2016-2017学年人教A版选修2-1 2.3.2双曲线的简单几何性质(1)学案
- 格式:doc
- 大小:91.00 KB
- 文档页数:2
2.3.2 双曲线的简单几何性质(第2课时)(杨军君)一、教学目标(一)学习目标1.掌握双曲线的几何性质,能利用几何性质解决实际问题;2.掌握直线与双曲线的位置关系的判断.(二)学习重点1.双曲线的几何性质;2.双曲线各元素之间的相互依存关系.(三)学习难点1.双曲线的离心率、渐近线问题;2.直线与双曲线位置关系.二、教学设计(一)预习任务设计1.预习任务(1)读一读:阅读教材第59页至第61页.(2)想一想:直线与双曲线的问题关系有哪些?如何判定?(3)写一写:与22221(0,0)x y a b a b-=>>共焦点的双曲线方程:22221()()x y a b λλ-=+-. 与22221(0,0)x y a b a b-=>>共渐近线的双曲线方程:2222x y a b λλ-=≠(0). 2.预习自测1.下面说法正确的是( )A.若直线与双曲线交于一点,则直线与双曲线相切.B.过点(1,0)A 作直线l 与双曲线221x y -=只有一个公共点,这样的直线可作2条.C.直线:l y x =与双曲线22:12y C x -=有两个公共点.D.过双曲线外一点可以作双曲线的两条不同切线.答案:C解析:【知识点】直线与双曲线的位置关系【解题过程】直线与双曲线交于一点,两者可能是相切,也可能是相交,故A 错误;过(10)A ,且与渐近线平行的直线也与双曲线221x y -=只有一个交点,故B 错误;过原点不能作任何直线与双曲线相切,故D 错误.点拨:直线与双曲线问题需注意考虑特殊情况,比如与渐近线平行的直线等等.(二)课堂设计1.知识回顾复习双曲线的几何性质:(1)范围:由双曲线的标准方程得,222210y x b a=-≥,进一步得:x a ≤-,或x a ≥.这说明双曲线在不等式x a ≤-,或x a ≥所表示的区域;(2)对称性:由以-x 代x ,以-y 代y 和-x 代x ,且以-y 代y 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x 轴和y 轴为对称轴,原点为对称中心;(3)顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴,焦点不在的对称轴叫做虚轴;(4)渐近线:直线b y x a =±叫做双曲线22221x y a b-=的渐近线; (5)离心率: 双曲线的焦距与实轴长的比ac e =叫做双曲线的离心率(e >1). 【设计意图】为准确地运用新知,作必要的铺垫.2.新知讲解探究一:方程与几何性质●活动① 师生互动,深入理解问题1:椭圆22464x y +=的焦点是?问题2:双曲线的一条渐近线方程是0x =,则可设双曲线方程为? 问题3:若双曲线与22464x y +=有相同的焦点,它的一条渐近线方程是。
双曲线的简单几何性质一、要点精讲1.双曲线的标准方程和几何性质2.等轴双曲线实轴和虚轴等长的双曲线叫做等轴双曲线,其标准方程为()022≠=-λλy x ,离心率2=e ,渐近线方程x y ±=。
3、共渐近线的双曲线系方程:与-22a x 22b y =1有相同渐近线的双曲线系方程可设为-22ax ()022≠=λλb y ,若0>λ,则双曲线的焦点在轴上;若0<λ,则双曲线的焦点在轴上。
4、共焦点的双曲线系方程:与-22ax 22b y =1焦点相同的双曲线系方程可设为()2222221,+x y k b k a a k b k -=<<-二、基础自测1.(15安徽)下列双曲线中,渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -=(C )2212y x -= (D )2212x y -= 2.(2013湖北)已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的 ( ) A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等3.(2013课标)已知双曲线2222:1x y C a b -=(0,0)a b >>,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =± D .y x =± 4.(15广东)已知双曲线C :12222=-b y a x 的离心率54e =,且其右焦点()25,0F ,则双曲线C 的方程为A .13422=-y x B.191622=-y x C.116922=-y x D. 14322=-y x 5.(2013湖南)设F 1、F 2是双曲线C,22221x y a b-=(a >0,b>0)的两个焦点。
§2.3.2双曲线的简单几何性质(1)
制作人:王亚丽 审核人:王凯 2016.12.5
【学习目标】
1. 理解并掌握双曲线的几何性质 【重点】双曲线的几何性质 【难点】双曲线的几何性质 一、自主学习
1.预习教材56-58页,完成下列问题
1.双曲线位于四条直线__________________________围成的矩形外。
2.线段2121,B B A A 分别称为双曲线的_______________,其长分别为__________。
3.参数c b a ,,的名称分别是______________________________________,在直角三角形________中可反映出它们的勾股关系,这说明以_____________为圆心,_______为半径画弧,可以确定焦点的位置。
4.双曲线离心率e 的范围是___________,离心率e 反映双曲线的_____________,当e 越大时,双曲线 越______;当e 越小时,双曲线 越______。
5
二、典型例题
1.求双曲线22169144-=y x 的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.
2.求双曲线的标准方程:
⑴实轴的长是10,虚轴长是8,焦点在x 轴上;
⑵离心率e =(5,3)M -;
⑶渐近线方程为23y x =±,经过点9
(,1)2
M -.
三、拓展探究
1.过双曲线的一个焦点2F 作垂直于实轴的直线,交双曲线于P 、Q ,1F 是另一焦点,若∠1
2
PFQ π
=,则双曲线的离心率e 等于( ).
1 B. C. 1 D. 2
2.设双曲线22
21(0)9
x y a a -
=>的渐近线方程为320,x y ±=则a 的值为( ) A .4 B .3 C .2 D .1
四.高考小测
1.(15北京理科)已知双曲线()2
2210x y a a
-=>0y +=,则a =
.
2. 【2015高考北京,文12】已知()2,0是双曲线2
2
21y x b
-=(0b >)
的一个焦点,则b = .
3. (15年安徽文科)下列双曲线中,渐近线方程为2y x =±的是( )
(A )22
14y x -= (B )2
214
x y -= (C )22
12y x -= (D )2
212
x y -=。