(北师大版)高中数学必修四:1.2《角的概念的推广》教案设计
- 格式:doc
- 大小:134.00 KB
- 文档页数:4
1.2 角的概念的推广1.角的概念角可以看成平面内________绕着______从一个位置______到另一个位置所形成的图形. 2.角的分类(1)(2)预习交流1(1)终边和始边重合的角一定是零角吗? (2)45°是第______象限角;216°是第__________象限角;-70°是第__________象限角.3.终边相同的角的表示一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:________________________,即任何一个与角α终边相同的角,都可以表示成角α与周角的______倍的和.注意:(1)k是整数,这个条件不能漏掉;(2)α是任意角;(3)k·360°与α之间用“+”号连接,如k·360°-30°应看成k·360°+(-30°)(k∈Z);(4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.预习交流2(1)下列各角中与330°角终边相同的角是( ).A.510°B.150°C.-150°D.-390°(2)在-360°到360°的范围内,与412°角终边相同的角是______.答案:1.一条射线端点旋转2.(1)逆时针顺时针没有作任何旋转(2)原点终边(除端点外)预习交流1:(1)提示:不一定.零角是终边和始边重合的角,但终边和始边重合的角不一定是零角,如-360°、360°、720°等角的终边和始边也重合.(2)一三四3.S={β|β=α+k×360°,k∈Z} 整数预习交流2:(1)D (2)52°,-308°1.角的概念的辨析问题判断下列说法是否正确,并说明理由:(1)集合P={钝角},集合Q={第二象限角},则有P=Q;(2)角α和角2α的终边不可能相同;(3)若α是第二象限角,则2α一定是第四象限角;(4)不相等的角其终边位置必不相同.思路分析:解答本题首先要明确角的范围不再局限于0°~360°,角的度数已经扩大到(-∞,+∞),其次要紧扣象限角、终边相同的角的概念.已知A={锐角},B={α|0°≤α<90°},C={第一象限角},D={小于90°的角},求A∩B,A∪C,C∩D,A∪D.对推广后角的概念的理解.(1)紧紧抓住“旋转”二字,用运动的观点来看角.(2)结合实际意义明确角的概念经过推广后,角的范围不再局限于0°~360°,而是包括正角、负角和零角.(3)正确理解正角、负角和零角的概念,既要注意始边位置和旋转量,又要注意旋转方向是逆时针、顺时针,还是没有转动.2.终边相同的角及象限角已知α=-1 910°.(1)把α写成β+k×360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限的角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.思路分析:利用终边相同的角的关系β=α+k×360°,k∈Z来解决.将下列各角表示为k·360°+α(k∈Z,0°≤α<360°)的形式,并指出是第几象限角.(1)-1 840°;(2)1 690°.终边相同的角相差360°的整数倍.判定一个角在第几象限,只要找与它终边相同的0°~360°范围内的角,这个0°~360°范围内的角所在象限即为所求.3.区域角的表示如图所示,写出终边落在阴影部分(实线包括边界,虚线不包括边界)的角的集合.思路分析:观察图形,找出边界上的角,用不等式形式表示出阴影部分内的角的集合.如图所示,写出终边落在图中阴影部分(实线包括边界,虚线不包括边界)的角的集合.区域角及其表示方法区域角是指终边落在平面直角坐标系的某个区域内的角.其写法可分为三步:(1)先按逆时针的方向找到区域的起始和终止边界;(2)按由小到大分别标出起始和终止边界对应的-360°到360°范围内的角α和β,写出最简区间{x|α<x<β};(3)根据旋转的观点把起始、终止边界对应角α、β加上k·360°(k∈Z).特别地,如“活动与探究3”中,若是对顶区域,如图②可用一个表达式表示:先在一个阴影中找出区间角[45°,90°],然后再在两边加上n×180°(n∈Z)即可;若区域包括了x轴非负半轴,则可由负角到正角,如图③,两边再加上k×360°(k∈Z).4.已知α角所在的象限,判断角α2的终边所在的位置已知角α是第二象限角,试判断角α2是第几象限角.已知角α是第三象限角,试判断角α2是第几象限角.(1)各象限角的集合如下 象限角 集合表示第一象限角 {α|0°+k ·360°<α<90°+k ·360°,k ∈Z } 第二象限角 {α|90°+k ·360°<α<180°+k ·360°,k ∈Z } 第三象限角 {α|180°+k ·360°<α<270°+k ·360°,k ∈Z } 第四象限角{α|270°+k ·360°<α<360°+k ·360°,k ∈Z }答案:活动与探究1:解:(1)不正确.实际上P ={α|90°<α<180°},应有P Q . (2)不正确.如α=0°时,α与2α终边相同.(3)不正确.由90°+k ×360°<α<180°+k ×360°(k ∈Z )知180°+2k ×360°<2α<360°+2k ×360°,k ∈Z ,故2α是第三或第四象限的角,也可能终边在y 轴的非正半轴上.(4)不正确.不相等的角其终边位置也可能相同,如30°与390°. 迁移与应用:解:A ∩B ={α|0°<α<90°},A ∪C ={α|k ×360°<α<90°+k ×360°,k ∈Z },C ∩D ={α|k ×360°<α<90°+k ×360°,k ∈Z ,k ≤0}, A ∪D ={α|α<90°}. 活动与探究2:解:(1)-1 910°=-6×360°+250°,其中β=250°,k =-6,从而α=250°+(-6)×360°,它是第三象限的角.(2)令θ=250°+k ×360°(k ∈Z ),取k =-1,-2就得到满足-720°≤θ<0°的角,即250°-360°=-110°,250°-720°=-470°.所以θ为-110°,-470°.迁移与应用:解:(1)-1 840°=-6×360°+320°, 故-1 840°是第四象限角.(2)1 690°=4×360°+250°,故1 690°是第三象限角.活动与探究3:解:(1)由图①可知,按逆时针方向旋转,应由l 1旋转至l 2,与l 1终边相同的角有60°角,与l 2终边相同的角有310°角.∴图①阴影部分中角的集合为S ={α|60°+k ×360°≤α≤310°+k ×360°,k ∈Z }. (2)由图②知,第一象限内阴影部分中角的集合为S 1={α|45°+k ×360°≤α≤90°+k ×360°,k ∈Z }. 第三象限内阴影部分中角的集合为S 2={α|225°+k ×360°≤α≤270°+k ×360°,k ∈Z }. ∴所求阴影部分中角的集合为S =S 1∪S 2={α|45°+2k ×180°≤α≤90°+2k ×180°,k ∈Z }∪{α|45°+(2k +1)×180°≤α≤90°+(2k +1)×180°,k ∈Z }={α|45°+n ×180°≤α≤90°+n ×180°,n ∈Z }.(3)由图③知,逆时针方向旋转,应由l 2旋转至l 1,与l 2终边相同的角有-30°角,与l 1终边相同的角有30°角.∴图③阴影部分中角的集合为S ={α|-30°+k ×360°<α<30°+k ×360°,k ∈Z }.迁移与应用:解:终边落在第二象限内阴影部分中的角的集合可表示为{x |k ×360°+135°<x ≤k ×360°+180°,k ∈Z },终边落在第四象限内阴影部分中的角的集合可表示为{x |k ×360°-15°≤x ≤k ×360°,k ∈Z },∴终边落在阴影部分的角的集合可表示为{x |k ×360°+135°<x ≤k ×360°+180°或-15°+k ×360°≤x ≤k ×360°,k ∈Z }.活动与探究4:解法一:(分类讨论法) ∵角α是第二象限角,∴k ×360°+90°<α<k ×360°+180°,k ∈Z.∵k ×180°+45°<α2<k ×180°+90°,k ∈Z ,∴当k =2n ,n ∈Z 时,n ×360°+45°<α2<n ×360°+90°,即角α2是第一象限角;当k =2n +1,n ∈Z 时,n ×360°+225°<α2<n ×360°+270°,即角α2是第三象限角.∴角α2的终边落在第一或第三象限.解法二:(几何法)先将各象限二等分,从x 轴非负半轴起,按逆时针方向依次将各区域标上1,2,3,4,标有2的区域即为角2α的终边所在区域,如图所示,故角2α是第一、三象限角.迁移与应用:解法一:(分类讨论法)∵α是第三象限角,∴k ×360°+180°<α<k ×360°+270°,k ∈Z ,∴k ×180°+90°<2α<k ×180°+135°,k ∈Z. ∴当k=2n ,n ∈Z 时,n ×360°+90°<2α<n ×360°+135°,即角 2α是第二象限角;当k =2n +1,n ∈Z 时,n ×360°+270°<2α<n ×360°+315°,即角2α是第四象限角.∴角2α是第二或第四象限角.解法二:(几何法)仿照“活动与探究4”的“解法二”即可知角 是第二或第四象限角.1.下列命题中正确的是( ). A .三角形的内角必是第一、二象限角 B .第一象限角必是锐角C .不相等的角终边一定不相同D .若β=α+k ·360°(k ∈Z ),则α和β终边相同2.给出下列四个命题:①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-615°是第一象限角.其中正确的命题有( ).A .1个B .2个C .3个D .4个 3.与405°角终边相同的角是( ).A .k ·360°-45°,k ∈ZB .k ·360°-405°,k ∈ZC .k ·360°+45°,k ∈ZD .k ·180°+45°,k ∈Z4.(1)一个30°的角,将其终边按逆时针方向旋转三周,则旋转后的角是________. (2)若时针走过2小时40分,则分针转过的角度是________.5.终边在第一、三象限角平分线上的角的集合为________;终边在第二、四象限角平分线上的角的集合为________.答案:1.D 解析:90°的角可以是三角形的内角,但它不是第一、二象限角,故A 错;390°的角是第一象限角,但它不是锐角,故B 错;390°角和30°角不相等,但终边相同,故C 不正确;对于D ,由终边相同的角的概念可知正确.2.C 解析:①②③正确,④错误. 3.C4.(1)1 110° (2)-960° 解析:(1)终边按逆时针方向旋转三周,转过的角度为360°×3=1 080°.再加上原来的角度30°,所以旋转后的角是1 110°.(2)∵2小时40分=223小时,∴-360°×223=-960°.5.{α|α=k ×180°+45°,k ∈Z } {α|α=k ×180°+135°,k ∈Z }。
§2 角的概念的推广自主学习1.角的概念(1)角的概念:角可以看成平面内____________绕着________从一个位置________到另一个位置所形成的图形.(2)角的分类:按旋转方向可将角分为如下三类:类型定义图示正角按________________形成的角负角按________________形成的角零角一条射线________________,称它形成了一个零角2.象限角角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是____________.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=________________},即任一与角α终边相同的角,都可以表示成角α与______________的和.4.终边落在坐标轴上角的集合终边所在的位置角的集合x轴正半轴x轴负半轴x轴y轴正半轴y轴负半轴y轴终边落在各个象限的角的集合.α终边所在的象限角α的集合第一象限第二象限第三象限第四象限对点讲练终边相同的角与象限角例1在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.回顾归纳解答本题可先利用终边相同的角的关系:β=α+k·360°,k∈Z,把所给的角化归到0°~360°范围内,然后利用0°~360°范围内的角分析该角是第几象限角.变式训练1判断下列角的终边落在第几象限内:(1)1 400°;(2)-2 010°.终边相同的角的应用例2已知,如图所示,(1)写出终边落在射线OA,OB上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.回顾归纳解答此类题目应先在0°~360°上写出角的集合,再利用终边相同的角写出符合条件的所有角的集合,如果集合能化简的还要化成最简.变式训练2如图所示,写出终边落在阴影部分的角的集合.角的象限的判断例3 已知α是第二象限角,试确定2α,α2的终边所在的位置.回顾归纳 若已知角α是第几象限角,判断α2,α3等是第几象限角,主要方法是解不等式并对k 进行分类讨论.考查角的终边的位置.变式训练3 已知α为第三象限角,则α2所在的象限是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”. 2.关于终边相同角的认识一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 注意:(1)α为任意角.(2)k ·360°与α之间是“+”号,k ·360°-α可理解为k ·360°+(-α).(3)相等的角,终边一定相同;终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍.(4)k∈Z这一条件不能少.课时作业一、选择题1.与405°角终边相同的角是()A.k·360°-45°,k∈Z B.k·180°-45°,k∈ZC.k·360°+45°,k∈Z D.k·180°+45°,k∈Z2.若α=45°+k·180° (k∈Z),则α的终边在()A.第一或第三象限B.第二或第三象限C.第二或第四象限D.第三或第四象限3.若角α与β的终边相同,则α-β的终边落在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴4.若α是第四象限角,则180°-α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角5.如图,终边落在阴影部分(含边界)的角的集合是()A.{α|-45°≤α≤120°}B.{α|120°≤α≤315°}C.{α|k·360°-45°≤α≤k·360°+120°,k∈Z}D.{α|k·360°+120°≤α≤k·360°+315°,k∈Z}题号1234 5答案二、填空题6.经过10分钟,分针转了________度.7.下列命题:①第一象限角都是锐角;②锐角都是第一象限角;③第一象限角一定不是负角;④第二象限角大于第一象限角;⑤第二象限角是钝角;⑥小于180°的角是钝角、直角或锐角.其中判断错误的是________.(把有关命题的序号写上即可)8.若α=1 690°,角θ与α终边相同,且-360°<θ<360°,则θ=________.三、解答题9.在与角-2 010°终边相同的角中,求满足下列条件的角.(1)最小的正角;(2)最大的负角;(3)-720°~720°内的角.10.已知角x的终边落在图示阴影部分区域,写出角x组成的集合.§2角的概念的推广知识梳理1.(1)一条射线端点旋转(2)类型定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转,称它形成了一个零角2.第几象限角3.α+k·360°,k∈Z整数个周角4.终边所在的位置角的集合x轴正半轴{α|α=k·360°,k∈Z}x轴负半轴{α|α=k·360°+180°,k∈Z}x轴{α|α=k·180°,k∈Z}y轴正半轴{α|α=k·360°+90°,k∈Z}y轴负半轴{α|α=k·360°+270°,k∈Z}y轴{α|α=k·180°+90°,k∈Z}自主探究α终边所在的角α的集合象限第一{α|k·360°<α<k·360°+90°,k∈Z}象限对点讲练例1解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.变式训练1解(1)1 400°=3×360°+320°,∵320°是第四象限角,∴1 400°也是第四象限角.(2)-2 010°=-6×360°+150°,∴-2 010°与150°终边相同.∴-2 010°是第二象限角.例2解(1)终边落在射线OA上的角的集合是{α|α=k·360°+210°,k∈Z}.终边落在射线OB上的角的集合是{α|α=k·360°+300°,k∈Z}.(2)终边落在阴影部分(含边界)角的集合是{α|k·360°+210°≤α≤k·360°+300°,k∈Z}.变式训练2解设终边落在阴影部分的角为α,角α的集合由两部分组成.(1){α|k·360°+30°≤α<k·360°+105°,k∈Z}.(2){α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合(1)与(2)的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z}={α|k·180°+30°≤α<k·180°+105°,k∈Z}.例3解因为α是第二象限角,所以k·360°+90°<α<k·360°+180°,k∈Z.所以2k·360°+180°<2α<2k·360°+360°,k∈Z,所以2α的终边在第三或第四象限或终边在y 轴的非正半轴上. 因为k ·360°+90°<α<k ·360°+180°,k ∈Z ,所以k ·180°+45°<α2<k ·180°+90°,k ∈Z ,所以当k =2n ,n ∈Z 时,n ·360°+45°<α2<n ·360°+90°,即α2的终边在第一象限; 当k =2n +1,n ∈Z 时,n ·360°+225°<α2<n ·360°+270°,即α2的终边在第三象限.所以α2的终边在第一或第三象限.变式训练3 D 课时作业 1.C 2.A3.A [∵α=β+k ·360°,k ∈Z , ∴α-β=k ·360°,k ∈Z .] 4.C 5.C 6.-607.①③④⑤⑥解析 ①390°角是第一象限角,可它不是锐角,所以①不正确.②锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,所以②正确. ③-330°角是第一象限角,但它是负角,所以③不正确.④120°角是第二象限角,390°是第一象限角,显然390°>120°,所以④不正确. ⑤480°角是第二象限角,但它不是钝角,所以⑤不正确.⑥0°角小于180°,但它既不是钝角,也不是直角或锐角,故⑥不正确. 8.-110°或250°解析 ∵α=1 690°=4×360°+250°,∴θ=k ·360°+250°,k ∈Z .∵-360°<θ<360°, ∴k =-1或0. ∴θ=-110°或250°.9.解 (1)∵-2 010°=-6×360°+150°, ∴与角-2 010°终边相同的最小正角是150°. (2)∵-2 010°=-5×360°+(-210°), ∴与角-2 010°终边相同的最大负角是-210°. (3)∵-2 010°=-6×360°+150°,∴与-2 010°终边相同也就是与150°终边相同. 由-720°≤k ·360°+150°<720°,k ∈Z , 解得:k =-2,-1,0,1.代入k ·360°+150° 依次得:-570°,-210°,150°,510°.10.解 (1){x |k ·360°-135°≤x ≤k ·360°+135°,k ∈Z }.(2){x|k·360°+30°≤x≤k·360°+60°,k∈Z}∪{x|k·360°+210°≤x≤k·360°+240°,k∈Z}={x|2k·180°+30°≤x≤2k·180°+60°或(2k+1)·180°+30°≤x≤(2k+1)·180°+60°,k∈Z}={x|k·180°+30°≤x≤k·180°+60°,k∈Z}.。
角的概念的推广一、课题:角的概念的推广二、教学目标:1.理解任意角的概念;2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写。
三、教学重、难点:1.判断已知角所在象限;2.终边相同的角的书写。
四、教学过程:(一)复习引入:1.初中所学角的概念。
2.实际生活中出现一系列关于角的问题。
(二)新课讲解:1.角的定义:一条射线绕着它的端点O ,从起始位置OA 旋转到终止位置OB ,形成一个角α,点O 是角的顶点,射线,OA OB 分别是角α的终边、始边。
说明:在不引起混淆的前提下,“角α”或“α∠”可以简记为α.2.角的分类:正角:按逆时针方向旋转形成的角叫做正角;负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角。
说明:零角的始边和终边重合。
3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例如:30,390,330-都是第一象限角;300,60-是第四象限角。
(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限。
例如:90,180,270等等。
说明:角的始边“与x 轴的非负半轴重合”不能说成是“与x 轴的正半轴重合”。
因为x 轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线。
4.终边相同的角的集合:由特殊角30看出:所有与30角终边相同的角,连同30角自身在内,都可以写成30360k +⋅()k Z ∈的形式;反之,所有形如30360k +⋅()k Z ∈的角都与30角的终边相同。
从而得出一般规律: 所有与角α终边相同的角,连同角α在内,可构成一个集合{}|360,S k k Z ββα==+⋅∈,即:任一与角α终边相同的角,都可以表示成角α与整数个周角的和。
说明:终边相同的角不一定相等,相等的角终边一定相同。
课题 1.2 角的概念的推广学习目标1.知识与技能(1)理解正角、负角、零角与象限角的概念.(2)掌握终边相同角的表示方法.2.过程与方法通过学生观察,联想得出相应数学规律的学习过程,体会由特殊到一般的数学思想思维方法.3.情感、态度与价值观通过学习本节使学生体会类比思想,数型结合等思想方法,培养学生分析问题解决问题的方法.学习重难点角的概念学习方法以讲学稿为依托的多媒体辅助教学方式学习过程一、课前预习指导:仔细阅读课本6-7页内容,完成以下预习检测(1)角的概念:角可以看成平面内_________绕着____从一个位置______到另一个位置所形成的图形.(2)角的分类:按旋转方向可将角分为如下三类。
二、新课学习问题探究一任意角的概念正角、负角、零角是怎样规定的?问题探究二象限角a终边所在象限角a的集合第一象限第二象限第三象限第四象限问题探究三终边落在坐标轴上的角1终边落在坐标轴上的角经常用到,完成下表:终边所在位置角的集合X轴正半轴X轴负半轴y轴正半轴y轴负半轴2写出终边落在x轴上的角的集合S.3写出终边落在y轴上的角的集合T.例1在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2) 650°;(3)-950°15′.学后检测1 判断下列角的终边在第几象限。
(1)1400°(2)—2010°例2已知α是第二象限角,试确定2α,α2的终边所在的位置.例3写出终边落在直线y=x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.三、当堂检测1. 1.-361°的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各角中与330°角终边也相同的角是()A.510°B.150°C.-150°D.-390°3.经过10分钟,分针转了________度4.写出终边落在坐标轴上的角的集合S.四、课堂小结:五、课后作业六.板书设计七.教(学)后反思。
高中数学第一章三角函数1.2 角的概念的推广课堂导学案北师大版必修4(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数1.2 角的概念的推广课堂导学案北师大版必修4(1))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数 1.2 角的概念的推广课堂导学案北师大版必修4(1)的全部内容。
1.2角的概念的推广课堂导学三点剖析1.任意角和象限角的概念【例1】在体操、花样滑冰、跳台跳水比赛中,常常听到“转体三周”“转体两周半"的说法,像这种动作名称表示的角度是多大?思路分析:利用角的定义及正角、负角的概念,“转体三周"即转过3个360°(或—360°),“两周半”即2.5个360°(或—360°),则问题迎刃而解.解:如果是逆时针转体,则分别是360°×3=1080°和360°×2.5=900°;若是顺时针转体,则分别为-1 080°和-900°.友情提示分清正角是按逆时针转动的角,负角是按顺时针转动的角,是学习角的关键.各个击破类题演练1若将时钟拨慢5分钟,则分针转了______度;时针转了______度。
解析:将时钟拨慢了5分钟,分针、时针都是按逆时针方向转动,转过的是正角这时,分针转过的角度是:360°12=30°;时针转过的角度是:30°12=2.5°。
答案:30 2.5变式提升1时针走过两小时,则分针转过______度.解析:分针按顺时针方向旋转,所以形成的角为负角.为—360°×2=-720°.答案:—7202。
§2 角的概念的推广一、教学目标1、知识与技能:(1)推广角的概念,理解并掌握正角、负角、零角的定义;(2)理解象限角、坐标轴上的角的概念;(3)理解任意角的概念,掌握所有与α角终边相同的角(包括α角)的表示方法;(4)能表示特殊位置(或给定区域内)的角的集合;(5)能进行简单的角的集合之间运算。
2、过程与方法:类比初中所学的角的概念,以前所学角的概念是从静止的观点阐述,现在是从运动的观点阐述,进行角的概念推广,引入正角、负角和零角的概念;由于角本身是一个平面图形,因此,在角的概念得到推广以后,将角放入平面直角坐标系,引出象限角、非象限角的概念,以及象限角的判定方法;通过几个特殊的角,画出终边所在的位置,归纳总结出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。
3、情感态度与价值观:通过本节的学习,使同学们对角的概念有了一个新的认识;树立运动变化观点,学会运用运动变化的观点认识事物;揭示知识背景,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求。
二、教学重、难点重点: 理解正角、负角和零角和象限角的定义,掌握终边相同角的表示法及判断。
难点: 把终边相同的角用集合和符号语言正确地表示出来。
三、学法与教法在初中,我们知道最大的角是周角,最小的角是零角;通过回忆和类比初中所学角的概念,把角的概念进行了推广;角是一个平面图形,把角放入平面直角坐标系中以后,了解象限角的概念;通过角终边的旋转掌握终边相同角的表示方法;我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示,另外还有相同终边角的集合的表示等。
教法: 类比探究交流法。
四、教学过程(一)、创设情境,揭示课题同学们,我们在拧螺丝时,按逆时针方向旋转会越拧越松,按顺时针方向旋转会越拧越紧。
但不知同学们有没有注意到,在这两个过程中,扳手分别所组成的两个角之间又有什么关系呢?请几个同学畅谈一下,教师控制好时间,2-3分钟为宜。
1.2角的概念推广一、新旧知识连接:初中已学过命题的知识,请同学们回顾什么叫角?角的范围?长跑运动员在操场长跑可以用角360、两圈可以是多少?顺时针与逆时针有区别吗?引入角的定义和相关概念;度来恒量吗?一圈0二、我能自学:1.认识角的概念:①如果我们从运动的观点来看,角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
(先后用教具圆规和多媒体给学生演示:逆时针转动形成角,顺时针转动而成角,转几圈也形成角,为推广角的概念做好准备)。
②象限角、坐标轴上的角的概念.由于角是一个平面图形,所以今后我们常在直角坐标系内讨论角,(板书)我们使角的顶点与原点重合,角的始边与x轴的非负半轴(包括原点)重合,那么角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.三、范例分析例1.判断下列各角是第几象限角. (借助多媒体课件展示)(1)—60°; (2)585°; (3)—950°12’.解:(1)∵—60°角终边在第四象限,∴它是第四象限角;(2)∵585°=360°十225°,∴585°与225°终边相同,又∵225°终边在第三象限,∴585°是第三象限角;(3)∵—950°12’=-230°12’—2×360°,又∵-230°12’终边在第二象限,∴—950°12’是第二象限角.例2.在直角坐标系中,写出终边在y轴上的角的集合(α用0°~360°的角表示).解:在0°~360°范围内,终边在y轴上的角有两个,即90°与270°角,因此,所有与90°角终边相同的角构成集合S1={β|β=90°+k·360°,k∈Z};所有与270°角终边相同的角构成集合S2={β|β=270°+k·360°,k∈Z};所以,终边在y轴上的角的集合S=S1∪S2={β|β=90°+k·360°,k∈Z}∪{β|β=270°+k·360°,k∈Z}.例3.写出与60°角终边相同的角的集合S,并把S中适合不等式-360°≤β<270°的元素β写出来.解:S={β|β=60°+k·360°,k∈Z},S中适合-360°≤β<270°的元素是:60°-1×360°=-300°,60°+0×360°=60°,60°+1×360°=420°.四.归纳小结1、通过范例分析讲解理解概念及公式;2、反思角定义的合理性?同时还有其它方法表示角吗分析特点和缺点。
§2角的概念的推广学习目标 1.理解正角、负角、零角与象限角的概念(重点).2.掌握终边相同的角的表示方法(难点).知识点1 角的概念(1)角的概念:角可以看成平面内一条射线绕着端点O从一个位置OA旋转到另一个位置OB 所形成的图形.点O是角的顶点,射线OA,OB分别是角α的始边和终边.(2)按照角的旋转方向,分为如下三类:(正确的打“√”,错误的打“×”)(1)按逆时针方向旋转所成的角是正角(√)(2)按顺时针方向旋转所成的角是负角(√)(3)没有作任何旋转就没有角对应(×)(4)终边和始边重合的角是零角(×)(5)经过1小时时针转过30°(×)知识点2 象限角如果角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.【预习评价】1.锐角属于第几象限角?钝角又属于第几象限角?提示锐角属于第一象限角,钝角属于第二象限角.2.第二象限的角比第一象限的角大吗?提示不一定.如120° 是第二象限的角,390°是第一象限的角,但120°<390°.知识点3 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任何一个与角α终边相同的角,都可以表示成角α与周角的整数倍的和.【预习评价】(正确的打“√”,错误的打“×”)(1)终边相同的角一定相等(×)(2)相等的角终边一定相同(√)(3)终边相同的角有无数多个(√)(4)终边相同的角它们相差180°的整数倍(×)题型一角的概念的推广【例1】写出下图中的角α,β,γ的度数.解要正确识图,确定好旋转的方向和旋转的大小,由角的概念可知α=330°,β=-150°,γ=570°.规律方法 1.理解角的概念的三个“明确”2.表示角时的两个注意点(1)字母表示时:可以用希腊字母α,β等表示,“角α”或“∠α”可以简化为“α”.(2)用图示表示角时:箭头不可以丢掉,因为箭头代表了旋转的方向,也即箭头代表着角的正负.【训练1】(1)图中角α=________,β=________;(2)经过10 min,分针转了________.解析(1)α=-(180°-30°)=-150°β=30°+180°=210°.(2)分针按顺时针转过了周角的16,即-60°.答案 (1)-150° 210° (2)-60° 题型二 终边相同的角 【例2】 已知α=-1 910°.(1)把α写成β+k ×360°(k ∈Z,0°≤β<360°)的形式,并指出它是第几象限角; (2)求θ,使θ与α的终边相同,且-720°≤θ<0°.解 (1)-1 910°=250°-6×360°,其中β=250°,从而α=250°+(-6)×360°,它是第三象限角.(2)令θ=250°+k ×360°(k ∈Z ),取k =-1,-2就得到满足-720°≤θ<0°的角, 即250°-360°=-110°,250°-720°=-470°. 所以θ为-110°,-470°.规律方法 将任意角化为α+k ·360°(k ∈Z ,且0°≤α<360°)的形式,关键是确定k .可用观察法(α的绝对值较小时适用),也可用除以360°的方法.要注意:正角除以360°,按通常的除法进行,负角除以360°,商是负数,且余数为正值. 【训练2】 写出终边在阴影区域内(含边界)的角的集合.解 终边在直线OM 上的角的集合为M ={α|α=45°+k ·360°,k ∈Z }∪{α|α=225°+k ·360°,k ∈Z }={α|α=45°+2k ·180°,k ∈Z }∪{α|α=45°+(2k +1)·180°,k ∈Z } ={α|α=45°+n ·180°,n ∈Z }.同理可得终边在直线ON 上的角的集合为{α|α=60°+n ·180°,n ∈Z }, 所以终边在阴影区域内(含边界)的角的集合为 {α|45°+n ·180°≤α≤60°+n ·180°,n ∈Z }.【探究1】 在四个角-20°,-400°,-2 000°,1 600°中,第四象限角的个数是( ) A .0 B .1 C .2D .3解析 -20°是第四象限角,-400°=-360°-40°与-40°终边相同,是第四象限角,-2 000°=-6×360°+160°与160°终边相同,是第二象限角,1 600°=4×360°+160°与160°终边相同,是第二象限角,故第四象限角有2个. 答案 C【探究2】 写出终边落在第一象限和第二象限内的角的集合.解 根据终边相同的角一定是同一象限的角,又可以先写出第一象限锐角范围和第二象限钝角的范围,再加上360°的整数倍即可. 所以表示为:第一象限角的集合:S ={β|β=k ·360°+α,0°<α<90°,k ∈Z },或S ={β|k ·360°<β<k ·360°+90°,k ∈Z }.第二象限角的集合:S ={β|β=k ·360°+α,90°<α<180°,k ∈Z },或S ={β|k ·360°+90°<β<k ·360°+180°,k ∈Z }.【探究3】 已知α为第二象限角,那么2α,α2分别是第几象限角?解 ∵α是第二象限角,∴90+k ×360°<α<180°+k ×360°,180°+2k ×360°<2α<360°+2k ×360°,k ∈Z .∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角.同理45°+k 2×360°<α2<90°+k2×360°,k ∈Z .当k 为偶数时,不妨令k =2n ,n ∈Z ,则45°+n ×360°<α2<90°+n ×360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z ,则225°+n ×360°<α2<270°+n ×360°,此时,α2为第三象限角.∴α2为第一或第三象限角. 【探究4】 已知α为第一象限角,求180°-α2是第几象限角.解 ∵α为第一象限角,∴k ·360°<α<k ·360°+90°,k ∈Z , ∴k ·180°<α2<k ·180°+45°,k ∈Z ,∴-45°-k ·180°<-α2<-k ·180°,k ∈Z ,∴135°-k ·180°<180°-α2<180°-k ·180°,k ∈Z .当k =2n (n ∈Z )时,135°-n ·360°<180°-α2<180°-n ·360°,为第二象限角;当k =2n +1(n ∈Z )时,-45°-n ·360°<180°-α2<-n ·360°,为第四象限角.∴180°-α2是第二或第四象限角.规律方法 1.象限角的判定方法(1)根据图像判定.利用图像实际操作时,依据是终边相同的角的概念,因为0°~360°之间的角与坐标系中的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内,在直角坐标平面内,0°~360°范围内没有两个角终边是相同的.2.α,2α,α2等角的终边位置的确定方法不等式法:(1)利用象限角的概念或已知条件,写出角α的范围. (2)利用不等式的性质,求出2α,α2等角的范围.(3)利用“旋转”的观点,确定角终边的位置.例如,如果得到k ×120°<α3<k ×120°+30°,k ∈Z ,可画出0°<α3<30°所表示的区域,再将此区域依次逆时针或顺时针转动120°(如图所示).易错警示 由α的范围确定2α的范围时易忽视终边在坐标轴上的情况.课堂达标1.-361°的终边落在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 因为-361°的终边和-1°的终边相同,所以它的终边落在第四象限,故选D. 答案 D2.设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( )A.A=B B.B=CC.A=C D.A=D解析直接根据角的分类进行求解,容易得到答案.答案 D3.将-885°化为α+k·360°(0°≤α<360°,k∈Z)的形式是________________.答案195°+(-3)×360°4.与-1 692°终边相同的最大负角是________.解析∵-1 692°=-5×360°+108°,∴与108°终边相同的最大负角为-252°.答案-252°5.如图所示,写出终边落在阴影部分的角的集合.解设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.课堂小结1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转量”决定角的“绝对值大小”.2.区域角的表示形式并不唯一,如第二象限角的集合,可以表示为{α|90°+k×360°<α<180°+k×360°,k∈Z},也可以表示为{α|-270°+k×360°<α<-180°+k×360°,k∈Z}.基础过关1.下列各组角中,终边相同的是( )A.495°和-495°B.1 350°和90°C.-220°和140°D.540°和-810°解析-220°=-360°+140°,∴-220°与140°终边相同.答案 C2.设A={小于90°的角},B={锐角},C={第一象限角},D={小于90°而不小于0°的角},那么有( )A.B C A B.B A CC.D A∩C) D.C∩D=B解析锐角、0°~90°的角、小于90°的角及第一象限角的范围,如下表所示.答案 D3.若α是第四象限角,则180°-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.答案 C4.已知角α=-3 000°,则与角α终边相同的最小正角是______.解析∵-3 000°=-9×360°+240°,∴与-3 000°角终边相同的最小正角为240°.答案240°5.在-180°~360°范围内,与2 000°角终边相同的角是______.解析因为2 000°=200°+5×360°,2 000°=-160°+6×360°,所以在-180°~360°范围内与2 000°角终边相同的角有-160°,200°两个.答案-160°,200°6.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.解 (1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与 -950°15′角终边相同的角是129°45′角,它是第二象限角.7.写出与25°角终边相同的角的集合,并求出该集合中满足不等式-1 080°≤β<-360°的角β.解 与25°角终边相同的角的集合为S ={β|β=k ·360°+25°,k ∈Z }. 令k =-3,则有β=-3×360°+25°=-1 055°,符合条件; 令k =-2,则有β=-2×360°+25°=-695°,符合条件; 令k =-1,则有β=-1×360°+25°=-335°,不符合条件. 故符合条件的角有-1 055°,-695°.能力提升8.以下命题正确的是( ) A .第二象限角比第一象限角大B .A ={α|α=k ·180°,k ∈Z },B ={β|β=k ·90°,k ∈Z },则ABC .若k ·360°<α<k ·360°+180°(k ∈Z ),则α为第一或第二象限角D .终边在x 轴上的角可表示为k ·360°(k ∈Z ) 解析 A 不正确,如-210°<30°.在B 中,当k =2n ,k ∈Z 时,β=n ·180°,n ∈Z . ∴AB ,∴B 正确.又C 中,α为第一或第二象限角或在y 轴的非负半轴上, ∴C 不正确.显然D 不正确. 答案 B9.集合M =⎩⎨⎧⎭⎬⎫x |x =k ·180°2±45°,k ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =k ·180°4±90°,k ∈Z ,则M 、P之间的关系为( ) A .M =P B .M P C .M PD .M ∩P =∅解析 对集合M 来说,x =(2k ±1)·45°,即45°的奇数倍;对集合P 来说,x =(k ±2)·45°,即45°的倍数. 答案 B10.已知角α、β的终边相同,那么α-β的终边在________.解析∵α、β终边相同,∴α=k·360°+β(k∈Z).∴α-β=k·360°,故α-β终边会落在x轴非负半轴上.答案x轴的非负半轴上11.若α为第一象限角,则k·180°+α(k∈Z)的终边所在的象限是第________象限.解析∵α是第一象限角,∴k为偶数时,k·180°+α终边在第一象限;k为奇数时,k·180°+α终边在第三象限.答案一或三12.求终边在直线y=x上的角的集合S.解因为直线y=x是第一、三象限的角平分线,在0°~360°之间所对应的两个角分别是45°和225°,所以S={α|α=k·360°+45°,k∈Z}∪{α|α=k·360°+225°,k ∈Z}={α|α=2k·180°+45°,k∈Z}∪{α|α=(2k+1)·180°+45°,k∈Z}={α|α=n·180°+45°,n∈Z}.13.(选做题)已知角α、β的终边有下列关系,分别求α、β间的关系式:(1)α、β的终边关于原点对称;(2)α、β的终边关于y轴对称.解(1)由于α、β的终边互为反向延长线,故α、β相差180°的奇数倍(如图1),于是α-β=(2k-1)·180°(k∈Z).(2)在0°~360°内,设α的终边所表示的角为90°-θ,由于α、β关于y轴对称(如图2),则β的终边所表示的角为90°+θ.于是α=90°-θ+k1·360°(k1∈Z),β=90°+θ+k2·360°(k2∈Z).两式相加得α+β=(2k+1)·180°(k∈Z).。
§2 角的概念的推广一、教学目标1、知识与技能:(1)推广角的概念,理解并掌握正角、负角、零角的定义;(2)理解象限角、坐标轴上的角的概念;(3)理解任意角的概念,掌握所有与α角终边相同的角(包括α角)的表示方法;(4)能表示特殊位置(或给定区域内)的角的集合;(5)能进行简单的角的集合之间运算。
2、过程与方法:类比初中所学的角的概念,以前所学角的概念是从静止的观点阐述,现在是从运动的观点阐述,进行角的概念推广,引入正角、负角和零角的概念;由于角本身是一个平面图形,因此,在角的概念得到推广以后,将角放入平面直角坐标系,引出象限角、非象限角的概念,以及象限角的判定方法;通过几个特殊的角,画出终边所在的位置,归纳总结出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。
3、情感态度与价值观:通过本节的学习,使同学们对角的概念有了一个新的认识;树立运动变化观点,学会运用运动变化的观点认识事物;揭示知识背景,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求。
二、教学重、难点重点: 理解正角、负角和零角和象限角的定义,掌握终边相同角的表示法及判断。
难点: 把终边相同的角用集合和符号语言正确地表示出来。
三、学法与教法在初中,我们知道最大的角是周角,最小的角是零角;通过回忆和类比初中所学角的概念,把角的概念进行了推广;角是一个平面图形,把角放入平面直角坐标系中以后,了解象限角的概念;通过角终边的旋转掌握终边相同角的表示方法;我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示,另外还有相同终边角的集合的表示等。
教法: 类比探究交流法。
四、教学过程(一)、创设情境,揭示课题同学们,我们在拧螺丝时,按逆时针方向旋转会越拧越松,按顺时针方向旋转会越拧越紧。
但不知同学们有没有注意到,在这两个过程中,扳手分别所组成的两个角之间又有什么关系呢?请几个同学畅谈一下,教师控制好时间,2-3分钟为宜。
这里面到底是怎么回事?这就是我们这节课所要学习的内容。
初中我们已给角下了定义,先请一个同学回忆一下当时是怎么定义的?我们把“有公共端点的两条射线组成的图形叫做角”,这是从静止的观点阐述的。
(二)、探究新知如果我们从运动的观点来看,角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
(先后用教具圆规和多媒体给学生演示:逆时针转动形成角,顺时针转动而成角,转几圈也形成角,为推广角的概念做好准备)1、正角、负角、零角的概念(打开课件第一版,演示正角、负角、零角的形成过程).我们规定:(板书)按逆时针方向旋转形成的角叫做正角,如图(见课件)。
一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角α.旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫α的顶点.按顺时针方向旋转形成的角叫做负角;如果一条射线没有作任何旋转,我们认为这时它也形成了一个角,并把这个角叫做零角,如果α是零角,那么α=0°。
钟表的时针和分针在旋转时所形成的角总是负角.为了简便起见,在不引起混淆的前提下,“角α”或“∠α”可以记成“α”。
过去我们研究了0°~360°范围的角.如图(见课件)中的角α就是一个0°~360°范围内的角(α=30°).如果我们将角α的终边OB继续按逆时针方向旋转一周、两周……而形成的角是多少度?是不是仍为30°的角?(用多媒体演示这一旋转过程,让学生思考;为终边相同角概念做准备).将终边OB旋转一周、两周……,分别得到390°,750°……的角.如果将OB继续旋转下去,便可得到任意大小的正角。
同样地,如果将OB按顺时针方向旋转,也可得到任意大小的负角(通过课件,动态演示这一无限旋转过程).这就是说,角度并不局限于0°~360°的范围,它可以为任意大小的角(与数轴进行比较).(打开课件第三版).如图(1)中的角为正角,它等于750°;(2)中,正角α=210°,负角β=—150°,γ=-660°.在生活中,我们也经常会遇到不在0°~360°范围的角,如在体操中,有“转体720°”(即“转体2周”),“转体1080°”(即“转体3周”)这样的动作名称;紧固螺丝时,扳手旋转而形成的角.角的概念经过这样的推广以后,就包括正角、负角和零角.2.象限角、坐标轴上的角的概念.由于角是一个平面图形,所以今后我们常在直角坐标系内讨论角,(板书)我们使角的顶点与原点重合,角的始边与x轴的非负半轴(包括原点)重合,那么角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.(打开课件第四版)例如图(1)中的30°、390°、-330°角都是第一象限角,图(2)中的300°、-60°角都是第四象限角;585°角是第三象限角.(板书)如果角的终边在坐标轴上,就认为这个角不属于任一象限.3.终边相同的表示方法.(返回课件第二版,在图(1)1(2)中分别以O为原点,直线0A为x轴建立直角坐标系,重新演示前面的旋转过程)在图(1)中,如果将终边OB按逆时针方向旋转一圈、两圈……,分别得到390°,750°……的角,这些角的终边与30°角的终边相同,只是转过的圈数不同,它们可以用30°角来表示,如390°=30°十360°,750°=30°十2×360°,……在图(2)中,如果将终边OB按顺时针方向旋转一圈、两圈……分别得到-330°,-690°……的角,这些角的终边与30°角终边也相同,也只是转过的圈数不同,它们也都可以用30°的角来表示,如-330°=30°-360°,-690°=30°—2×360°,……由此可以发现,上面旋转所得到的所有的角(记为β),都可以表示成一个0°到360°的角与k(k∈Z)个周角的和,即:β=30°十k·360°(k∈Z).如果我们把β的集合记为S,那么S={β|β=30°十k·360°,k∈Z}.容易看出:所有与30°角终边相同的角,连同30°角(k=0)在内,都是集合S的元素;反过来,集合S 的任一元素显然与30°角终边相同。
(三)、巩固深化,发展思维1、例题讲评例1.判断下列各角是第几象限角.(1)—60°;(2)585°; (3)—950°12’.解:(1)∵—60°角终边在第四象限,∴它是第四象限角;(2)∵585°=360°十225°,∴585°与225°终边相同,又∵225°终边在第三象限,∴585°是第三象限角;(3)∵ —950°12’=-230°12’—2×360°,又∵-230°12’终边在第二象限,∴—950°12’是第二象限角.例2.在直角坐标系中,写出终边在y轴上的角的集合(α用0°~360°的角表示).解:在0°~360°范围内,终边在y轴上的角有两个,即90°与270°角,因此,所有与90°角终边相同的角构成集合S1={β|β=90°+k·360°,k∈Z};所有与270°角终边相同的角构成集合S2={β|β=270°+k·360°,k∈Z};所以,终边在y轴上的角的集合S=S1∪S2={β|β=90°+k·360°,k∈Z}∪{β|β=270°+k·360°,k∈Z}.例3.写出与60°角终边相同的角的集合S,并把S中适合不等式-360°≤β<270°的元素β写出来.解:S={β|β=60°+k·360°,k∈Z},S中适合-360°≤β<270°的元素是:60°-1×360°=-300°,60°+0×360°=60°,60°+1×360°=420°.2.学生课堂练习:参考练习 (通过多媒体给题)。
(1) (口答)锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.(2)与—496°终边相同的角是,它是第象限的角,它们中最小正角是,最大负角是。
(3)时针经过3小时20分,则时针转过的角度为,分针转过的角度为。
(4)若α、β的终边关于x轴对称,则α与β的关系是;若α与β的终边关于y轴对称,则α与β的关系是;若α、β的终边关于原点对称,则α与β的关系是;若角α是第二象限角,则180°—α是第象限角。
[答案](1)是,不一定.(2)—496°十k·360°(k∈Z),三,240°,—136°.(3)—100°,—1200°.(4)α十β=k·360°(k∈Z);α十β=180°十k·360。
(k∈Z);α一β=180°十k·360°(k∈Z);一. (四)、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?你知道角是如何推广的吗?(2)象限角是如何定义的呢? 你熟练掌握具有相同终边角的表示了吗?(3)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(4)你在这节课中的表现怎样?你的体会是什么?(五)、布置作业: 习题1—2第2,3题.五、教后反思:。