘剂与被粘物连续接触的过程叫润湿,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶粘剂浸入固体表面的凹陷与空隙就形成良好润湿。
如果胶粘剂在表面的凹处被架空,便减少了胶粘剂与被粘物的实际接触面积,从而降低了接头的粘接强度。
许多合成胶粘剂都容易润湿金属被粘物,而多数固体被粘物的表面张力都小于胶粘剂的表面张力。
实际上获得良好润湿的条件是胶粘剂比被粘物的表面张力低,这就是环氧树脂胶粘剂对金属粘接极好的原因,而对于未经处理的聚合物,如聚乙烯、聚丙烯和氟塑料很难粘接。
通过润湿使胶粘剂与被粘物紧密接触,主要是*分子间作用力产生永久的粘接。
在粘附力和内聚力中所包含的化学键有四种类型:(1)离子键(2)共价键(3)金属键(4)范德华力3、扩散理论扩散理论认为,粘接是通过胶粘剂与被粘物界面上分子扩散产生的。
当胶粘剂和被粘物都是具有能够运动的长链大分子聚合物时,扩散理论基本是适用的。
热塑性塑料的溶剂粘接和热焊接可以认为是分子扩散的结果。
4、静电理论由于在胶粘剂与被粘物界面上形成双电层而产生了静电引力,即相互分离的阻力。
当胶粘剂从被粘物上剥离时有明显的电荷存在,则是对该理论有力的证实。
5、弱边界层理论弱边界层理论认为,当粘接破坏被认为是界面破坏时,实际上往往是内聚破坏或弱边界层破坏。
高温快速硫化技术随着橡胶工业生产的自动化,联动化,高温快速硫化体系被广泛应用。
如注射硫化,电缆的硫化等。
所谓高温硫化是指在180-240度下进行硫化,一般硫化温度每升高10度,硫化时间大约缩短一半。
产量大大提高,但硫化温度升高会使硫化胶物性性能下降。
这和高温硫化时交联密度的下降有关,温度高于160度时,交联密度下降最为明显。
所以硫化温度不是越高越好。
采用多高的硫化温度要综合结合;1,高温硫化体系配合原则;(1),选择耐热胶种,为了减少或消除硫化胶的返原现象,应选则双键含量低的橡胶,各种橡胶的热稳定性不同,极限硫化温度也不同,适用于高温硫化得胶种有,EPDM,IIR,NBR,SBR等。
(2),采用有效或半有效硫化体系,因为CV硫化体系中多硫交联键含量高,在高温下容易产生硫化返原现象。
所以CV 不适于高温快速硫化体系,高温莪快速硫化体系多用于单硫和双硫键含量高的有效EV和伴有效SEV硫化体系。
其硫化胶耐热老化性能好。
一般使用高促低硫和硫载体硫化配合,其中后者采用DTDM最好,胶烧时间和硫化特性范围比较宽,容易满足加工要求,TMTD因为胶烧时间短且诶喷霜严重而受限制。
虽然EV和SEV对高温硫化的效果比CV好但还不够理想。
仍无法彻底解决高温硫化所产生的硫化返原现象和抗屈挠性能差的缺点,应寻找更好的解决方法。
(3),硫化胶的特种配合,为了保持高温下硫化胶的交联密度不变,可以采取增加硫用量,促进剂用量或2者同时增加的方法,但是增加硫的用量会降低硫化效果,并使多硫交联键的含量增加,同时增加硫和促进剂,可使硫化效果不变,可提高硫化效果,这种方法比较好。
在轮胎得到广泛应用。
合成橡胶硫化体系对温度的敏感性比NR低,因此NR和合成橡胶并用显得格外重要,并用后体系即保持了高温硫化时交联密度的稳定性,又保持硫化胶最佳物性,是橡胶制品采用高温硫化、缩短硫化时间,提高生产的有效办法。
2,高温硫化的其它配合特点;高温硫化体系要求硫化速度快,胶烧倾向小,无喷霜现象,所以配合时最好采用耐热胶种,及常量硫磺,高促进剂的方法,另外,对防胶焦,防老系统都有较高得要求。
橡胶快速硫化技术
对橡胶工业而言,硫化时间长成为提高橡胶工业生产率的瓶颈,并限制了橡胶工业应用领域的迅速发展。
随着各种热塑性弹性体技术的不断成熟,使人们不禁怀疑,是否有一天,热塑性弹性体会成为高弹性橡胶的替代品,而使橡胶退出历史的舞台?对于新技术可能带来的变化今天我们不敢枉下断论,但是,从目前的市场来看,橡胶工业不但没有退缩迹象,反而表现出异常顽强的爆发力。
伴随着市场的快速发展,橡胶加工技术不断成熟,尤其是橡胶快速硫化技术的不断成熟正在弥补橡胶以往硫化时间漫长等不足。
橡胶硫化过程中,温度、压力与时间是三个共同作用的因素。
由于橡胶过热会发生焦烧、性能下降等状况,如何实现高温硫化,进而缩短硫化时间成为不同企业研发的重点。
改善硫化体系以加速硫化过程为越来越多厂家所重视。
各助剂企业也积极推出相应的快速硫化促进剂以抢占市场。
本文特别介绍部分厂家开发的新型加速硫化的助剂产品。
新型硫化剂DTDC
新型硫化剂DTDC因在硫化过程中不产生亚硝胺而备受国际关注,被认为是硫化剂DTDM和二硫化或六硫化秋兰姆的最佳替代品。
由于硫化剂DTDM和秋兰姆产品在硫化温度下裂解释放出的仲胺基分子残片(吗基二甲胺基、二乙胺基、二丁胺基、二戊胺基等)可与亚硝基供给体结合,产生致癌性亚硝胺物质,因此硫化剂DTDM和秋
兰姆产品的生产和应用受到欧美国家、政府、国际组织及环境法规的限定与警告。
特别是在2003年5月,在欧盟发表的《未来化学品政策战略》白皮书中将硫化剂DTDM和秋兰姆产品列入限期淘汰的有致癌作用的化学品。
上海京海化工有限公司根据近年来国际橡胶同行对硫化剂DTDM的毒性及其对环境影响的研究成果,正在研制硫化剂DTDM的替代品。
目前,对硫化剂DTDC的开发已进入环境试验阶段,不久将投放市场。
硫化剂DTDC呈白色结晶形,熔点为120~122℃,活性硫质量分数大于0.19。
用其等量替代硫化剂DTDM,无需改变胶料的配方和工艺。
与硫化剂DTDM相同,硫化剂DTDC 可以全部或部分替代硫磺组成有效或半有效硫化体系。
由于硫化剂DTDC在一般硫化条件下可以释放出活性硫,与加入的硫磺在橡胶分子间形成单硫键和双硫键,这种橡胶硫化网络结构可赋予硫化胶优良的耐热性、耐压缩性和高定伸应力。
硫化剂DTDC还具有不喷霜、焦烧安全、硫化速度快的特点,是轮胎等大型模型橡胶制品、耐热橡胶制品、卫生橡胶制品及彩色橡胶制品的最佳硫化剂。
Vulcuren新型硫化剂
要将厚重的橡胶制品硫化,并不是一件容易的事。
因为橡胶的传热性较差,为了迅速使橡胶内部的区域完全硫化,通常需要长时间加热才能实现。
也就是说橡胶材料的表面会过度硫化,并可能在产品内部完全硫化前分解。
橡胶在低温下的硫化是一个可行的方法,虽然这个方法比较温和,但费时较久,而且也不经济。
拜耳橡胶事业处经过长期的不断研究,开发出硫化剂Vulcuren 以解决高温硫化问题。
提高硫化温度,而不会造成橡胶制品在长时间加热下的分解,因此缩短了制造过程并提高生产力。
在橡胶硫化时,弹性体会由线型结构变为稳定的交联结构,从而形成橡胶优异的高弹性能。
但是这种交联结构的热稳定性并非特别的好,他们会因长期暴露在高温下而分解。
这种逆转反应会使体积较大的橡胶的硫化失败,而使其物理和化学性质劣化。
与此不同的是,在硫化温度下,Vulcuren会形成奇特的架桥键,在实质上有更好的热稳定性,因此以Vulcuren来取代部分硫磺,明显地减少了逆转反应。
目前制造体积较大的橡胶制品,例如工程车的橡胶实心轮胎或宽大输送带,因使用Vulcuren,可以使橡胶制品的生产比较快速而且更经济。
此外,产品的物性,例如耐磨性、抗张强度和抗撕裂强度等都可维持在很高的标准。
Pckacil TBzTD
化学名为二硫化四基秋兰姆,是尤尼罗伊尔公司新开发的秋兰姆类促进剂,可替代TMTD(四甲基二硫化秋兰姆)、TMTM(一硫化四甲基秋兰姆)、TETD(二硫化四乙基秋兰姆),加工安全性更好,比TMTD 有更长的焦烧时间,可作为天然橡胶、丁橡胶和丁苯橡胶的快速硫化主促进剂或助促进剂,有时也用于PVC橡胶硫化抑制剂。
TBzTD分子量大,熔点高,不易分解,故不产生亚硝胺;其硫化速度稍低于
TMTD,其他物性与TMTD几乎相同,目前已成为极具发展潜力的秋兰姆类硫化促进剂新品种。
Santocure TBBS
化学名为N-叔丁基-2-苯并唑次磺胺类促进剂,是一种性能很好的次磺胺类促进剂,由孟山都公司开发。
在天然橡胶、丁苯橡胶、丁二烯橡胶和其并用胶种中使用时,具有硫化速度快和模量高等特点。
一般可单独使用或与少量促进剂一起使用;在轮胎和工业橡胶制品中使用时,需配用氧化锌和硬脂酸,也可用秋兰姆、二硫代氨基甲酸盐、醛胺、胍类促进剂和酸性物质活化。
TBBS以叔丁胺和促进剂M为原料合成,不存在亚硝胺致癌问题,是全球主导的促进剂品种,消费量占全球促进剂消费量的35%以上。
中国也有部分企业进行小规模生产,但由于受原料叔丁胺的制约,未能大规模生产与应用,但其作为环保高效的新型次磺胺类促进剂发展前景很好。
Santocure TBSI
化学名为N-叔丁基双-2-苯并唑次磺胺类促进剂,由孟山都公司开发,在操作温度下非常安全,不产生致癌亚硝胺。
与TBBS相比,TBSI具有分子量大、熔点高30℃以上、热稳定性能好、焦烧时间长、硫化速度快等优点,通常与防焦剂CTP共用,可完全替代TBBS。
另外,TBSI还具有遇水稳定、易于贮存;在硫化天然胶时,可明显提高橡胶的抗硫化返原性;在橡胶与钢丝粘接的化合物中表现良好的性
能。
TBSI可用于天然橡胶、丁苯橡胶、顺丁橡胶、异戊橡胶等,尤其适用于硷性较强的炉法炭黑混炼胶料及对抗返原要求很高的厚制品,活性大于目前广泛使用的CBS、NOBS等促进剂。
多功能促进剂TiBTM
化学名为N,N,N'-硫化四异丁基秋兰姆,由美国固持里奇公司开发,为一种既具有次磺胺类促进剂的助促进剂作用,又具有防焦剂作用的多功能促进剂。
在SBR/BR胶料中,TiBTM和CTP分别与TBBS和CBS并用时,两种防焦剂对焦烧延迟作用相同;但TiBTM 还可明显加快硫化速度,而CTP则没有加速硫化的作用,甚至有时会引起硫化速度下降。
试验表明,在SBR/BR之类的合成橡胶体系中,TiBTM可同时发挥防焦剂和助促进剂两种功能。
但在天然橡胶中,TiBTM的防焦效果明显比CTP差,TiBTM主要用作助促进剂;但TiBTM可增加天然橡胶的抗硫化返原性,提高硫化温度、变化硫磺用量及加入白炭黑都不会影响TiBTM防焦烧和加速硫化速度的效果,而且对硫化橡胶的物理性能无不良影响。
不断提高生产效率将是各种技术竞争中不变的主题之一。
在橡胶加工与橡胶助剂的各种技术之中,加速硫化的促进剂技术在推动橡胶工业及其加工技术发展的同时,并将成为各助剂供应商继续研发的重点。