新课标最新北师大版2018-2019学年高中数学必修五《数列》单元练习题及答案解析
- 格式:docx
- 大小:349.81 KB
- 文档页数:13
,[学生用书单独成册])(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个数列中,既是无穷数列又是递增数列的是( ) A .1,12,13,14,…B .-1,2,-3,4,…C .-1,-12,-14,-18,…D .1,2,3,…,n解析:选C.A 为递减数列,B 为摆动数列,D 为有穷数列. 2.有穷数列1,23,26,29,…,23n +6的项数是( )A .3n +7B .3n +6C .n +3D .n +2解析:选C.此数列的次数依次为0,3,6,9,…,3n +6,为等差数列,且首项a 1=0,公差d =3,设3n +6是第x 项,3n +6=0+(x -1)×3,所以x =n +3.故选C.3.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…, 按此规律进行下去,6小时后细胞存活的个数是( )A .33个B .65个C .66个D .129个解析:选B.设开始的细胞数和每小时后的细胞数构成的数列为{a n }.则⎩⎪⎨⎪⎧a 1=2,a n +1=2a n -1,即a n +1-1a n -1=2.所以a n -1=1·2n -1,a n =2n -1+1,a 7=65.4.等差数列{a n }的公差不为零,首项a 1=1,a 2是a 1和a 5的等比中项,则数列的前10项之和是( ) A .90 B .100 C .145D .190解析:选B.设公差为d , 所以(1+d )2=1×(1+4d ), 因为d ≠0,所以d =2,从而S 10=100. 5.已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N +),则a 20=( ) A .0 B .- 3 C. 3D.32解析:选B.由a 1=0,a n +1=a n -33a n +1(n ∈N +), 得a 2=-3,a 3=3,a 4=0,…由此可知数列{a n }是周期变化的,周期为3, 所以a 20=a 2=- 3.6.设y =f (x )是一次函数,若f (0)=1,且f (1),f (4),f (13)成等比数列,则f (2)+f (4)+…+f (2n )等于( )A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4)解析:选A.设y =kx +b (k ≠0),因为f (0)=1,所以b =1.又因为f (1),f (4),f (13)成等比数列,所以(4k +1)2=(k +1)·(13k +1),所以k =2,所以y =2x +1.所以f (2)+f (4)+…+f (2n )=(2×2+1)+(2×4+1)+…+(2×2n +1)=2(2+4+…+2n )+n =2n 2+2n +n =n (2n +3).故选A.7.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项B .第12项C .第13项D .第6项解析:选C.162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项. 8.数列{a n }满足递推公式a n =3a n -1+3n-1(n ≥2),又a 1=5,则使得{a n +λ3n}为等差数列的实数λ等于( )A .2B .5C .-12D.12解析:选C.a 1=5,a 2=23,a 3=95,令b n =a n +λ3n,则b 1=5+λ3,b 2=23+λ9,b 3=95+λ27,因为b 1+b 3=2b 2, 所以λ=-12.9.近年来,我国最大的淡水湖鄱阳湖湖区面积逐年减少,江西省政府决定将原3万亩围垦区退垦还湖,计划2013年退垦还湖面积为3 000亩,以后每年退垦还湖面积比上一年增加20%,那么从2013年起到哪一年可以基本完成退垦还湖工作(参考数据:lg 3≈0.477 1,lg 1.2≈0.079 2)( )A .2015年B .2016年C .2017年D .2018年解析:选D.由题意可知每年退垦还湖面积依次构成一个等比数列,记为{a n },则首项a 1=3 000,公比q =1+20%=1.2,前n 项和S n =30 000,由3 000(1-1.2n)1-1.2=30 000,得1.2n=3,所以n =log 1.23=lg 3lg 1.2≈6,即到2018年可以基本完成退垦还湖工作,故选D. 10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10等于( )A .1 033B .1 034C .2 057D .2 058解析:选A.由已知可得a n =n +1,b n =2n -1,于是ab n =b n +1,因此ab 1+ab 2+…+ab 10=(b 1+1)+(b 2+1)+…+(b 10+1)=b 1+b 2+…+b 10+10=20+21+…+29+10=1-2101-2+10=1 033.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N +),则a 5=________;前8项的和S 8=________(用数字作答).解析:由a 1=1,a n +1=2a n (n ∈N +)知{a n }是以1为首项,以2为公比的等比数列,由通项公式及前n项和公式知a 5=a 1q 4=16,S 8=a 1(1-q 8)1-q =1·(1-28)1-2=255.答案:16 25512.设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项公式a n =________. 解析:因为a 1=2,a n +1=a n +n +1, 所以a n -a n -1=n ,a n -1-a n -2=n -1,a n -2-a n -3=n -2,…,a 3-a 2=3,a 2-a 1=2,a 1=2.将以上各式的两边分别相加,得a n =[n +(n -1)+(n -2)+(n -3)+…+2+1]+1=n (n +1)2+1.答案:n (n +1)2+113.数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________.解析:因为a n +1=11-a n,所以a n +1=11-a n =11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2, 所以周期T =(n +1)-(n -2)=3. 所以a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,所以a 1=12.答案:1214.已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,则通项为a n =82an 2+bn的数列{a n }的前n项和为________.解析:因为a ,b ,a +b 成等差数列, 所以2b =a +a +b ,故b =2a . 因为a ,b ,ab 成等比数列, 所以b 2=a 2b ,又b ≠0,故b =a 2, 所以a 2=2a ,又a ≠0,所以a =2,b =4,所以a n =82an 2+bn =84n 2+4n =2n (n +1)=2(1n -1n +1),所以{a n }的前n 项和S n =2(1-12+12-13+…+1n -1n +1)=2(1-1n +1)=2nn +1.答案:2nn +115.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号)解析:因为S 7>S 6,即S 6<S 6+a 7, 所以a 7>0.同理可知a 8<0. 所以d =a 8-a 7<0.又因为S 9-S 6=a 7+a 8+a 9=3a 8<0, 所以S 9<S 6.因为数列{a n }为递减数列,且a 7>0,a 8<0, 所以可知S 7为S n 中的最大项. 答案:①②④三、解答题(本大题共5小题,共55分.解答应写出必要的文字说明、证明过程或演算步骤) 16.(本小题满分10分)一个等比数列的前三项依次是a ,2a +2,3a +3,则-1312是否是这个数列中的一项?如果是,是第几项?如果不是,请说明理由.解:因为a ,2a +2,3a +3是等比数列的前三项,所以a (3a +3)=(2a +2)2, 解得a =-1或a =-4.当a =-1时,数列的前三项依次为-1,0,0,与等比数列定义矛盾,故a =-1舍去. 当a =-4时,数列的前三项依次为-4,-6,-9,则公比为q =32,所以a n =-4(32)n -1,令-4(32)n-1=-1312,即(32)n -1=278=(32)3.所以n -1=3,即n =4,所以-1312是这个数列中的第4项.17.(本小题满分10分)已知{a n }是公差不为零的等差数列,{b n }是各项都是正数的等比数列, (1)若a 1=1,且a 1,a 3,a 9成等比数列,求数列{a n }的通项公式; (2)若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.解:(1)由题意可设{a n }公差为d ,则d ≠0, 由a 1=1,a 1,a 3,a 9成等比数列得1+2d 1=1+8d1+2d ,解得d =1或d =0(舍去),故数列{a n }的通项公式为a n =1+(n -1)×1=n . (2)由题意可设{b n }公比为q ,则q >0,由b 1=1,且b 2,12b 3,2b 1成等差数列得b 3=b 2+2b 1,所以q 2=2+q ,解得q =2或q =-1(舍去),故数列{b n }的通项公式为b n =1×2n -1=2n -1.18.(本小题满分10分)已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N +)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a n b n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N +), 所以a n +1b n +1-a nb n=2,即c n +1-c n =2, 所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1. (2)由b n =3n -1知a n =c n b n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1·30+3·31+5·32+…+(2n -1)·3n -1,3S n =1·31+3·32+…+(2n -3)·3n -1+(2n -1)·3n,相减得-2S n =1+2·(31+32+…+3n -1)-(2n -1)·3n=-2-(2n -2)3n,所以S n =(n -1)3n+1.19.(本小题满分12分)某地现有居民住房的面积为a m 2,其中需要拆除的旧住房面积占了一半,当地有关部门决定在每年拆除一定数量旧住房的情况下,仍以10%的住房增长率建新住房.(1)如果10年后该地的住房总面积正好比目前翻一番,那么每年应拆除的旧住房总面积x 是多少(可取1.110≈2.6)?(2)在(1)的条件下过10年还未拆除的旧住房总面积占当时住房总面积的百分比是多少(保留到小数点后第1位)?解:(1)根据题意,可知1年后住房总面积为1.1a -x ; 2年后住房总面积为1.1(1.1a -x )-x =1.12a -1.1x -x ;3年后住房总面积为1.1(1.12a -1.1x -x )-x =1.13a -1.12x -1.1x -x ; …10年后住房总面积为1.110a -1.19x -1.18x -…-1.1x -x =1.110a -1.110-11.1-1x ≈2.6a -16x .由题意,得2.6a -16x =2a . 解得x =380a (m 2).(2)所求百分比为a2-380a ×102a =116≈6.3%.即过10年未拆除的旧房总面积占当时住房总面积的百分比是6.3%.20.(本小题满分13分)已知数列{a n }的前n 项和为S n ,点(n ,S n n )在直线y =12x +112上.数列{b n }满足b n +2-2b n +1+b n =0(n ∈N +),b 3=11,且其前9项和为153.(1)求数列{a n },{b n }的通项公式;(2)设c n =3(2a n -11)(2b n -1),数列{c n }的前n 项和为T n ,求使不等式T n >k57对一切n ∈N +都成立的最大正整数k 的值.解:(1)由已知得S n n =12n +112,所以S n =12n 2+112n .当n ≥2时,a n =S n -S n -1=12n 2+112n -12(n -1)2-112(n -1)=n +5; 当n =1时,a 1=S 1=6也符合上式. 所以a n =n +5.由b n +2-2b n +1+b n =0(n ∈N +)知{b n }是等差数列, 由{b n }的前9项和为153, 可得9(b 1+b 9)2=9b 5=153,得b 5=17,又b 3=11, 所以{b n }的公差d =b 5-b 32=3,b 3=b 1+2d ,所以b 1=5,所以b n =3n +2. (2)c n =3(2n -1)(6n +3)=12(12n -1-12n +1), 所以T n =12(1-13+13-15+…+12n -1-12n +1) =12(1-12n +1).因为n 增大,T n 增大, 所以{T n }是递增数列. 所以T n ≥T 1=13.T n >k 57对一切n ∈N +都成立,只要T 1=13>k57,所以k <19,则k max =18.。
一、选择题1.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51012.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( ) A .2B .-4C .2或-4D .43.某食品加工厂2019年获利20万元,经调整食品结构,开发新产品.计划从2020年开始每年比上一年获利增加20%,则从( )年开始这家加工厂年获利超过60万元.(已知lg 20.3010=,lg30.4771=) A .2024年B .2025年C .2026年D .2027年4.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知222,,a b c 成等差数列,则cos B 的最小值为( )A .12B .22C .34D .325.《张丘建算经》是我国北魏时期大数学家丘建所著,约成书于公元466485~年间,其记臷着这么一道题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同. 已知第一天织布5尺,30天其织布390尺,则该女子织布每天增加的尺数(不作近似计算)为( ) A .1629B .1627C .1113D .13296.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( ) A .1011B .910C .89D .27.数列{}n a 的通项公式是*1()(1)n a n n n =∈+N ,若前n 项的和为1011,则项数为( ).A .12B .11C .10D .98.已知函数()()f x x R ∈满足()()42f x f x -++=,若函数2xy x =-与()y f x =图象的交点为()()()1122,,,,,,n n x y x y x y ⋯,则()1niii x y =+=∑( )A .0B .nC .2nD .3n9.已知椭圆2222x y a b +=1(a>b>0)与双曲线2222x y m n-=1(m>0,n>0)有相同的焦点(-c ,0)和(c ,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是 ( ) ABC .14D .1210.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,下列说法错误的是( ) A .0d <B .110S >C .120S <D .67a a >11.若{}n a 是等比数列,其公比是q ,且546,,a a a -成等差数列,则q 等于( ) A .-1或2B .1或-2C .1或2D .-1或-212.设{}n a 为等比数列,给出四个数列:①{}2n a ,②{}2n a ,③{}2na ,④{}2log ||n a .其中一定为等比数列的是( ) A .①③B .②④C .②③D .①②二、填空题13.已知数列{}n a 的前n 项和为n S ,若11a =,22a =,0n a ≠,()111122n n n n n a n S a S nS +++--=-,其中2n ≥,且*n ∈N .设21n n b a -=,数列{}n b 的前n 项和为n T ,则100T =______.14.设数列{}n a 中12a =,若等比数列{}n b 满足1n n n a a b +=,且10101b =,则2020a =__. 15.已知等差数列{}n a 的首项是19-,公差是2,则数列{}n a 的前n 项和n S 的最小值是_______.16.设n S 是数列{}n a 的前n 项和,且112a =,110n n n a S S +++=,则2020S =______. 17.在数列{}n a 中,11a =()*1n =∈N;等比数列{}nb 的前n 项和为2n n S m =-.当n *∈N 时,使得n n b a λ≥恒成立的实数λ的最小值是_________.18.若数列}{n a2*3()n n n N =+∈,则n a =_______.19.已知下列结论:①若数列{}n a 的前n 项和21n S n =+,则数列{}n a 一定为等差数列.②若数列{}n a 的前n 项和21nn S =-,则数列{}n a 一定为等比数列.③非零实数,,a b c 不全相等,若,,a b c 成等差数列,则111,,a b c可能构成等差数列. ④非零实数,,a b c 不全相等,若,,a b c 成等比数列,则111,,a b c一定构成等比数列. 则其中正确的结论是_______.20.我们知道,斐波那契数列是数学史上一个著名数列,在斐波那契数列{}n a 中,()*12211,1,n n n a a a a a n ++===+∈N .用n S 表示它的前n 项和,若已知2020S m =,那么2022a =_______.三、解答题21.已知各项为正数的等比数列{}n a ,前n 项和为n S ,若2125,2,log a log a 成等差数列,37S =,数列{}n b 满足,11b =,数列11n n n b b a ++⎧⎫-⎨⎬⎩⎭的前n 项和为232n n+ (1)求{}n a 的公比q 的值;(2)求{}n b 的通项公式.22.已知{}n a 是公差不为0的等差数列,若1313,,a a a 是等比数列{}n b 的连续三项. (1)求数列{}n b 的公比; (2)若11a =,数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 和为n S 且99200nS >,求n 的最小值. 23.在公差为d 的等差数列{}n a 中,已知110a =,且1a ,222a +,35a 成等比数列. (1)求数列{}n a 的通项公式; (2)若0d <,93n n na b -=,求数列{}n b 的前n 项和n S . 24.已知数列n A :1a ,2a ,…,()2n a n ≥满足:①11a =;②()121,2,,1k ka k n a +==-.记()12n n S A a a a =+++.(1)直接写出()3S A 的所有可能值; (2)证明:()0n S A >的充要条件是0n a >; (3)若()0n S A >,求()n S A 的所有可能值的和.25.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.26.已知n S 为等差数列{}n a 的前n 项和,59a =,13169S =. (1)求数列{}n a 的通项公式; (2)设3nn na b =,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.2.B解析:B 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.3.C解析:C 【分析】本题根据题意各年获利构成一个等比数列,然后得到通项公式,根据题意可得出关于n 的不等式,解出n 的值,注意其中对数式的计算. 【详解】由题意,设从2019年开始,第n 年的获利为()n a n *∈N 万元,则数列{}n a 为等比数列,其中2019年的获利为首项,即120a =.2020年的获利为()2620120%205a =⋅+=⋅万元,2021年的获利为()223620120%205a ⎛⎫=⋅+=⋅ ⎪⎝⎭万元,∴数列{}n a 的通项公式为()16205n n n N a *-⎛⎫⋅⎪⎝⎭∈= ,由题意可得1620605n n a -⎛⎫=⋅> ⎪⎝⎭,即1635n -⎛⎫> ⎪⎝⎭,()65lg3lg3lg3lg30.47711log 3610lg6lg52lg 2lg3120.30100.47711lg lg 23lg 52n ∴->=====-+-⨯+-⨯-6.03166=>,8n ∴≥,∴从2026年开始这家加工厂年获利超过60万元.故选:C . 【点评】本题主要考查等比数列在实际生活中的应用,考查了等比数列的通项公式,不等式的计算,对数运算.属于中档题.4.A解析:A 【解析】分析:用余弦定理推论得222cos 2a c b B ac +-=.由222,,a b c 成等差数列,可得2222a c b += ,所以22222cos 24a c b a c B ac ac+-+==,利用重要不等式可得2221cos 442a c ac B ac ac +=≥=.详解:因为222,,a b c 成等差数列,所以2222a cb += . 由余弦定理推论得2222221cos 2442a cb ac ac B ac ac ac +-+==≥=当且仅当a c =时,上式取等号. 故选A .点睛:本题考查等差中项、余弦定理的推论、重要不等式等知识,考查学生的运算能力及转化能力.利用重要不等式、基本不等式求最值时,一定要判断能否取相等,不能相等时,应转化为函数求最值.5.A解析:A 【解析】由题设可知这是一个等差数列问题,且已知13030,390a S ==,求公差d .由等差数列的知识可得30293053902d ⨯⨯+=,解之得1629d =,应选答案A . 6.A解析:A 【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】 由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称, 则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =,且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++, 因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.7.C解析:C 【解析】分析:由已知,111(1)1n a n n n n ==-++,利用裂项相消法求和后,令其等于1011,得到n 所满足的等量关系式,求得结果.详解:111(1)1n a n n n n ==-++ ()n *∈N ,数列{}n a 的前n 项和11111(1)()()2231n S n n =-+-+⋯+-+ 1111n n n =-=++,当1011n S =时,解得10n =,故选C. 点睛:该题考查的是有关数列的问题,在解题的过程中,需要对数列的通项公式进行分析,选择相应的求和方法--------错位相减法,之后根据题的条件,建立关于n 的等量关系式,从而求得结果.8.D解析:D 【分析】由题意可得()()f x x R ∈的图像关于点()2,1对称,函数2xy x =-的图像也关于()2,1对称,然后利用对称性以及倒序相加法即可得出答案. 【详解】函数()()f x x R ∈满足()()42f x f x -++=,∴()f x 的图像关于点()2,1对称,而函数2xy x =-的图像也关于()2,1对称, 设123n x x x x >>>>121224n n x x x x -∴+=+==⨯= 121212n n y y y y -+=+==⨯=令121nin i xx x x ==++∑,则111ni n n i x x x x -==++∑,()()()1211124n i n n n i x x x x x x x n -==++++∴+=∑,12ni i x n =∴=∑令121nin i y y yy ==++∑,则111ni n n i y y y y -==++∑,()()()1211122n i n n n i y y y n y y y y -=∴=+++++=∑,1ni i n y =∴=∑()13ni i i x y n =+=∴∑,故选:D 【点睛】本题考查了函数的对称性应用,考查了倒序相加法求和,解题的关键是找出中心对称点,属于中档题.9.D解析:D 【解析】由题意可知2n 2=2m 2+c 2. 又m 2+n 2=c 2, ∴m=2c . ∵c 是a ,m 的等比中项, ∴2c am =,∴22ac c =, ∴12c e a ==.选D . 10.C解析:C 【分析】根据{}n a 是等差数列,且675S S S >>,变形为7666555567,,a a S S S S S a S a ++>++>>判断即可.【详解】数列{}n a 是等差数列675S S S >>,7666555567,,a a S S S S S a S a ++>++>>, 76670,0,0a a a a <>+>,所以0d <,()111116111102a a S a +==>, ()()11267121212022a S a a a ++==>,67a a >,故选:C 【点睛】本题主要考查等差数列的通项与前n 项和的关系及应用,还考查了转化求解问题的能力,属于中档题.11.A解析:A 【解析】分析:由546,,a a a -成等差数列可得5642a a a -+=,化简可得()()120q q +-=,解方程求得q 的值. 详解:546,,a a a -成等差数列,所以5642a a a -+=,24442a q a q a ∴-+=,220q q ∴--=,()()120q q ∴+-=,1q ∴=-或2,故选A.点睛:本题考查等差数列的性质,等比数列的通项公式基本量运算,属于简单题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用.12.D解析:D 【分析】 设11n n a a q -=,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【详解】 设11n n a a q-=,①,112=2n n a a q-,所以数列{}2n a 是等比数列;②,222222111=()n n n a a qa q --=,所以数列{}2n a 是等比数列;③,11112111211222=2,222n nn n n n n n a a q a a q a q a q a a q-------==不是一个常数,所以数列{}2n a 不是等比数列; ④,122122121log ||log |q |log ||log |q |n n n n a a a a ---=不是一个常数,所以数列{}2log ||n a 不是等比数列.故选D 【点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.二、填空题13.【分析】根据已知条件推导出数列从第三项开始奇数项成等差数列且公差为然后利用等差数列的求和公式可求得的值【详解】当且时由可得即可得①所以②②①得所以则则所以数列从第三项开始奇数项成等差数列且公差为故答 解析:9901【分析】根据已知条件推导出数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,然后利用等差数列的求和公式可求得100T 的值. 【详解】当2n ≥且*n ∈N 时,0n a ≠, 由()111122n n n n n a n S a S nS +++--=-,可得()()11112n n n n n a S S n S S ++-+-=-,即()1112n n n n a a a na ++++=, 可得12n n a a n ++=,①,所以,()2121n n a a n +++=+,②, ②-①得22n n a a +-=,所以,32224a a +=⨯=,则32a =,则3112a a -=≠, 所以,数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,21n n b a -=,10099982199299012T ⨯⨯=+⨯+=. 故答案为:9901. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.14.【分析】由变形可得进而由累乘法可得结合等比数列的性质即可得解【详解】根据题意数列满足即则有而数列为等比数列则则又由则故答案为:2【点睛】本题考查了等比数列的性质以及应用考查了累乘法求数列通项的应用及解析:【分析】 由1n n n a a b +=变形可得1n n n a b a +=,进而由累乘法可得202020192018201711ab b b b a =⋅⋅⋅⋅⋅,结合等比数列的性质即可得解. 【详解】根据题意,数列{}n b 满足1n n n a a b +=,即1n n na b a +=, 则有20202020201920182201920182017112019201820171a a a a ab b b b a a a a a ⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 而数列{}n b 为等比数列,则()2019201920182017110101b b b b b ⋅⋅⋅⋅⋅==,则202011a a =, 又由12a =,则20202a =. 故答案为:2. 【点睛】本题考查了等比数列的性质以及应用,考查了累乘法求数列通项的应用及运算求解能力,属于中档题.15.【分析】本题先求等差数列前n 项和再由此求出数列的前n 项和的最小值【详解】解:∵等差数列的首项是公差是2∴∴时数列的前n 项和的最小值是故答案为:【点睛】本题考查等差数列前n 项和的最小值的求法考查等差数解析:100-. 【分析】本题先求等差数列前n 项和()()22119220101002n n n S n n n n -=-+⨯=-=--,再由此求出数列{}n a 的前n 项和n S 的最小值. 【详解】解:∵等差数列{}n a 的首项是19-,公差是2, ∴()()22119220101002n n n S n n n n -=-+⨯=-=--,∴10n =时,数列{}n a 的前n 项和n S 的最小值是100-. 故答案为:100-. 【点睛】本题考查等差数列前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.16.【分析】代入再证明为等差数列继而求得的通项公式再计算即可【详解】因为所以两边同除以得:所以数列是以为首项1为公差的等差数列所以所以所以故答案为:【点睛】本题主要考查了根据递推公式证明等差数列的方法属 解析:12021【分析】代入11n n n a S S ++=-,再证明1n S ⎧⎫⎨⎬⎩⎭为等差数列,继而求得1n S ⎧⎫⎨⎬⎩⎭的通项公式再计算2020S 即可.【详解】因为110n n n a S S +++=,所以,11n n n n S S S S ++-=-, 两边同除以1n n S S +-得:1111n nS S +-=, 所以数列1n S ⎧⎫⎨⎬⎩⎭是以2为首项,1为公差的等差数列, 所以()1211n n n S =+-=+,所以11n S n =+, 所以202012021S = 故答案为:12021【点睛】本题主要考查了根据递推公式证明等差数列的方法,属于中档题.17.【分析】分别求出的通项再构建新数列求出最大项后可得实数的最小值【详解】因为故是以1为首项以1为公差的等差数列所以当时是等比数列也适合故即又恒成立等价于恒成立令则当时当时故【点睛】方法点睛:含参数的数解析:94【分析】分别求出{}n a 、{}n b 的通项,再构建新数列212n n n c -=,求出{}n c 最大项后可得实数λ的最小值. 【详解】()*1n=∈N,故是以1为首项,以1为公差的等差数列,()11n n=-⨯=,2*()na n n N∴=∈.当2n≥时,111(2)(2)2n n nn n nb S S m m---=-=---=,{}nb是等比数列,112b S m∴==-也适合12nnb-=,故21m-=即1m=,1*2()nnb n N-∴=∈.又n nb aλ≥恒成立等价于212nnλ-≥恒成立,2max max1()()2nnna nbλ-∴≥=,令212n nnc-=,则()2221121142222n n n n nnn n nc c--------=-=,当23n≤≤时,1-->n nc c,当4n≥时,1n nc c--<,故max39()4nc c==,94λ∴≥.【点睛】方法点睛:含参数的数列不等式的恒成立,可利用参变分离将参数的取值范围问题转化新数列的最值问题,后者可利用数列的单调性来处理.18.【分析】有已知条件可得出时与题中的递推关系式相减即可得出且当时也成立【详解】数列是正项数列且所以即时两式相减得所以()当时适合上式所以【点睛】本题考差有递推关系式求数列的通项公式属于一般题解析:()241n+【分析】有已知条件可得出116a=,2n≥时()()2*131()n n n N⋅⋅⋅=-+-∈,与题中的递推关系式相减即可得出()241na n=+,且当1n=时也成立.【详解】数列}{na2*3()n n n N=+∈4=,即116a=2n≥()()2*131()n n n N⋅⋅⋅+=-+-∈22n=+,所以()241na n=+(2n≥)当1n=时,116a=适合上式,所以()241na n=+【点睛】本题考差有递推关系式求数列的通项公式,属于一般题.19.②④【分析】①先求出再当时求出判断当时有判断①错误;②先求出再当时求出判断数列是以1为首项以2为公比的等比数列判断②正确;③先建立方程组再整理得与非零实数不全相等矛盾判断③错误;④先得方程整理得判断解析:②④ 【分析】①先求出12a =,再当2n ≥时求出21n a n =-,判断当1n =时有11n a a =≠,判断①错误;②先求出11a =,再当2n ≥时求出12n na ,判断数列{}n a 是以1为首项以2为公比的等比数列,判断②正确;③先建立方程组2112a c b a c ac a c b +⎧=+=⎪⎨⎪+=⎩,再整理得a b c ==与非零实数,,a b c 不全相等矛盾,判断③错误;④先得方程2b ac =,整理得2111()b a c=⨯,判断④正确. 【详解】①:数列{}n a 的前n 项和21n S n =+,当1n =时,211112a S ==+=,当2n ≥时,221(1)(1)121n n n a S S n n n -⎡⎤=-=+--+=-⎣⎦,当1n =时,11n a a =≠, 故①错误;②:数列{}n a 的前n 项和21n n S =-,当1n =时,111211a S ==-=, 当2n ≥时,111(21)(21)2nn n n n n a S S ---=-=---=,当1n =时,11n a a ==,且12nn a a -= 所以数列{}n a 是以1为首项,以2为公比的等比数列, 故②正确;③:若111,,a b c是等差数列,则211a c b a c ac+=+=, 因为,,a b c 成等差数列,则2a c b +=,则2112a cb ac ac a c b +⎧=+=⎪⎨⎪+=⎩,整理得a b c ==,与非零实数,,a b c 不全相等矛盾, 故③错误;④:因为非零实数,,a b c 不全相等,且,,a b c 成等比数列,所以2b ac =,则21111b ac a c==⨯, 则111,,a b c一定构成等比数列. 故④正确. 故答案为:②④. 【点睛】本题考查等差数列和等比数列的判断,是基础题.20.【分析】由已知利用累加法即可得到答案【详解】由已知各式相加得即又所以故答案为:【点睛】本题考查了累加求和方法斐波那契数列的性质考查了推理能力与计算能力属于中档题 解析:1m +【分析】由已知,123a a a +=,234,a a a +=202020212022a a a +=,利用累加法即可得到答案. 【详解】由已知,123a a a +=,234,a a a +=202020212022a a a +=,各式相加得1234202020222a a a a a a +++++=,即220202022a S a +=,又21a =,2020S m =,所以20221a m =+. 故答案为:1m + 【点睛】本题考查了“累加求和”方法、“斐波那契数列”的性质,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)2q ;(2)()121n n b n =-⋅+.【分析】(1)对正项的等比数列{}n a ,利用基本量代换,列方程组,解出公比q ; (2)设11n nn n b b d a ++-=,由题意分析、计算得 1n d n =+,从而得到()112n n n b b n +-=+⋅,用累加法和错位相减法求出 n b .【详解】(1)∵2125log ,2,log a a 成等差数列,∴ ()225215log log log 4a a a a +==,即132516a a a ==,又0,n a >34a ∴=,又37,S =21211147a q a a q a q ⎧=∴⎨++=⎩ 解得2q 或23q =-(舍).()2记11n n n n b b d a ++-=,当2n ≥时,()()221313122n n n n n d n -+-+=-=+又12d =也符合上式,1n d n ∴=+.而31322n n n a a --=⋅=,()112n n n b b n +∴-=+⋅,()()()21121321122322,)2(n n n n b b b b b b b b n n --∴=+-+-+⋯+-=+⋅+⋅+⋯+⋅≥, ()231222232122n n n b n n -∴=+⋅+⋅+⋅⋅⋅+-⋅+⋅两式相减得()2112222121n n n n b n n --=+++⋯+-⋅=-⋅-,()2)2(11,n n b n n ∴=-⋅+≥.而11b =也符合上式, 故()121nn b n =-⋅+.【点睛】(1) 等差(比)数列问题解决的基本方法:基本量代换; (2)数列求和常用方法:①公式法;②倒序相加法;③裂项相消法;④错位相减法. 22.(1)5;(2)50. 【分析】(1)利用基本量代换,求出12d a =,直接求出公比; (2)裂项相消法求出n S ,解不等式即可. 【详解】(1)设等差数列{}n a 的公差为d ,由1313,,a a a 是等比数列{}n b 的连续三项,得23113a a a =⋅,即()()2111212a d a a d +=⋅+,化简得2148d a d =.10,2d d a ≠∴=.设数列{}n b 的公比的公比为q ,则3111111245a a d a a q a a a ++====. (2)若11a =,则1111112,21,(21)(21)22121n n n d a n a a n n n n +⎛⎫==-==- ⎪-+-+⎝⎭,111112133557(21)(21)n S n n ⎫⎛=++++⎪ ⨯⨯⨯-⨯+⎝⎭111111111111233557212122121nn n n n ⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 由99200n S >,得9999,212002n n n >∴>+,故n 的最小值为50.【点睛】(1)等差(比)数列问题解决的基本方法:基本量代换;(2)数列求和的方法:公式法、裂项相消法、错位相减法、倒序相加法.23.(1) 11n a n =-+或46,n a n n N *=+∈;(2)51112423n n n S ⎛⎫=+-⨯ ⎪⎝⎭,n *∈N . 【分析】(1)由123,22,5a a a +成等比数列求得公差后可得通项公式n a ; (2)对23n b b b +++用错位相减法求和.【详解】解:(1)∵123,22,5a a a +成等比数列,∴()2231225a a a +=⋅,整理得2340d d --=,解得1d =-或4d =,当1d =-时,10(1)11n a n n =--=-+; 当4d =时,104(1)46n a n n =+-=+.所以11n a n =-+或46,n a n n N *=+∈.(2)设数列{}n a 前n 项和为n S , ∵0d <,∴1d =-,11n a n =-+23n nnb -=当1n =时,13n S =, 当2n ≥时,2341012233333n n n S -=++++⋅⋅⋅+ 令34122333n n T -=+++,则45111223333n n T +-=+++ 两式相减可得32345111112111122331333333313n n n n n n T -++⎛⎫- ⎪--⎝⎭=+++⋯+-=--整理可得11112423nn T ⎛⎫=+-⨯ ⎪⎝⎭, 则511,212423n n n S n ⎛⎫=+-⨯≥ ⎪⎝⎭ 且113S =满足上式, 综上所述:51112423n n n S ⎛⎫=+-⨯ ⎪⎝⎭,n *∈N . 【点睛】本题考查求等差数列的通项公式,分组(并项)求和法,错位相减法.数列求和的常用方法:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组(并项)求和法;(5)倒序相加法.24.(1)所有可能值是7-,5-,3-,1-,1,3,5,7;(2)证明见解析;(3)222n -.【分析】(1)根据递推关系式以及求和式子即可得出结果.(2)充分性:求出数列的通项公式,再利用等比数列的前n 和公式可证;必要性:利用反证法即可证明.(3)列出n A 中的项,得出数列的规律:每一个数列前1n -项与之对应项是相反数的数列,即可求解. 【详解】解:(1)()3S A 的所有可能值是7-,5-,3-,1-,1,3,5,7. (2)充分性:若0n a >,即12n n a .所以满足12n na ,且前n 项和最小的数列是1-,2-,4-,…,22n --,12n -.所以()211212422n n n a a a --++⋅⋅⋅+≥-+++⋅⋅⋅++211222112n n ---⋅=-+=-.所以()0n S A >.必要性:若()0n S A >,即120n a a a ++⋅⋅⋅+>.假设0n a <,即12n n a -=-.所以()()21121242210n n n n S A a a a --=++⋅⋅⋅+≤+++⋅⋅⋅+-=-<, 与已知()0n S A >矛盾. 所以()0n S A >.综上所述,()0n S A >的充要条件是0n a >.(3)由(2)知,()0n S A >可得0n a >.所以12n na .因为数列n A :1a ,2a ,…,()2n a n ≥中1a 有1-,1两种,2a 有2-,2两种,3a 有4-,4两种,…,1n a -有22n --,22n -两种,n a 有12n -一种,所以数列n A :1a ,2a ,…,()2n a n ≥有12n -个,且在这12n -个数列中,每一个数列都可以找到前1n -项与之对应项是相反数的数列. 所以这样的两数列的前n 项和是122n -⨯. 所以这12n -个数列的前n 项和是1122122222n n n ---⨯⨯⨯=. 所以()n S A 的所有可能值的和是222n -. 【点睛】关键点点睛:本题考查了等比数列的通项公式、求和公式,解题的关键是根据递推关系式得出数列n A 的通项公式,注意讨论,此题也考查了数列不等式、反证法在数列中的应用. 25.(1)11b =,22b =,33b =;(2)证明见解析;(3)证明见解析 【分析】(1)由{}n a 是单调递增数列可得1nn a b a =即可求出; (2)设1n a k +=,讨论n k B ≤,n n B k A <<和n k A ≥可证明;(3)设{}n b 的公比为q ,且1q ≥,显然1q =时满足;1q >时,由{}n A 是递增数列,{}n B 是递减数列,且{}n B 不能无限减少可得.【详解】 (1)2n a n =,可得{}n a 是单调递增数列,1,n n n a B A a ∴==,1111a b a ∴==,2212ab a ==,3313a b a ==, (2)设1n a k +=,nn nA bB =, 若n k B ≤,则+1nn n n nk A A b b B =≥=, 若n n B k A <<,则+1nn nn A b b B ==, 若n k A ≥,则+1n n n nn A kb b B B =≥=, 综上,1(1,2,3,)n n b b n +≥=;(3)设等比数列{}n b 的公比为q ,1111a b a ==,则1n n nn A b q B -==, 由(2)可得1n n b b +≥,则1q ≥, 当1q =时,1nnA B =,即n n A B =,此时{}n a 为常数列,则存在01n =,当0n n ≥时,n a ,1n a +,2n a +是等比数列;当1q >时,{}n A 是递增数列,{}n B 是递减数列,{}n a 是由正整数组成的无穷数列,则数列{}n a 必存在最小值,即存在正整数0n ,0n a 是数列{}n a 的最小值,则当0n n ≥时,0n n B a =,此时01n n nn n n A a b q B a -===,即01n n n a a q -=,故当0n n ≥时,n a ,1n a +,2n a +是等比数列;综上,存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +是等比数列.【点睛】本题考查数列单调性的有关判断,解题的关键是正确理解数列的变化情况,清楚{}n b 的变化特点.26.(1)21n a n =-;(2)113n nn T +=-. 【分析】(1)根据59a =,13169S =,利用等差数列的通项公式以及前n 项和公式求解. (2)由(1)得到2133n n n n a n b -==,利用数列求和的错位相减法求解. 【详解】 (1)因为()11313713131692a a S a +===,所以77513,24a d a a ==-=, 解得2d =,所以9(5)221n a n n =+-⋅=-. (2)由(1)得213n nn b -=, 则()231111135213333n nT n =⋅+⋅+⋅++-⋅, ()()23411111111352321333333n n n T n n +=⋅+⋅+⋅++-⋅+-, 两式相减得:()231211111221333333n nn T n +⎛⎫=++++-- ⎪⎝⎭,1111112193213313n n n -+⎛⎫- ⎪-⎝⎭=+--, 122233n n ++=-, 所以113n n n T +=-. 【点睛】方法点睛:求数列的前n 项和的方法(1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩; (2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.。
北师大版高中数学必修五课时作业10 数列的综合问题时间:45分钟 满分:100分一、选择题(每小题5分,共35分)1.公差不为零的等差数列{a n }中,a 2、a 3、a 6成等比数列,则其公比q 为( )A .1B .2C .3D .4【答案】 C【解析】 ∵等差数列{a n }中a 2、a 3、a 6成等比数列, ∴a 2a 6=a 23,即(a 1+d)(a 1+5d)=(a 1+2d)2⇒d(d +2a 1)=0, ∵公差不为零,∴d =-2a 1, ∴所求公比q =a 3a 2=a 1+2d a 1+d =-3a 1-a 1=3.2.已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为{a n }的前n 项和,则S 3-S 2S 5-S 3的值为( )A .2B .3 C.15 D .不存在 【答案】 A【解析】 由条件a 23=a 1a 4,∴(a 1+2d)2=a 1(a 1+3d),∴a 1d +4d 2=0, ∵d ≠0,∴a 1=-4d ,∴S 3-S 2S 5-S 3=a 3a 4+a 5=-2d -d=2. 3.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=( )A .1+ 2B .1- 2C .3+2 2D .3-2 2【答案】 C【解析】 本题主要考查等比数列等知识. 设a n =a 1q n -1,其中a 1>0,q>0, ∴2×12a 1q 2=a 1+2a 1q ,即q 2-2q -1=0,解得q =2+1,q =-2+1<0(舍去), a 9+a 10a 7+a 8=q 2=(2+1)2=3+2 2. 4.(2013·新课标Ⅱ理)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( )A.13 B .-13C.19 D .-19【答案】 C【解析】 本题考查了等比数列的前n 项和通项公式与运算能力.∵S 3=a 2+10a 1,∴a 1+a 2+a 3=a 2+10a 1,a 3=9a 1,又∵a 5=9,∴9=a 3·q 2=9a 1q 2,∴a 1q 2=1,由a 3=9a 1=a 1·q 2,∴q 2=9,故a 1=19.【点评】 解答本题充分运用了等比数列的通项公式和整体代换的方法.5.已知等比数列{a n }的通项公式为a n =2×3n -1,则由此数列的偶数项所组成的新数列的前n 项和S n 等于( )A .3n -1B .3(3n -1) C.9n -14D.39n -14【答案】 D【解析】 数列{a n }的偶数项是以a 2=6为首项,公比为9的等比数列,故新数列的前n 项和S n =69n -19-1=39n -14.6.已知正项数列{a n }为等比数列,且5a 2是a 4与3a 3的等差中项,若a 2=2,则该数列的前5项的和为( )A.3312 B .31C.314 D .以上都不正确 【答案】 B【解析】 设{a n }的公比为q ,q>0. 由已知得a 4+3a 3=2×5a 2=10a 2,即a 2q 2+3a 2q =10a 2,2q 2+6q =20,解得q =2或q =-5(舍去), 则a 1=1,所以S 5=a 11-q 51-q=11-251-2=31.7.(2013·福建理)已知等比数列{a n }的公比为q ,记b n =a m(n -1)+1+a m(n -1)+2+…+a m(n -1)+m ,c n =a m(n -1)+1·a m(n -1)+2·…·a m(n -1)+m (m ,n ∈N +),则以下结论一定正确的是( )A .数列{b n }为等差数列,公差为q mB .数列{b n }为等比数列,公比为q 2mC .数列{c n }为等比数列,公比为qm 2D .数列{c n }为等比数列,公比为qm m 【答案】 C【解析】 b n =a 1q m(n -1)+a 1q m(n -1)+1+…+a 1q m(n -1)+m -1=a 1q m(n -1)(1+q +…+q m -1)=a 1q m(n -1)·1-qm1-q ,∴b n +1b n =a 1q mn ·1-q m1-q a 1q m n -1·1-q m 1-q=q m, ∴{b n }是等比数列,公比为q m , c n =a 1q m(n -1)·a 1q m(n -1)+1·…·a 1q m(n -1)+m -1 =a m 1·qm 2(n -1)+m m -12,∴c n +1c n=a m 1qm 2n +1-1m m -12a m 1qm 2n -1m m -12=qm 2,∴{c n }是等比数列,公比为qm 2. 二、填空题(每小题5分,共15分)8.设公比为q(q>0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.【答案】 32【解析】 由已知S 4-S 2=3a 4-3a 2,即a 4+a 3=3a 4-3a 2,即2a 4-a 3-3a 2=0,两边同除以a 2得,2q 2-q -3=0,即q =32(q =-1舍去).9.已知数列{x n }满足lgx n +1=1+lgx n (n ∈N +),且x 1+x 2+x 3+…+x 100=1,则lg(x 101+x 102+…+x 200)=________.【答案】 100【解析】 由lgx n +1=1+lgx n (n ∈N +)得lgx n +1-lgx n =1, ∴x n +1x n=10,数列{x n }是公比为10的等比数列,∴x n +100=x n ·10100,x 101+x 102+…+x 200=10100(x 1+x 2+x 3+…+x 100)=10100,∴lg(x 101+x 102+…+x 200)=lg10100=100.10.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫作等和数列,这个常数叫作数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5,那么a 18的值为________,这个数列的前n 项和S n 的计算公式为________.【答案】 3 S n=⎩⎪⎨⎪⎧52n n =2k ,k ∈N+5n -12n =2k +1,k ∈N+.【解析】 本题是信息题,正确理解“新定义”,既要和相关知识联系又要考虑其特点.由题设a 1+a 2=a 2+a 3=…=a 17+a 18=…=a 2k -1+a 2k =a 2k +a 2k +1=5.∵a 1=2,∴a 2=3,a 3=2,a 4=3…当n 为奇数时a n =2,当n 为偶数时,a n =3.∴a 18=3. 当n 是偶数时,有n 2个2,n2个3,∴S n =n 2·2+n 2·3=52n.当n 为奇数时,有n -12个3,n +12个2,∴S n =n -12·3+n +12·2=5n -12.∴S n=⎩⎪⎨⎪⎧52n n =2k ,k ∈N+5n -12n =2k +1,k ∈N+.三、解答题(共50分,解答应写出必要的文字说明、证明过程或演算步骤)11.(15分)已知等差数列{a n },a 2=9,a 5=21. (1)求{a n }的通项公式;(2)令b n =2a n ,求数列{b n }的前n 项和S n .【解析】 (1)设数列{a n }的公差为d ,依题意得方程组⎩⎪⎨⎪⎧a 1+d =9,a 1+4d =21,解得a 1=5,d =4.所以{a n }的通项公式为a n =4n +1. (2)由a n =4n +1得b n =24n +1, 因为b n +1b n=24,所以{b n }是首项b 1=25,公比q =24的等比数列.于是得{b n }的前n 项和S n =2524n -124-1=3224n -115.12.(15分)已知数列{a n }的前n 项和S n =-12n 2+kn(其中k ∈N +),且S n 的最大值为8.(1)确定常数k ,并求a n ; (2)求数列{9-2a n2n }的前n 项和T n .【解析】 (1)当n =k ∈N +时,S n =-12n 2+kn 取最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,因此k =4, 从而a n =S n -S n -1=92-n(n ≥2).又a 1=S 1=72,所以a n =92-n.(2)因为b n =9-2a n 2n =n2n -1,T n =b 1+b 2+…+b n =1+22+322+…+n -12n -2+n2n -1,所以T n =2T n -T n =2+1+12+…+12n -2-n 2n -1=4-12n -2-n2n -1=4-n +22n -1. 13.(20分)(2013·江西理)正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n)=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1n +22a 2n,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N +,都有T n <564.【解析】 思路分析:(1)将已知S n 的关系式分解因式,先求出S n ,后求a n ;(2)化简b n 用放缩法求T n 的范围.(1)由S 2n -(n 2+n -1)S n -(n 2+n)=0,得[S n -(n 2+n)](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n.于是a 1=S 1=2,n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n.综上,数列{a n }的通项a n =2n. (2)证明:由于a n =2n ,b n =n +1n +22a 2n.则b n =n +14n 2n +22=116[1n 2-1n +22]. T n =116[1-132+122-142+132-152+…+1n -12-1n +12+1n2-1n +22]=116[1+122-1n +12-1n +22]<116(1+122)=564. 【点评】 本题考查了数列通项公式.裂项求和与放缩法证明不等式.考查了运算能力和逻辑思维能力.。
第一章DIYIZHANG数列§1数列1.1数列的概念课后篇巩固探究A组1.将正整数的前5个数作如下排列:①1,2,3,4,5;②5,4,3,2,1;③2,1,5,3,4;④4,1,5,3,2.则可以称为数列的是()A.①B.①②C.①②③D.①②③④解析:4个都构成数列.答案:D2.已知数列{a n}的通项公式为a n=1-(-1)n+1,则该数列的前4项依次为()A.1,0,1,0B.0,1,0,1C.1,0,1,0D.2,0,2,0解析:把n=1,2,3,4分别代入a n=1-(-1)n+1中,依次得到0,1,0,1.答案:B3.数列1,357,…的一个通项公式是()A.a n=22n-1B.a n=22n-1C.a n=22n+1D.a n=22n+1解析:1=12,4=22,9=32,16=42,1=2×1-1,3=2×2-1,5=2×3-1,7=2×4-1,故a n=22n-1.答案:A4.已知数列{a n}的通项公式a n=1n-1,若a k=1,则a2k=()A.199B.99 C.1143D.143解析:由a k=135得1k2-1=135,于是k=6(k=-6舍去).因此a2k=a12=1122-1=1.答案:C5.已知数列12,23,34,45,…,则三个数0.98,0.96,0.94中属于该数列中的数只有()A.1个B.2个C.3个D.以上都不对解析:由已知可得该数列的一个通项公式a n=nn+1.令a n=0.98,解得n=49,令a n=0.96,解得n=24,令a n=0.94,解得n=473∉N+.故只有0.98和0.96是该数列中的项.答案:B6.已知曲线y=x2+1,点(n,a n)(n∈N+)位于该曲线上,则a10=.解析:由题意知a n=n2+1,因此a10=102+1=101.答案:1017.数列3,3,15,21,33,…的一个通项公式是.解析:数列可化为3,9,15,21,27,…,即3×1,3×3,3×5,3×7,3×9,…,每个根号里面可分解成两数之积,前一个因式为常数3,后一个因式为2n-1,故原数列的通项公式为a n=3(2n-1)= 6n-3,n∈N+.答案:a n=6n-38.已知数列{a n}的通项公式a n=n+n+1,10-3是此数列的第项.解析:令n+n+1=10-3,得n+1−n=10-3,解得n=9.答案:99.写出下列各数列的一个通项公式:(1)4,6,8,10,…(2)12,34,78,1516,3132,…(3)2,-1,10,-17,26,-37,…(4)3,33,333,3 333,…解(1)各项是从4开始的偶数,所以a n =2n+2.(2)数列中的每一项分子比分母少1,而分母可写成21,22,23,24,25,…,2n ,故所求数列的通项公式可写为a n =2n -1n. (3)所给数列中正、负数相间,所以通项中必须含有(-1)n+1这个因式,忽略负号,将第二项1写成55,则分母可化为3,5,7,9,11,13,…,均为正奇数,分子可化为12+1,22+1,32+1,42+1,52+1,62+1,…,故其通项公式可写为a n =(-1)n+1·n 2+12n +1. (4)将数列各项写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n -1).10.已知数列{a n }的通项公式为a n =3n 2-28n.(1)写出数列的第4项和第6项;(2)问-49是不是该数列的一项?如果是,应是哪一项?68是不是该数列的一项呢?解(1)a 4=3×16-28×4=-64,a 6=3×36-28×6=-60.(2)设3n 2-28n=-49,解得n=7或n=73(舍去),∴n=7,即-49是该数列的第7项.设3n 2-28n=68,解得n=34或n=-2. ∵34∉N +,-2∉N +,∴68不是该数列的项. B 组1.数列2,-8,4,-32,…的通项公式是( )A.a n =2n (n ∈N +)B.a n =(-2)n 2n -1(n ∈N +) C.a n =(-2)n +1n +1(n ∈N +) D.a n =2n 2n -1(n ∈N +) 解析:将数列各项改写为222,-233,244,-255,…,观察数列的变化规律,可得a n =(-2)n +1n +1(n ∈N +).答案:C2.已知数列{a n}的通项公式a n=nn+1,则a n·a n+1·a n+2等于()A.nB.nC.n+1D.n+1解析:∵a n=n,a n+1=n+1,a n+2=n+2,∴a n·a n+1·a n+2=nn+3.答案:B3.根据下列5个图形中相应点的个数的变化规律,猜测第n个图形中有()个点.A.n2-n+1B.2n2-nC.n2D.2n-1解析:观察图中5个图形点的个数分别为1,1×2+1,2×3+1,3×4+1,4×5+1,故第n个图形中点的个数为(n-1)n+1=n2-n+1.答案:A4.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数a n与所搭三角形的个数n之间的关系式可以是.解析:∵a1=3,a2=3+2=5,a3=3+2+2=7,a4=3+2+2+2=9,…,∴a n=2n+1.答案:a n=2n+15.在数列5,10,17,a-b,…中,有序数对(a,b)可以是.解析:从上面的规律可以看出分母的规律是:1×3,2×4,3×5,4×6,…,分子的规律是:5,5+5,5+5+7,5+5+7+9,…,所以a+b=15,a-b=26,解得a=41,b=-11.答案:41,-116.导学号33194000已知数列{a n}的通项公式a n=a·2n+b,且a1=-1,a5=-31,则a3=.解析:由已知得2a+b=-1,32a+b=-31,解得a=-1,b=1,。
1.1 数列的概念课后篇巩固探究A组.①②③④.则5,4,3,2,1;14,1,5,3,2将正整数的前5个数作如下排列:2,1,5,3,4;1,2,3,4,5;)(可以称为数列的是①②③④①②③.①①② B.D A.C..个都构成数列解析:4D答案: a.a =)项依次为2已知数列{(}的通项公式为,则该数列的前4nn B.0,1,0,1 A.1,0,1,0D.2,0,2,0C.,0,0,.n==a 0,1,0,1解析:把中1,2,3,4分别代入,依次得到n B 答案: .),…的一个通项公式是3(数列1,=a=a B. A.nn==aa C.D.nn2222.=×-a=×=====×-×-=-=解析1,442,91,3,1634,1故2:111,71,32221,5 2n A:答案 =aa== aa.),若则的通项公式4{已知数列},(kknn2.143B.99C. DA..a=k=k=- )由:解析舍去66(于是,k=.a=a因此k122C 答案:... .) 已知数列96,0(,…,则三个数094598,0中属于该数列中的数只有B.2A.1个个D.个以上都不对 C.3=.a=.n=aa=.n=24,96,解析:由已知可得该数列的一个通项公式98,解得049,令令解得0nnn n=....=a. 0是该数列中的项故只有令009694,解得98和?N n+答案:B na=n.y=x+a∈N),位于该曲线上6)(已知曲线,(1,点则+n1022.a+=+=a=n 2.1101011,因此解析:由题意知n10101 答案:. .数列,3,3,7,…的一个通项公式是数列可化为,…,即,…,每个解析:n-1,故原数列的通项公式为后一个因式为2,根号里面可分解成两数之积前一个因式为常数3,=na.N∈,+n=a答案:n- a.a=. 8已知数列{}的通项公式3是此数列的第,则项nn-n=-.令3,9得3,解得:解析9答案:.写出下列各数列的一个通项公式: 9(1)4,6,8,10,…,…(2).---,…1,,,(3),(4)3,33,333,3 333,…a=n+.开始的偶数,所以22解(1)各项是从4nn54231故所求数列的通,…,2,(2)数列中的每一项分子比分母少1,而分母可写成2,2,2,2,2.=a项公式可写为nn+1-1)这个因式,忽略负号,将第二项1(3)所给数列中正、负数相间,所以通项中必须含有(成,则分母可化为3,5,7,9,11,13,…,均为正奇数写,分子可化为n+1222222.a=-++++++ 1)(1,31,…,故其通项公式可写为1,4·1,51,611,2n为,…,分母都是3,而分子分(4)将数列各项写别是n.-=na.a 3{已知数列28}的通项公式为10nn;n432.=-a---- 1,…,所以1,1010(101,101)1,10n26项4(1)写出数列的第项和第-? ?68问是不是该数列的一项呢49是不是该数列的一项?如果是,应是哪一项(2)=-×a=×-64,328解(1)1644a=×-×=-. 3636602862.n=--n=-n=∴n=n项49(舍去),是该数列的第73(2)设7,即2849,解得7或2.n=n=-n=n- 68,解得283设2或∵-2?N?N,, ++∴.不是该数列的项68B 组- -.)(,…的通项公式是,4,2,数列1.n nna=a=∈N) B.A.N(2()∈++nn=n=naa∈NN C.) D.(()∈++nn=na-.-将数列各项改写为,)∈,(N,…,观察数列的变化规律,解析:可得+n C:答案 a.a=aaa )·已知数列{}的通项公式等于·,则(2n+nn+nn21 D. B. C.A.===aa∵a,,解析:,n+nn+21=a.∴aa··n+nn+21B:答案.n . ()根据下列5个图形中相应点的个数的变化规律,猜测第个点3个图形中有22-nnn-n+ A.B.212n-n1D.2C.×+×+×+×+n个图形中点故第5个图形点的个数分别为1,1421,41,21,351,3:解析观察图中2n-n+=n-n+. 1)(11的个数为答案:A.用火柴棒按下图的方法搭三角形:4an之间的关系式可以则所用火柴棒数与所搭三角形的个数按图示的规律搭下去,n. 是∵a=a=+=a=++=a=+++=∴a=n+. 2322解析:9,…,3,7,3225,1322n4213a=n+1 答案:2n ab.. 5),…中在数列,有序数对(,可以是××××律规的子分6,…,5,44,33,2:1是律规的母分出看以可律规的面上从:析解.++++++9,…,7是:5,55,555 7,5b=-a=. ,所以解得:答案a=. 3n=-=-a=a+b.aaa则·261,,{导学号33194000已知数列且}的通项公式31,nn51解得:由已知得解析n3a=-+a=-+=-. 1,于是1即722n3-7:答案.mmm+. (有列的士兵队列(1)7≥2)行如图,···…·······…····……………………···…·······…·······…····m分别为2,3,4,5,6,…时队列中的士兵人数; (1)写出一个数列,用它表示当aa表示,,用;项(2)写出(1)中数列的第5,665aa; },中的数列记为{求该数列的通项公式(3)若把(1)nn aa.所表示的实际意义,并说明(4)求1010m=2时,表示2行3列,人数为6;解(1)当m=. 6,12,20,30,42,…依此类推,故所求数列为4列,人数为当12,3时,表示3行(2)队列的行数比数列的序号大1,因此第5项表示的是6行7列,第6项表示7行8列,a=a=.56故42,65.,猜想数列的通项公式(3)根据对数列的前几项的观察、归纳=×=×=×=×.a=n+n+. 4项分别为6621)(3,123因此4,202)4(5,305前n a=×=a.列的士兵队列中士兵的人数行132,12(4)由(3)知表示1111121010.aa=a=n. 2,通项公式是关于66,的一次函数中{33194001导学号8在数列},n171a;的通项公式求数列(1){}n a;求(2)2 017.a=am+akmk说明理由满足,N∈是否存在(3),,若不存在,的值,求出,若存在?kmm+1+a=kn+bka=a=66解(1)设得2,(,≠0),则由n171解得.=n-a 4所以2n.==×-a 422 0178 066(2)2 017k--m+=a+a=am-+2, (3)由1)得,42244(km+m1k-m=1, 整理后可得42k-kmm, 是奇数1N,所以4,2因为是偶数,∈+k-kmm=, 2成立1故不存在,,∈N使等式4+.+aakm=a ,N即不存在,∈使km+m1+。
北师大版高中数学必修五习题课(1)课时目标 1.熟练掌握等差数列的概念、通项公式、前n 项和公式,并能综合运用这些知识解决一些问题.2.熟练掌握等差数列的性质、等差数列前n 项和的性质,并能综合运用这些性质解决相关问题.1.若S n 是数列{a n }的前n 项和,则S n =a 1+a 2+…+a n ,a n =⎩⎪⎨⎪⎧n =1,n ≥2.2.若数列{a n }为等差数列,则有: (1)通项公式:a n =__________;(2)前n 项和:S n =______________=_________________________________________. 3.等差数列的常用性质(1)若{a n }为等差数列,且m +n =p +q(m ,n ,p ,q ∈N +),则______________________. (2)若S n 表示等差数列{a n }的前n 项和,则 S k ,S 2k -S k ,____________成等差数列.一、选择题1.在等差数列{a n }中,a 1+3a 8+a 15=120,则2a 9-a 10的值为( ) A .24 B .22 C .20 D .-82.等差数列{a n }的前n 项和为S n ,若a 3+a 7+a 11=6,则S 13等于( ) A .24 B .25 C .26 D .273.设数列{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( ) A .0 B .37 C .100 D .-374.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13等于( )A.120 B.105C.90 D.755.若{a n}为等差数列,S n为其前n项和,若a1>0,d<0,S4=S8,则S n>0成立的最大自然数n为( )A.11 B.12C.13 D.146.在等差数列{a n}中,a1=-2 008,其前n项和为S n,若S2 0082 008-S2 0062 006=2,则S2 012等于( )A.-2 012 B.2 012C.6 033 D.6 036二、填空题7.已知数列{a n}的前n项和S n=n2+n+1,则a6+a7+…+a10的值为________.8.设等差数列{a n}的前n项和为S n,若S p=S q(p,q∈N+且p≠q),则S p+q=________. 9.等差数列{a n}中,|a3|=|a9|,公差d<0,则使前n项和S n取得最大值的自然数n是______.10.已知数列{a n}中,a1=20,a n+1=a n+2n-1,n∈N+,则数列{a n}的通项公式a n=________.三、解答题11.甲、乙两物体分别从相距70 m的两处同时相向运动,甲第1分钟走2 m,以后每分钟比前1分钟多走1 m,乙每分钟走5 m.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走1 m,乙继续每分钟走5 m,那么开始运动几分钟后第二次相遇?12.已知公差大于零的等差数列{a n}的前n项和为S n,且满足:a3·a4=117,a2+a5=22.(1)求数列{a n}的通项公式a n;(2)若数列{b n}是等差数列,且b n=S nn+c,求非零常数c.能力提升13.在等差数列{a n}中,a10<0,a11>0,且|a10|<a11,S n为{a n}的前n项的和,则下列结论正确的是( )A.S1,S2,…,S10都小于零,S11,S12,…都大于零B.S1,S2,…,S5都小于零,S6,S7,…都大于零C.S1,S2,…,S20都小于零,S21,S22,…都大于零D.S1,S2,…,S19都小于零,S20,S21,…都大于零14.把自然数1,2,3,4,…按下列方式排成一个数阵.12 34 5 67 8 9 1011 12 13 14 15……………………………根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是______________.1.等差数列是最基本、最常见的数列,等差数列的定义是研究解决等差数列的判定和性质,推导通项公式、前n 项和公式的出发点.2.通项公式与前n 项和公式联系着五个基本量:a 1、d 、n 、a n 、S n .掌握好本部分知识的内在联系、结构,以便灵活运用.3.另外用函数观点和方法揭示等差数列的特征,在分析解决数列的综合题中有重要的意义.习题课(1) 答案知识梳理1.S 1 S n -S n -1 2.(1)a 1+(n -1)d (2)na 1+n(n -1)d 2 n(a 1+a n )2 3.(1)a m +a n =a p+a q (2)S 3k -S 2k 作业设计 1.A2.C [∵a 3+a 7+a 11=6,∴a 7=2,∴S 13=13(a 1+a 13)2=13a 7=26.]3.C [设数列{a n },{b n }的公差分别为d ,d ′,则a 2+b 2=(a 1+d)+(b 1+d ′)=(a 1+b 1)+(d +d ′)=100. 又∵a 1+b 1=100,∴d +d ′=0.∴a 37+b 37=(a 1+36d)+(b 1+36d ′)=(a 1+b 1)+36(d +d ′)=100.] 4.B [∵a 1+a 2+a 3=3a 2=15,∴a 2=5. ∵a 1=5-d ,a 3=5+d ,d>0, ∴a 1a 2a 3=(5-d)·5·(5+d)=80, ∴d =3,a 1=2.∴a 11+a 12+a 13=3a 12=3(a 1+11d)=3a 1+33d =3×2+33×3=105.] 5.A [S 4=S 8⇒a 5+a 6+a 7+a 8=0⇒a 6+a 7=0,又a 1>0,d<0,S 12=(a 1+a 12)·122=0,n<12时,S n >0.]6.D [S n n =a 1+(n -1)d2,∴S 2 0082 008-S 2 0062 006=a 1+2 008-12d -a 1-2 006-12d =d =2. ∴S 2 012=2 012×(-2 008)+2 012×2 0112×2=2 012×3=6 036.] 7.80解析 a 6+a 7+…+a 10=S 10-S 5=111-31=80. 8.0解析 设S n =an 2+bn ,由S p =S q . 知ap 2+bp =aq 2+bq ,∴p +q =-b a.∴S p +q =a(p +q)2+b(p +q)=a(-b a )2+b(-b a )=b 2a -b2a=0.9.5或6解析 d<0,|a 3|=|a 9|,∴a 3>0,a 9<0且a 3+a 9=0, ∴a 6=0,∴a 1>a 2>…>a 5>0,a 6=0,0>a 7>a 8>…. ∴当n =5或6时,S n 取到最大值. 10.n 2-2n +21解析 ∵a n +1-a n =2n -1, ∴a 2-a 1=1,a 3-a 2=3,…, a n -a n -1=2n -3,n ≥2.∴a n -a 1=1+3+5+…+(2n -3). ∴a n =20+(n -1)(2n -2)2=n 2-2n +21.11.解 (1)设n 分钟后第1次相遇,依题意, 有2n +n(n -1)2+5n =70,整理得n 2+13n -140=0. 解之得n =7,n =-20(舍去). 第1次相遇是在开始运动后7分钟. (2)设n 分钟后第2次相遇,依题意,有 2n +n(n -1)2+5n =3×70,整理得n 2+13n -420=0. 解之得n =15,n =-28(舍去). 第2次相遇是在开始运动后15分钟.12.解 (1)设等差数列{a n }的公差为d ,且d>0. ∵a 3+a 4=a 2+a 5=22,又a 3·a 4=117, 又公差d>0,∴a 3<a 4,∴a 3=9,a 4=13.∴⎩⎪⎨⎪⎧a 1+2d =9a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1d =4,∴a n =4n -3.(2)由(1)知,S n =n ·1+n(n -1)2·4=2n 2-n ,∴b n =S n n +c =2n 2-nn +c .∴b 1=11+c ,b 2=62+c ,b 3=153+c. ∵{b n }是等差数列,∴2b 2=b 1+b 3, ∴2c 2+c =0,∴c =-12 (c =0舍去).13.D [∵S 19=19(a 1+a 19)2=19a 10<0,S 20=20(a 1+a 20)2.而a 1+a 20=a 10+a 11,∵a 10<0,a 11>0且|a 10|<a 11, ∴a 10+a 11>0,∴S 20=20(a 1+a 20)2=10(a 10+a 11)>0.又∵d =a 11-a 10>0. ∴S n >0 (n ≥20).] 14.n 22-n 2+3解析 该数阵的第1行有1个数,第2行有2个数,…,第n 行有n 个数,则第n -1 (n ≥3)行的最后一个数为(n -1)(1+n -1)2=n 22-n 2,则第n 行从左至右的第3个数为n 22-n2+。
第2课时a n与S n的关系及裂项求和法课后篇巩固探究A组1.已知数列{a n}的前n项和S n=,则a5的值等于()A. B.- C. D.-解析:a5=S5-S4==-.答案:B2.已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为()A. B. C. D.解析:∵S5==15,∴a1=1,∴d=----=1,∴a n=1+(n-1)×1=n,∴.设的前n项和为T n,则T100=+…+=1-+…+=1-.答案:A3.设{a n}(n∈N+)是等差数列,S n是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0B.a7=0C.S9>S5D.S6和S7均为S n的最大值解析:由S5<S6得a1+a2+…+a5<a1+a2+…+a5+a6,∴a6>0.又S6=S7,∴a1+a2+…+a6=a1+a2+…+a6+a7,∴a7=0,故B正确;同理由S7>S8,得a8<0,又d=a7-a6<0,故A正确;由C选项中S9>S5,即a6+a7+a8+a9>0,可得2(a7+a8)>0.而由a7=0,a8<0,知2(a7+a8)>0不可能成立,故C错误;∵S5<S6,S6=S7>S8,∴S6与S7均为S n的最大值,故D正确.故选C.答案:C的前n项和S n为()4.数列-A.B.C.D.解析:-,-于是S n=---…-.答案:C5.设函数f(x)满足f(n+1)=(n∈N+),且f(1)=2,则f(20)为()A.95B.97C.105D.192解析:∵f(n+1)=f(n)+,∴f(n+1)-f(n)=.∴f(2)-f(1)=,f(3)-f(2)=,……f(20)-f(19)=,∴f(20)-f(1)= (95)又f(1)=2,∴f(20)=97.答案:B6.已知数列{a n}的前n项和S n=n2-9n,第k项满足5<a k<8,则k=.解析:a n=S n-S n-1=(n2-9n)-[(n-1)2-9(n-1)]=2n-10(n≥2 ,又a1=S1=-8符合上式,所以a n=2n-10.令5<2k-10<8,解得<k<9.又k∈N+,所以k=8.答案:87.设数列{a n}的前n项和为S n,S n=-,且a4=54,则a1=.解析:因为a4=S4-S3=--=27a1,所以27a1=54,解得a1=2.答案:2,…的前n项和S n=.8.数列1,,…,…解析:因为…==2-,所以S n=1++…+=…2---…-=2-.答案:9.正项数列{a n}满足-(2n-1)a n-2n=0.(1)求数列{a n}的通项公式a n;(2)令b n=,求数列{b n}的前n项和T n.解(1)由-(2n-1)a n-2n=0,得(a n-2n)(a n+1)=0,即a n=2n或a n=-1,由于{a n}是正项数列,故a n=2n.(2)由(1)知a n=2n,所以b n=-,故T n=--…--.10.导学号33194014已知等差数列{a n}的前n项和为S n,n∈N+,且a3+a6=4,S5=-5.(1)求a n;(2)若T n=|a1|+|a2|+|a3|+…+|a n|,求T5的值和T n的表达式.解(1)设{a n}的首项为a1,公差为d,易由a3+a6=4,S5=-5得出a1=-5,d=2.∴a n=2n-7.(2)当n≥4时,a n=2n-7>0;当n≤3时,a n=2n-7<0,∴T5=-(a1+a2+a3)+a4+a5=13.当1≤n≤3时,T n=-(a1+a2+…+a n)=-n2+6n;当n≥4时,T n=-(a1+a2+a3)+a4+a5+…+a n=n2-6n+18.综上所述,T n=-,,-,B组1.若等差数列{a n}的通项公式为a n=2n+1,则由b n=…所确定的数列{b n}的前n项之和是()A.n(n+2)B.n(n+4)C.n(n+5)D.n(n+6)解析:由题意知a1+a2+…+a n==n(n+2),∴b n==n+2.于是数列{b n}的前n项和S n=n(n+5).答案:C2.已知一个等差数列共n项,且其前四项之和为21,末四项之和为67,前n项和为286,则项数n为()A.24B.26C.25D.28解析:设该等差数列为{a n},由题意,得a1+a2+a3+a4=21,。
姓名,年级:时间:2.2等差数列的前n项和第一课时等差数列的前n项和一、非标准1。
设S n是等差数列{a n}的前n项和,已知a2=3,a6=11,则S7等于( )A。
13 B.35 C.49 D.63解析:S7==49.答案:C2。
设S n是等差数列{a n}的前n项和,S5=10,则a3的值为()A。
B.1C。
2 D.3解析:∵S5==5a3,∴a3=S5=×10=2.答案:C3.已知数列{a n}的通项公式为a n=2n-37,则S n取最小值时n的值为( )A.17B。
18C。
19 D.20解析:由≤n≤.∵n∈N+,∴n=18。
∴S18最小,此时n=18。
答案:B4.等差数列{a n}的前n项和为S n,已知a m-1+a m+1—=0,S2m—1=38,则m=( )A。
38B。
20 C.10 D.9解析:由a m—1+a m+1—=0,得2a m-=0,解得a m=2(a m=0舍去)。
又因为S2m-1=(2m-1)a m,所以38=(2m-1)×2,解得m=10.答案:C5.若两个等差数列{a n},{b n}的前n项和分别为A n与B n,且满足(n∈N+),则的值是( ) A。
B.C。
D.解析:由于,所以.答案:C6。
已知{a n}是等差数列,S n为其前n项和,n∈N+.若a3=16,S20=20,则S10的值为.解析:设等差数列{a n}的首项为a1,公差为d。
∵a3=a1+2d=16,S20=20a1+d=20,∴解得d=—2,a1=20,∴S10=10a1+d=200-90=110.答案:1107。
在等差数列{a n}中,前n项和为S n,若a9=3a5,则=.解析:S17=17a9,S9=9a5,于是×3=。
答案:8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差等于.解析:设公差为d,则有5d=S偶—S奇=30—15=15,于是d=3。
第2课时 等比数列的性质及应用课后篇巩固探究A 组1.在等比数列{a n }中,a 5=3,则a 2·a 8=( )A.3B.6C.8D.9解析:a 2·a 8=a 52=32=9.答案:D2.若1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1-a2b 2的值等于( ) A.-12B.12C.±12D.14解析:∵b 22=1×4=4,∴b 2=2或b 2=-2(舍去).又a 2-a 1=4-14-1=1,∴a 1-a2b 2=-12=-12.答案:A3.若互不相等的实数a ,b ,c 成等差数列,c ,a ,b 成等比数列,且a+3b+c=10,则a 等于( ) A.4B.2C.-2D.-4解析:由{2b =a +c ,a 2=bc ,a +3b +c =10,解得a=-4或a=2.又当a=2时,b=2,c=2,与题意不符,故a=-4. 答案:D4.在等比数列{a n }中,a 1=1,公比|q|≠1.若a m =a 1a 2a 3a 4a 5,则m=( ) A.9B.10C.11D.12解析:因为{a n }是等比数列,所以a 1a 5=a 2a 4=a 32,于是a 1a 2a 3a 4a 5=a 35.从而a m =a 35=(q 2)5=q 10=1×q 11-1,故m=11.答案:C5.在正项等比数列{a n }中,1a 2a 4+2a 42+1a 4a 6=81,则1a 3+1a 5等于( )A.19B.3C.6D.9解析:∵1a2a4+2a42+1a4a6=81,∴1a32+2a3a5+1a52=81,∴(1a3+1a5)2=81.∵数列各项都是正数,∴13+15=9.答案:D6.在等差数列{a n}中,公差d≠0,且a1,a3,a9成等比数列,则a1+a3+a9a2+a4+a10=. 解析:由题意知a3是a1和a9的等比中项,∴a32=a1a9,∴(a1+2d)2=a1(a1+8d),得a1=d,∴a1+a3+a9 a2+a4+a10=13d16d=1316.答案:13167.在1和100之间插入n个正数,使这(n+2)个数成等比数列,则插入的这n个正数的积为. 解析:设插入的n个正数为a1,a2,…,a n.设M=1·a1·a2·…·a n·100,则M=100·a n·a n-1·…·a1·1,∴M2=(1×100)n+2=100n+2,∴M=100n+22=10n+2,∴a1·a2·…·a n=10n.答案:10n8.导学号33194020在表格中,每格填上一个数字后,使每一横行成等差数列,每一纵行成等比数列,所有公比相等,则a+b+c的值为.解析:设公比为q,由题意知q=2,q2=c.第四行最后一个数为cq =c2b=bc2.因为每一行成等差数列,所以2×2=1+bc2,即bc=6.。
一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40423.已知数列{}n a 的前n 项和为n S ,且0n a >,n *∈N ,若数列{}n a 和{}n S 都是等差数列,则下列说法不正确的是( ) A .{}n n a S +是等差数列B .{}n n a S ⋅是等差数列C .{}2n a 是等比数列D .{}2n S 是等比数列4.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞5.设数列{}n a 满足12a =,26a =,且()*2122n n n a a a n N ++-+=∈,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122018232019a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=( )A .2018B .2019C .2020D .20216.在等差数列{}n a 中,0n a ≠,()21102n n n a a a n -+-+=≥,若2138n S -=,则n =( ).A .38B .20C .10D .97.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知222,,a b c 成等差数列,则cos B 的最小值为( )A .12B .2C .34D 8.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( ) A .2B .3C .269D .2599.记数列{}n a 前n 项和为n S ,若1,n a ,n S 成等差数列,且数列()()11211n n n a a a +++⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和n T 对任意的*n N ∈都有210n T λ-+≥恒成立,则λ的取值范围为( ) A .1,6⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .5,6D .(],1-∞10.已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A .1B .1-或2C .3D .1-11.如果数列{}n a 的前n 项和21()n n S a n N +=-∈,则5a =( ) A .8B .16C .32D .6412.已知数列{}n a 为等差数列,10a <且1231990a a a a +++⋅⋅⋅+=,设()*12n n n n b a a a n N ++=∈,当{}n b 的前n 项和n S 最小时,n 的值有( )A .5个B .4个C .3个D .2个二、填空题13.数列{}n a 中,1111,,21n n n a a a a --==+则n a =_____________.14.已知数列{}n a 的前n 项和为n S ,若121(2)n n S S n -=+≥且23S =,则55S a =_________. 15.已知等差数列{}n a 的前n 项和为n S ,若12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则2020S =_________. 16.在数列{a n }中,已知a 1=1,1(1)sin 2n n n a a π++-=,记S n 为数列{a n }的前n 项和,则S 2019=______17.设n S 是数列{}n a 的前n 项和,且112a =,110n n n a S S +++=,则2020S =______. 18.定义max{,}a b 表示实数,a b 中的较大的数.已知数列{}n a 满足1a a =2(0),1,a a >=122max{,2}()n n na a n N a *++=∈,若20154a a =,记数列{}n a 的前n项和为n S ,则2015S 的值为___________.19.记n S 为等差数列{}n a 的前n 项和,若22a =-,714S =,则10a =__________. 20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________.三、解答题21.已知()23f x x x =-,数列{}n a 前n 项和为n S ,且()n S f n =.(1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 满足43nn n a b =⨯,数列{}n b 的前n 项和为n T ,且对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,求实数m 的取值范围. 22.已知数列{}n a 为等差数列,其前n 项和为n S ,且244,22a S ==. (1)求{}n a 的通项公式﹔ (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 23.已知数列{}n a 满足11a =,1nn n a pa q +=+,(其中p 、q 为常数,*n N ∈).(1)若1p =,1q =-,求数列{}n a 的通项公式;(2)若2p =,1q =,数列1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T .证明:22n T n <+,*n N ∈.24.已知正项等比数列{}n a 的前n 项和为653,2,40n S a S S ==+. (1)求数列{}n a 的通项公式;(2)令2log 4n n b a =+,记数列{}n b 的前n 项和为n T ,求n T 的最大值.25.已知数列{}n a 的前n 项和为n S ,且n n S a 和2na 的等差中项为1.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设41log n n b a +=,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 26.已知数列{}n a 满足132a =,112n n a a -=-,2n ≥,*n N ∈.(1)证明:数列1{}1n a -为等差数列,并求数列{}n a 的通项公式; (2)若2n n n a c n =⋅,记数列{}nc 的前n 项和为n T ,求证:314n T ≤<.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥⎪⎝⎭,设272n nn c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,所以112nn n n n S S S S +--=+-, 故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=,则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n n S n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n nn c -=,则111252792222n nn n n n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项; 2.B解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.3.D解析:D 【分析】由题意,判断出数列{}n a 是公差为0的等差数列,然后分别利用等差数列的定义与等比数列的定义判断每个选项即可. 【详解】因为数列{}n a 和{}n S 都是等差数列,1n n n a S S -=-,所以可判断n a 为定值,所以数列{}n a 是公差为0的等差数列,即10n n a a --=.对A ,()()1111----++-=-+-=n n n n n n n n n a S a S S S a a a ,所以数列{}n n a S +是等差数列;对B ,1121----=⋅⋅⋅⋅-=n n n n n n n n n a S a S a S a S a ,所以数列{}n n a S ⋅是等差数列;对C ,222211-==n n n n a a a a ,所以数列{}2n a 是等比数列;对D ,设n a a =,则222,==n n S na S n a ,则221222222(1)(1)-==--n n n a n n a n S S ,所以数列{}2n S 不是等比数列. 故选:D 【点睛】解答本题的关键在于判断出数列{}n a 是公差为0的等差数列,然后结合等差数列的定义,等比数列的定义列式判断是否为等差或者等比数列.4.D解析:D 【分析】由2n n S a =-利用1112n n n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321n λ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.5.B解析:B 【分析】由2122n n n a a a ++-+=,可得()2112n n n n a a a a +++---=,214a a -=.利用等差数列的通项公式、累加求和方法、取整函数即可得出.【详解】2122n n n a a a ++-+=,()2112n n n n a a a a +++∴---=,214a a -=.{}1n n a a +∴-是等差数列,首项为4,公差为2. 142(1)22n n a a n n +∴-=+-=+.2n ∴≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋯⋯+-+(1)22(1)..2222(1)2n n n n n n +=+-+⋯+⨯+=⨯=+. 2(1)1n n n a n++∴=.∴当2n ≥时,2(1)11⎡⎤++⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦n n n a n . 222122018232019220172019a a a ⎡⎤⎡⎤⎡⎤∴+++=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 故选:B . 【点睛】本题考查了数列递推关系、等差数列的通项公式、累加求和方法、取整函数,考查了推理能力与计算能力,属于中档题.6.C解析:C 【分析】由2110n n n a a a -+-+=,可得2112n n n n a a a a -++==,得到2n a =,再根据等差数列的求和公式,得到2138(21)n n n S a --==,代入即可求解,得到答案. 【详解】由题意,等差数列{}n a 中,()21102n n n a a a n -+-+=≥,可得2112n n n n a a a a -++==,又0,n a ≠解得2n a =, 又由12121(21)()(2)3812n n n n a a n a S ---+==-=,即(21)823n -⨯=,解得10n =,故选C . 【点睛】本题主要考查了等差数列的性质,以及等差数列的求和公式的应用,其中解答中熟记等差数列的性质,求得2n a =和2138(21)n n n S a --==是解答本题的关键,着重考查了推理与运算能力,属于基础题.7.A解析:A 【解析】分析:用余弦定理推论得222cos 2a c b B ac +-=.由222,,a b c 成等差数列,可得2222a c b += ,所以22222cos 24a c b a c B ac ac+-+==,利用重要不等式可得2221cos 442a c ac B ac ac +=≥=.详解:因为222,,a b c 成等差数列,所以2222a cb += . 由余弦定理推论得2222221cos 2442a cb ac ac B ac ac ac +-+==≥=当且仅当a c =时,上式取等号. 故选A .点睛:本题考查等差中项、余弦定理的推论、重要不等式等知识,考查学生的运算能力及转化能力.利用重要不等式、基本不等式求最值时,一定要判断能否取相等,不能相等时,应转化为函数求最值.8.C解析:C 【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=, 解可得269k = 故选:C. 【点睛】本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.9.C解析:C 【分析】直接利用递推关系式的应用求出数列的通项公式,进一步利用裂项相消法的应用和分离参数法及函数的恒成立问题的应用求出参数的取值范围.数列{}n a 前n 项和为n S ,若1,n a ,n S 成等差数列, 所以21n n a S =+①, 当1n =时,11a =.当2n ≥时,1121n n a S --=+②,①﹣②得122n n n a a a --=,整理得12nn a a -=(常数), 所以数列{}n a 是以1为首项,2为公比的等比数列. 所以12n na .所以()()()()111122111121212121n n n n n n n n a a a +++++==-------,则1111111111337212121n n n n T ++=-+-++-=----. 由于对任意的*n N ∈都有210n T λ-+≥恒成立, 所以12n T λ+≥恒成立. 即()min 12n T λ+≥,当1n =时,()1min 5113n T T +=+=, 所以523λ≥,解得56λ≥, 所以5,6λ⎛⎤∈-∞ ⎥⎝⎦.故选:C 【点睛】本题主要考查了由递推关系式求数列的通项公式,考查了裂项求和以及恒成立问题,属于中档题.10.B解析:B 【分析】用等比数列的通项公式和等差中项公式求解. 【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q .故选B.本题考查等比数列与等差数列的综合运用.11.B解析:B 【分析】根据题意得到()21n n S a n N +=-∈,1121n n S a --=-(n 2≥),两式做差得到12n n a a -=,可得到数列的通项,进而得到结果.【详解】数列{}n a 的前n 项和()21n n S a n N +=-∈,1121n n S a --=-(n 2≥),两式做差得到12n n a a -=(n 2≥),由此可得到数列是等比数列,令n=1代入得到1121S a =-=1a ,解得1a =1,故得到数列通项为12n n a ,令n=5得到516.a =故答案为B. 【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知n S 和n a 的关系,求n a 表达式,一般是写出1n S -做差得通项,但是这种方法需要检验n=1时通项公式是否适用.12.B解析:B 【分析】根据等差数列的性质可知1000a ,从而判断数列{}n a 是单调递增数列,即可判断当{}n b 的前n 项和n S 最小时,n 可取的值. 【详解】数列{}n a 为等差数列,119921981002a a a a a ,1231990a a a a +++⋅⋅⋅+=,则1001990a ,即1000a ,10a <,可以判断数列{}n a 是单调递增数列,991010,0a a , 12n n n n b a a a ++=,12323412nn n n S a a a a a a a a a ,当{}n b 的前n 项和n S 最小时,n 可取的值为97,98,99,100共4个. 故选:B. 【点睛】本题主要考查等差数列的性质,属于中档题.二、填空题13.【分析】对两边取到数可得从而可得数列是等差数列求出数列的通项公式即可求出【详解】因为所以即又所以数列是以为首项2为公差的等差数列所以所以故答案为:【点睛】本题主要考查取到数构造新数列同时考查等差数列 解析:121n - 【分析】 对1121n n n a a a --=+两边取到数可得1112n n a a --=,从而可得数列1{}n a 是等差数列,求出数列1{}na 的通项公式,即可求出n a . 【详解】 因为1121n n n a a a --=+,所以11121112n n n n a a a a ---+==+,即1112n n a a --=,又111a , 所以数列1{}na 是以1为首项,2为公差的等差数列, 所以11(1)221n n n a =+-⨯=-,所以121n a n =-. 故答案为:121n - 【点睛】本题主要考查取到数构造新数列,同时考查等差数列的概念及通项公式,属于中档题.14.【分析】先计算出数列的前两项分别为和由题意可知可得再结合得数列是首项为公比为的等比数列然后利用等比数列的相关公式计算【详解】由①得则所以得:②②-①得:即又成立所以数列是首项为公比为的等比数列则故故解析:3116.【分析】先计算出数列{}n a 的前两项分别为1和2,由题意可知()1121212n n nn S S S S n +-=+⎧⎨=+≥⎩可得()122n na n a +=≥,再结合212aa =得数列{}n a 是首项为1,公比为2的等比数列,然后利用等比数列的相关公式计算55S a . 【详解】由121(2)n n S S n -=+≥ ①得12121213S S a =+=+=,则11a =,所以2212a S a =-=,得:121n n S S +=+②,②-①得:()122n n a a n +=≥,即()122n na n a +=≥ 又212a a =成立,所以数列{}n a 是首项为1,公比为2的等比数列, 则4451216a a q =⋅==,()()55151********a q S q-⨯-===--,故553116Sa =. 故答案为:3116【点睛】本题考查利用递推关系式求解数列的通项公式,考查等比数列的通项公式、求和公式的应用,较简单.15.【分析】先证明当共线且则根据题意可求得的值然后利用等差数列求和公式可求得的值【详解】当共线时则共线可设所以又则由于(向量不平行)共线则由等差数列的求和公式可得故答案为:【点睛】本题考查等差数列求和同 解析:1010【分析】先证明当A 、C 、B 共线且OB mOA nOC =+,则1m n +=,根据题意可求得12020a a +的值,然后利用等差数列求和公式可求得2020S 的值. 【详解】当A 、C 、B 共线时,则AB 、AC 共线,可设AB AC λ=, 所以,()OB OA OC OA λ-=-,()1OB OA OC λλ∴=-+, 又OB mOA nOC =+,则()11m n λλ+=-+=,由于12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则120201a a +=,由等差数列的求和公式可得()120202020202020201101022a a S +⨯===.故答案为:1010. 【点睛】本题考查等差数列求和,同时也考查了三点共线结论的应用,考查计算能力,属于中等题.16.1010【分析】推导出从而得到数列是一个以4为周期的数列由此能求出的值【详解】数列中;可以判断所以数列是一个以4为周期的数列故答案为:1010【点睛】本题考查数列的求和考查数列的周期性三角函数性质等解析:1010 【分析】 推导出1(1)sin2n n n a a π++=+,从而得到4n n a a +=,数列{}n a 是一个以4为周期的数列,由此能求出2019S 的值. 【详解】数列{}n a 中,11a =,1(1)sin2n n n a a π++-=, 1(1)sin2n n n a a π++∴=+, 21sin 1a a π∴=+=,323sin1102a a π=+=-=, 43sin 20a a π=+=,545sin0112a a π=+=+=, 511a a ∴==;可以判断4n n a a +=,所以数列{}n a 是一个以4为周期的数列.201945043=⨯+,20191234122504()504(1100)1101010S a a a a a a a ∴=⨯++++++=⨯++++++=,故答案为:1010. 【点睛】本题考查数列的求和,考查数列的周期性、三角函数性质等基础知识,意在考查学生对这些知识的理解掌握水平.17.【分析】代入再证明为等差数列继而求得的通项公式再计算即可【详解】因为所以两边同除以得:所以数列是以为首项1为公差的等差数列所以所以所以故答案为:【点睛】本题主要考查了根据递推公式证明等差数列的方法属 解析:12021【分析】代入11n n n a S S ++=-,再证明1n S ⎧⎫⎨⎬⎩⎭为等差数列,继而求得1n S ⎧⎫⎨⎬⎩⎭的通项公式再计算2020S 即可.【详解】因为110n n n a S S +++=,所以,11n n n n S S S S ++-=-, 两边同除以1n n S S +-得:1111n nS S +-=,所以数列1n S ⎧⎫⎨⎬⎩⎭是以2为首项,1为公差的等差数列, 所以()1211n n n S =+-=+,所以11n S n =+, 所以202012021S = 故答案为:12021【点睛】本题主要考查了根据递推公式证明等差数列的方法,属于中档题.18.7254【分析】参数进行分类讨论由已知求出数列的前几项从中发现是以5为周期的再根据求得的值可得答案【详解】由题意当时因此是周期数列周期为所以不合题意当时同理是周期数列周期为所以故答案为:【点睛】本题解析:7254 【分析】参数a 进行分类讨论,由已知求出数列的前几项,从中发现是以5为周期的,再根据20154a a =求得a 的值可得答案.【详解】 由题意34a a=,当2a ≥时,44a =,52a a =,6a a =,71a =,因此{}n a 是周期数列,周期为5,所以2015524a a a a ==≠,不合题意,当02a <<时,48a a=,54a =,6a a =,71a =,同理{}n a 是周期数列,周期为5,所以2015544a a a ===,1a =,1234518a a a a a ++++=,2015403187254S =⨯=.故答案为:7254. 【点睛】本题考查新定义问题,考查周期数列的知识,解决此类问题常采取从特殊到一般的方法,可先按新定义求出数列的前几项(本题由12,a a 依次求出34567,,,,a a a a a ),从中发现周期性的规律,本题求解中还要注意由新定义要对参数a 进行分类讨论.解决新定义问题考查的学生的阅读理解能力,转化与化归的数学思想,即把新定义的“知识”、“运算”等用我们已学过的知识表示出来,用已学过的方法解决新的问题.19.14【分析】本题先求再求即可解题【详解】解:因为数列是等差数列所以解得所以故答案为:14【点睛】本题考查等差数列的基本量法是基础题解析:14 【分析】本题先求1a 、d ,再求10a 即可解题. 【详解】解:因为数列{}n a 是等差数列,22a =-,714S =所以217127(71)7142a a d S a d =+=-⎧⎪⎨⨯-=+=⎪⎩,解得142a d =-⎧⎨=⎩, 所以101914a a d =+= 故答案为:14 【点睛】本题考查等差数列的基本量法,是基础题.20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数. 【详解】7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)24n a n =-;(2)11,,1224⎛⎫⎛⎫+∞⋃-∞- ⎪ ⎪⎝⎭⎝⎭.【分析】(1)易知23n S n n =-,再利用通项与前n 项和关系11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求解.(2)易得2424323n n n n n b --==⨯⨯,1160b =-<,20b =,3n ≥时,0n b >,则n T 的最小值为16-,再根据对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,由()min 16mf x ⎡⎤->⎣⎦求解. 【详解】(1)因为()23f x x x =-,()n S f n =,所以23n S n n =-,当2n ≥时,()()21131n S n n -=---,124n n n a S S n -=-=-, 当1n =时,112a S ==-,也满足24n a n =-, 故24n a n =-.(2)因为24n a n =-,43nn na b =⨯, 所以2424323n n n n n b --==⨯⨯,1160b =-<,20b =, 当3n ≥时,0n b >,故12T T =为n T 的最小值,n T 的最小值为16-, 因为对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立, 所以()min 16mf x ⎡⎤->⎣⎦, 因为[]2,4x ∈,()2239324f x x x x ⎛⎫=-=-- ⎪⎝⎭,所以()[]2,4f x ∈-, 当0m >时,()min 16mf x ⎡⎤->⎣⎦,即126m ->-,解得112m >; 当0m <时,()min16mf x ⎡⎤->⎣⎦,即146m ->,解得124m <-, 0m =时,106->,显然不成立. 故实数m 的取值范围为11,,1224⎛⎫⎛⎫+∞⋃-∞- ⎪ ⎪⎝⎭⎝⎭.【点睛】结论点睛:不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .22.(1)32n a n =-;(2)31n nT n =+.【分析】(1)设等差数列{}n a 的公差为d ,解方程组114434222a d a d +=⎧⎪⎨⨯+=⎪⎩可求d 的值,进而可得{}n a 的通项公式﹔(2)11n n n b a a +=()()1111323133231n n n n ⎫⎛==- ⎪-+-+⎝⎭,利用裂项求和即可求解. 【详解】(1)设等差数列{}n a 的公差为d ,由题意知114434222a d a d +=⎧⎪⎨⨯+=⎪⎩,解得113a d =⎧⎨=⎩, 所以()13132n a n n =+-=-. (2)()()111111323133231n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭12n n T b b b111111134473231n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111331n ⎛⎫=- ⎪+⎝⎭31n n =+ 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.23.(1)()*1(1)2nn a n N --=∈;(2)证明见解析. 【分析】(1)1p =,1q =-,已知条件可得1(1)nn n a a +-=-,利用累加法及等比数列的求和公式,计算可求数列{}n a 的通项公式;(2)2p =,1q =,121n n a a +=+,化简可得1121n n a a ++=+,通过等比数列的通项公式求得()*21n n a n N =-∈,化简可得11212222n n n n a a +=+≤+-,放缩后,通过分组求和可证得结果. 【详解】(1)∵1p =,1q =-,∴1(1)n n n a a ++-=,即1(1)nn n a a +-=-,∴当2n ≥:12111221(1)(1)(1)n n n n n n a a a a a a ------+-++-=-+-++-,得1(1)12n n a a -+-=,∴11a =,∴1(1)2nn a --=,当1n =:11a =也符合上式,故()*1(1)2n n a n N --=∈(或1,0,n n a n ⎧=⎨⎩为奇数为偶数).(2)∵2p =,1q =,∴121n n a a +=+,∴()1121n n a a ++=+,即1121n n a a ++=+,∴{}1n a +是以2为首项,2为公比的等比数列, ∴12nn a +=,即()*21n n a n N =-∈.又1112122122221112122n n n n n n n n a a +++--+===+≤+---, ∴11122221221212n n n T n n n -⎛⎫≤+=+-<+ ⎪⎝⎭-, 综上说述:()*22n T n n N <+∈.【点睛】方法点睛:数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和 (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和. 24.(1)1322nn a -=;(2)最大值为64.【分析】(1)已知条件用1a 和公比q 表示后解得1,a q ,得通项公式;(2)由(1)求得n b ,由0n b ≥求得n T 最大时的n 值,再计算出最大的n T . 【详解】解:(1)设数列{}n a 的公比为(0)q q >,由62a =,有512a q =①,又由5340S S =+,有4540a a +=,得341140a q a q +=②,①÷②有21120q q =+,解得14q =或15q =-(舍去),由14q =,可求得1112a =,有111113211224n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭,故数列{}n a 的通项公式为1322nn a -=;(2)1322log 24172nn b n -=+=-,若0n b ,可得172n ,可得当18n 且*n ∈N 时0n b >;当9n 且*n ∈N 时0n b <, 故8T 最大,又由115b =,可得887158(2)642T ⨯=⨯+⨯-=, 故n T 的最大值为64. 【点睛】思路点睛:本题考查求等比数列通项公式,求等差数列前n 项和最大值,求等差数列前n 项和的最大值方法:数列{}n b 是等差数列,前n 项和为n T , (1)求出前n 项和n T 的表达式,利用二次函数的性质求得最大值;(2)解不等式0n b ≥,不等式的解集中最大的整数n 就是使得n T 最大的n 值,由此可计算出最大的n T (注意n b =0时,1n n T T -=).25.(Ⅰ)2nn a =;(Ⅱ)22n nT n =+. 【分析】(Ⅰ)利用等差中项的定义得出n S 与n a 的关系,然后由1(2)n n n a S S n -=-≥得出数列{}n a 的递推关系,求出1a 其为等比数列,从而得通项公式;(Ⅱ)用裂项相消法求和n T . 【详解】解:(Ⅰ)因为n n S a 和2na 的等差中项为1,所以22n n nS a a +=,即22n n S a =-, 当2n 时,1122n n S a --=-.两式相减得1122n n n n S S a a ---=-,整理得12n n a a -=.在22n n S a =-中,令1n =得12a =,所以,数列{}n a 是以2为首项,2为公比的等比数列, 因此1222n n n a -=⨯=.(Ⅱ)411log 2n n n b a ++==. 则114114(1)(2)12+⎛⎫==- ⎪++++⎝⎭n n b b n n n n . 所以11111111244233412222n n T n n n n ⎛⎫⎛⎫=⨯-+-++-=⨯-= ⎪ ⎪++++⎝⎭⎝⎭. 【点睛】方法点睛:本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 26.(1)证明见解析,21n n a n +=+;(2)证明见解析. 【分析】(1)根据已知,表示出1111111n n n n a a a a -----=-=,然后代入11111n n a a ----计算可得1,所以证明出数列1{}1n a -是等差数列,求出首项,利用等差数列通项公式计算;(2)表示出1211(1)22(1)2n n n n n c n n n n -+==-⋅+⋅⋅+⋅,然后利用裂项相消法计算前n 项和n T ,再判断出数列的单调性,即可证明. 【详解】(1)当132a =时,因为112n n a a -=-,1111111n n n n a a a a -----=-=,所以1111111111111111n n n n n n n a a a a a a a ---------=--==---,所以数列1{}1n a -为首项为111a -,公差为1的等差数列. 又132a =,1121a =-,所以111n n a =+-,解得21n n a n +=+. (2)因为21n n a n +=+,所以1211(1)22(1)2n n n n n c n n n n -+==-⋅+⋅⋅+⋅. 所以121n n n T c c c c -=++⋅⋅⋅++1121111111112222322(1)2(1)2n n nn n n -=-+-+⋅⋅⋅+-=-⋅⋅⋅⋅+⋅+⋅, 即11(1)2n nT n =-+⋅,显然1n T <,另一方面, 111111121(1)0(1)222(1)2(1)2n n n n n n n n T T n n n n n n ---+-=---=-=>+⋅⋅⋅+⋅⋅+⋅, 故数列{}n T 是递增数列,所以134n T T ≥=,因此,314n T ≤<. 【点睛】常见的数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和. (4)裂项相消:用于通项为分式形式的数列的求和.。
北师大版高中数学必修五数列 综合练习第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分).1.“公差为0的等差数列是等比数列”;“公比为21的等比数列一定是递减数列”;“a ,b ,c 三数成等比数列的充要条件是b 2=ac ”;“a ,b ,c 三数成等差数列的充要条件是2b=a+c ”,以上四个命题中,正确的有 ( )A .1个B .2个C .3个D .4个2.已知数列{a n }中,a n =1562+n n(n ∈N),则数列{a n }的最大项是( ) A .第12项B .第13项C .第12项或13项D .不存在3.在等差数列中,前n 项的和为S n ,若S m =2n,S n =2m,(m 、n ∈N 且m ≠n),则公差d 的值为( )A .-mn n m )(4+ B .-)(4n m mn+C .-mnn m )(2+ D .-)(2n m mn+4.如果128,,,a a a 为各项都大于零的等差数列,公差0d ≠,则( ) A .5481a a a a > B .5481a a a a <C .1845a a a a +>+D .5481a a a a =5.已知等差数列}{n a 中,1,16497==+a a a ,则12a 的值是 ()A .15B .30C .31D .646.a 、b ∈R ,且|a|<1,|b|<1,则无穷数列:1,(1+b)a ,(1+b+b 2)a 2,…,1+b+b 2+…+b n -1)a n -1…的和为 ( )A .)1)(1(1b a -- B .ab -11C .)1)(1(2ab a --D .)1)(1(1ab a --7.若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m ,则m 的范围是()A .(1,2)B .(2,+∞)C .[3,+∞)D .(3,+∞)8.已知二次函数y=a(a+1)x 2-(2a+1)x+1,当a=1,2,…,n ,…时,其抛物线在x 轴上截得的线段长依次为d 1,d 2,…,d n ,…,则lim ∞→n (d 1+d 2+…+d n )的值是( )A .1B .2C .3D .49.若数列{a n }前8项的值各异,且a n+8=a n 对任意n ∈N *都成立,则下列数列中可取遍{a n }前8项值的数列为( )A .{a 2k+1}B .{a 3k+1}C .{a 4k+1}D .{a 6k+1}10.根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n (万件)近似地满足S n =90n(21n -n 2-5)(n=1,2,……,12),按此预测,在本年度内,需求量超过1.5万件的月份是( )A .5月、6月B .6月、7月C .7月、8月D .8月、9月11.在数列{a n }中,如果存在非零常数T ,使得a m+T =a m 对于任意的非零自然数m 均成立,那么就称数列{a n }为周期数列,其中T 叫数列{a n }的周期。
已知数列{x n }满足x n+1=|x n –x n-1|(n ≥2),如果x 1=1,x 2=a(a ∈R ,a ≠0),当数列{x n }的周期最小时,该数列前2005项的和是( )A .668B .669C .1336D .133712.一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是 ( )第Ⅱ卷二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)。
13.作边长为a 的正三角形的内切圆,在这个圆内作新的内接正三角形,在新的正三角形内再作内切圆,如此继续下去,所有这些圆的周长之和及面积之和分别为________.14.在直角坐标系中,O 是坐标原点,P 1(x 1,y 1)、P 2(x 2,y 2)是第一象限的两个点,若1,x 1,x 2,4依次成等差数列,而1,y 1,y 2,8依次成等比数列,则△OP 1P 2的面积是________.15.设等比数列}{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q的值为.16.数列}{n a 中,)2(3,311≥==-n a a n a n ,求2006a 的末位数字是.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。
17.(12分)已知函数13)(+=x xx f ,数列{}n a 满足).)((,111*+∈==N n a f a a n n(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记13221++++=n n n a a a a a a S ,求n S .18.(12分)已知S n =1+3121++…+n1,(n ∈N *),设f(n)=S 2n+1-S n+1,试确定实数m 的取值范围,使得对于一切大于1的自然数n ,不等式:f(n)>[log m (m -1)]2-2011[log (m -1)m ]2恒成立.19.(12分)已知数列:,}{且满足的各项都是正数n a .),4(,21,110N n a a a a n n n ∈-==+ (Ⅰ)证明;,21N n a a n n ∈<<+ (Ⅱ)求数列}{n a 的通项公式a n .20.(12分)设,20781102++=a a M ,2+=a P a Q 226-=,若将P Q M lg lg lg ,,适当排序后可构成公差为1的等差数列{}n a 的前三项. (Ⅰ)求a 的值及{}n a 的通项公式;(Ⅱ)记函数()*++∈++=N n a x a x a x f n n n 2122)(的图象在x 轴上截得的线段长为n b ,设)(4113221n n n b b b b b b T -+++=,求n T21.(12分)设数列{}n a 的前n 项和为n S ,已知1231611a a a ===,,,且 1(58)(52)123n n n S n S An B n +--+=+=,,,,, 其中A B ,为常数. (Ⅰ)求A 与B 的值;(Ⅱ)证明:数列{}n a 为等差数列;(Ⅲ)证明:不等式51mn m n a a a ->对任何正整数m n ,都成立.22.(14分)已知数列{x n }的各项为不等于1的正数,其前n 项和为S n ,点P n 的坐标为(x n ,S n ),若所有这样的点P n (n=1,2,…)都在斜率为k 的同一直线(常数k ≠0,1)上.(Ⅰ)求证:数列{x n }是等比数列;(Ⅱ)设y n =log n x (2a 2-3a+1)满足y s =121+t ,y t =121+s (s,t ∈N ,且s ≠t )共中a 为常数,且1<a<23,试判断,是否存在自然数M ,使当n>M 时,x n >1恒成立?若存在,求出相应的M ;若不存在,请说明理由.参考答案: 一、选择题1.A ;2.C ;3.A ;4.B ;5.A ;6.D ;7.B ;8.A ;9.B ;10.C ;11.D ;12.A ; 二、填空题 13.周长之和233πa ,面积之和9πa 2;14.1;15.-2;16.7; 三、解答题17.分析:由于{b n }和{c n }中的项都和{a n }中的项有关,{a n }中又有S 1n +=4a n +2,可由S 2n +-S 1n +作切入点探索解题的途径. 解析:(Ⅰ)由已知得,131+=+n n n a a a , ∴3111+=+nn a a ,即3111=-+nn a a∴数列⎭⎬⎫⎩⎨⎧n a 1是首项11=a ,公差3=d 的等差数列. ∴233)1(11-=⨯-+=n n a n,故)(231*∈-=N n n a n (Ⅱ) ∵)131231(31)13)(23(11+--=+-=+n n n n a a n n13221++++=n n n a a a a a a S )13)(23(1741411+-++⨯+⨯=n n )]131231()7141()411[(31+--++-+-=n n 13)1311(31+=+-=n nn 。
18.解:∵S n =1+3121++…+n1(n ∈N *) 0)421321()421221(42232122121321221)()1(1213121)(112>+-+++-+=+-+++=+-+++=-+++++++=-=∴++n n n n n n n n n n n f n f n n n S S n f n n 又 ∴f(n+1)>f(n)∴f(n)是关于n 的增函数 ∴f(n) min =f(2)=209321221=+++ ∴要使一切大于1的自然数n ,不等式 f(n)>[log m (m -1)]2-2011[log (m -1)m ]2恒成立 只要209>[log m (m -1)]2-2011[log (m -1)m ]2成立即可 由⎩⎨⎧≠->-≠>11,011,0m m m m 得m >1且m ≠2此时设[log m (m -1)]2=t 则t >0于是⎪⎩⎪⎨⎧>->02011209t t解得0<t <1由此得0<[log m (m -1)]2<1 解得m >251+且m ≠2。
19.解:(1)方法一用数学归纳法证明:1°当n=1时,,23)4(21,10010=-==a a a a∴210<<a a ,命题正确. 2°假设n=k 时有.21<<-k k a a 则)4(21)4(21,1111k k k k k k a a a a a a k n ---=-+=--+时 ).4)((21))((21)(211111k k k k k k k k k k a a a a a a a a a a ---=+---=-----而.0,04.0111<-∴>--<----k k k k k k a a a a a a又.2])2(4[21)4(2121<--=-=+k k k k a a a a ∴1+=k n 时命题正确.由1°、2°知,对一切n ∈N 时有.21<<+n n a a方法二:用数学归纳法证明:1°当n=1时,,23)4(21,10010=-==a a a a ∴2010<<<a a ;2°假设n=k 时有21<<-k k a a 成立,令)4(21)(x x x f -=,)(x f 在[0,2]上单调递增,所以由假设 有:),2()()(1f a f a f k k <<-即),24(221)4(21)4(2111-⨯⨯<-<---k k k k a a a a也即当n=k+1时21<<+k k a a 成立,所以对一切2,1<<∈+k k a a N n 有 (2)下面来求数列的通项:],4)2([21)4(2121+--=-=+n n n n a a a a 所以 21)2()2(2--=-+n n a ann n n n n n n n b b b b b a b 22212122222112)21()21(21)21(2121,2-+++----==⋅-=--=-=-= 则令, 又b n =-1,所以1212)21(22,)21(---=+=-=nn n n n b a b 即20.解:(Ⅰ)依题意有132<<-a ,=-P M ,020580102>++a a =-Q M ,018183102>++a a M ∴最大.又a Q P 324+-=-,当82<<-a 时,Q P Q P Q P =∴=+<10.lg 1lg ,,.21=∴a满足.lg 1lg Q M +=21=∴a 符合题意.当138<<a 时,P Q Q P Q P =∴+=>10.lg 1lg ,,.786=∴a但此时不满足.lg 1lg P M +=.786≠∴a{}n a ∴的前三项为M Q P lg lg lg ,,,此时.21=a ∴.2lg 21)1(lg -=⨯-+=n n P a n(Ⅱ)0)(221=∴+=++x f a a a n n n 时,0))(1(2=+++n n a x a x|2||1|||221nn n n a a a x x b =-=-=∴+, 又∵,02lg 2>-=n a n ).11(422,2111nn nn n n nn a a a a b b a b -=⨯=∴=∴---∴⎥⎦⎤⎢⎣⎡-++-+-⨯=+++=--)11()11()11(441)(411322113221nn n n n aa a a a ab b b b b b T 2lg 212lg 211111---=-=n a a n =)2lg 2)(2lg 21(1---n n . 21.解:(Ⅰ)由已知,得111S a ==,2127S a a =+=,312318S a a a =++=.由1(58)(52)n n n S n S An B +--+=+,知2132372122S S A B S S A B --=+⎧⎨-=+⎩,, 即 28248A B A B +=-⎧⎨+=-⎩,, 解得 20A =-,8B =-. (Ⅱ)方法1由(Ⅰ),得 1(58)(52)208n n n S n S n +--+=--, ① 所以21(53)(57)2028n n n S n S n ++--+=--. ② ②-①,得21(53)(101)(52)20n n n n S n S n S ++---++=-, ③ 所以321(52)(109)(57)20n n n n S n S n S ++++-+++=-. ④ ④-③,得321(52)(156)(156)(52)0n n n n n S n S n S n S ++++-+++-+=. 因为11n n n a S S ++=-,所以321(52)(104)(52)0n n n n a n a n a ++++-+++=. 又因为520n +≠,所以32120n n n a a a +++-+=,即3221n n n n a a a a ++++-=-,1n ≥.所以数列{}n a 为等差数列.方法2由已知,得111S a ==,又1(58)(52)208n n n S n S n +--+=--,且580n -≠,所以数列{}n S 是唯一确定的,因而数列{}n a 是唯一确定的.设54n b n =-,则数列{}n b 为等差数列,前n 项和(53)2n n n T -=. 于是1(1)(52)(53)(58)(52)(58)(52)20822n n n n n n n T n T n n n +++---+=--+=--, 由唯一性得 n n b a =,即数列{}n a 为等差数列.(Ⅲ)由(Ⅱ)可知,15(1)54n a n n =+-=-. 要证51mn m n a a a ->, 只要证512mn m n m n a a a a a >++.因为54mn a mn =-,(54)(54)2520()16m n a a m n mn m n =--=-++, 故只要证5(54)12520()162m n mn mn m n a a ->+-+++, 即只要证2020372m n m n a a +->. 因为2558m n m n a a a a m n ≤+=+-558(151529)m n m n <+-++-202037m n =+-, 所以命题得证.22.证明(1)∵点P n 、P n+1都在斜率为k 的直线上∴n n n n x x S S --++11=k ,即nn n x x x -++11=k ,故 (k -1)x n+1=kx n ∵k ≠0,x n+1≠1,x n ≠1, ∴n n x x 1+=1-k k =常数,∴{x n }是公比为1-k k 的等比数列。