2014-2015学年九年级上下学期数学期末测试题(含答案)
- 格式:pdf
- 大小:501.59 KB
- 文档页数:5
2014-2015学年度熊家岩初级中学九年级数学期末考试复习卷(A)考试范围:九上全册;考试时间:120分钟;命题人:冯仁桥姓名:___________班级:___________考号:___________得分:___________第I卷(选择题)一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,恰有一项是符合要求的。
请将正确答案填写在答题卡相应位置。
)1.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件.如果全组有x名学生,则根据题意列出的方程是()A.(1)182x x+=B.(1)182x x-=C.2(1)182x x+=D.(1)1822x x-=⨯2.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.某种商品零售价经过两次降价后的价格为降价前的81%,则平均每次降价()A.10% B.19% C.9.5% D.20%4.已知二次函数y=2x2-9x-34,当自变量x取两个不同的值x1,x2时,函数值相等,则当自变量x取x1+x2时的函数值应当与()A.x=1时的函数值相等B.x=0时的函数值相等C.x=41的函数值相等D.x=49的函数值相等5.若二次函数)2(2-++=mmxmxy的图象经过原点,则m的值为()A.0或2 B.0 C.2 D.无法确定6.已知抛物线与x轴交于点A,B,与y轴交于点C,则能使△ABC 为等腰三角形的抛物线的条数是()。
A.2 B.3 C.4 D.57.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开旅行箱的概率是()A、61B、91C、101D、218.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为估计白球数,小刚向其中放入8个黑球摇匀后,从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球200次,其中44次摸到黑球,你估计盒中大约有白球()A.20个B.28个C.36个D.无法估计9.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30° B.60° C.90° D.150°()3y k x1xk⎛⎫=+ ⎪⎝⎭-10.如图,AB 是⊙O 的直径,点D 、E 是半圆的三等分点,AE ,BD 的延长线交于点C 。
林甸县2014-2015学年度上学期期末检测九年级数学试题温馨提示:亲爱的同学,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常水平,相信你一定行,预祝你取得满意的成绩!本试卷共28道题,满分120分,检测时间为120分钟。
一、相信你的选择(每小题3分,共30分)1.如图,这是一个正三棱柱,则它的俯视图为 ( )2.如图,身高为1.6米的某学生想测量学校旗杆的高度,当他站在C 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是 ( ) A .6.4米 B .7米 C .8米 D .9米3.菱形的两条对角线长分别是6和8,则此菱形的边长是 ( ) A .10B .8C .6D . 5第2题图A. B. C. D.4.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为 ( )5.如图,D 为△ABC 内部一点,E 、F 两点分别在AB 、BC 上,且四边形DEBF 为矩形,直线CD 交AB 于G 点.若CF =6,BF =9,AG =8,则△ADC 的面积为多少? ( ) A .16 B .24C .36D .546.已知一次函数y 1=kx +b (k <0)与反比例函数y 2=xm(m ≠0)的图象相交于A 、B 两点,其横坐标分别是-1和3,当y 1>y 2时,实数x 的取值范围是 ( ) A .x <-l 或0<x <3 B .一1<x <0或0<x <3 C .一1<x <0或x >3 D .0<x <3 7.若A (a 1,b 1),B (a 2,b 2)是反比例函数xy 2-=图象上的两个点,且a 1<a 2,则 b 1与b 2的大小关系是 ( ) A .b 1<b 2 B .b 1 = b 2 C .b 1>b 2 D .大小不确定8.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为 ( )A .16B .17C .18D .199.如图,Rt △ABC 中,∠BAC=90°,AD ⊥BC 于点D ,若BD :CD=3:2,则= ( ). . C . D .为顶点的三角形与△ABC 相似,则点E 的坐标不可能是 ( ) A .(6,0) B .(6,3) C .(6,5) D .(4,2)二、试试你的身手(每小题3分,共24分)11.某企业2010年底缴税40万元,2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x ,根据题意,可得方程_______________.12.如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是__________.13.请写出一个图象在第二、四象限的反比例函数关系式______________.14.小明家离学校1.5km ,小明步行上学需min x ,那么小明步行速度(m /min)y 可以表示为1500y x=;水平地面上重1500N 的物体,与地面的接触面积为2m x ,那么该物体对地面压强2(/m )y N 可以表示为1500y x =;,函数关系式1500y x=还可以表示许多不同情境中变量之间的关系,请你再列举1.例.: .15.已知关于x 的方程x 2+(1﹣m )x +=0有两个不相等的实数根,则m 的最大整数值是 . 16.双曲线xy 8=与直线x y 2=的交点坐标为 . 17.如图,正方向ABCD 的边长为3cm ,E 为CD 边上一点,∠DAE=30°,M 为AE 的中点,过点M 作直线分别与AD 、BC 相交于点P 、Q .若PQ=AE ,则AP 等于 .18.如图,过反比例函数y =x2(x >0)图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连结OA 、OB ,设AC 与OB 的交点为E ,△AOE 与梯形ECDB 的面积分别为S 1、S 2,比较它们的大小: .三、挑战你的技能(本大题共66分)19.(4分)解方程:23610x x -+=20.(6分)小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:(1)求m 的值; (2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.21.(6分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯的高度AB等于多少呢?22.(6分)如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C(﹣5,2).(1)请画出△ABC关于x轴对称的△A1B1C1.(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,请画出△A2B2C2.(3)求△A1B1C1与△A2B2C2的面积比.23.(6分)为了预防“甲流”,某校对教室采用药熏消毒法进行消毒。
新人教版2014-2015年上学期期末考试九年级数学试题(考试时间:120分钟 满分:150分)一、选择题(本题共10道题,每小题3分,共30分)1.下列方程中,是一元二次方程的是( )A. 221x x y ++=B. 2110x x+-= C. 20x = D. 2(1)(3)1x x x ++=- 2.下列汽车标志中,既是轴对称又是中心对称图形的是( )3.下列说法中正确的是( )A.不确定事件发生的概率是不确定的B.事件发生的概率可以等于事件不发生的概率C.事件发生的概率不可能等于0D.抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于24.如图45,15中,∠=∠=O CBO CAO ,则AOB ∠的度数是( )A.75 B.30 C.45 D.60 5.掷一枚六面分别标有1到6的均匀骰子,向上一面的点数大于2且小于5的概率为1P ,抛两枚硬币,正面均朝上的概率为2P ,则( )A.12P P <B.12P P >C.12P P =D.不能确定6.在同圆中,下列四个命题:○1圆心角是顶点在圆心的角;○2两个圆心角相等,它们所对的弦也相等;○3两条弦相等,所对的劣弧也相等;○4等弧所对的圆心角相等。
其中真命题有( )A.4个B.3个C.2个D.1个7.抛物线22(1)3y x =---与y 轴交点的纵坐标为( )A.3-B. 4-C.5-D.1-8.用配方法解关于x 的方程20x px q ++=,方程可变形为( ) A.224()24p p q x -+= B.224()24p q p x -+= C.224()24p p q x +-= 第4题D.224()24p p q x --= 9.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE=CF ,连接AE 、BF ,将△ABE 绕正方形的中心按逆时针方向旋转到BCF △,旋转角为()0180a a <<,则a =( )A.60 B.90 C.120 D.4510.已知二次函数2y ax bx c =++的图象如图所示,其对称轴为直线1x =-,给出下列结论(1)24b ac >; (2)0abc >; (3)20a b +=; (4)0a b c ++>; (5)420a b c -+<.则正确的结论有( )A. 2个B. 3个C. 4个D. 5个第9题C第16题第17题B二、填空题(本大题共8小题,每小题3分,共24分)11.方程2x =的根是 .12.众所周知,手机的电话号码是由11位数字组成的,某人的手机号码位于中间的数字为5的概率是13.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是54002cm ,设金色纸边的宽为,那么x 满足的方程是14.如果函数232(3)1k k y k x kx -+=-++是二次函数,那么k 值为15.一个圆锥的侧面展开图是半径为1的半圆,该圆锥的底面半径是16.二次函数2y x bx c =-++的图象如图所示,则一次函数y bx c =+的图象不经过第 象限. 17.如图所示,一条公路的转变处是一段圆弧(图中的弧AB )点O 是这段弧的圆心,C 是AB 上一点,,OC AB ⊥ 垂足为D ,AB=300m ,CD=50m ,则这段弯路的半径是18.观察下列一组数:13579,,,,,27142334⋅⋅⋅它们是按一定规律排列的,那么这一组数的第n 个数是三、解答题(本大题共96分)19.解方程:(10分)(1) 2660x x --=(2) 22760x x -+=20.△ABC 在平面直角坐标系中的位置如图所示(A 、B 、C 三点在格点上),把△ABC 绕原点O 顺时针旋转90,A 、B 、C 旋转后的对应点分别是1A 、1B 、1C(1)画出旋转后的111△ABC ,并直接写出1A、1B 、1C 的坐标; (2)在旋转过程中,求点A 到点1A 所经过的路径的长.(12分)21.某汽车经销商推出A 、B 、C 、D 四种型号的小轿车共1000辆进行展销。
房山区2014—2015学年度第一学期终结性检测试题九年级数学一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中有且只有一个..是符合题意的.请将正确选项前的字母填在下表中相应1. 抛物线()225=--+y x 的顶点坐标是 A .()2,5-B .()2,5C .()25,--D .()52,- 2.如图,⊙O 是△ABC 的外接圆,若AB=OA=OB ,则∠C 等于A .30°B .40°C .60°D .80° 3.在 Rt △ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值等于A . 34B .43C .35D .454. 已知点P (-3,2)是反比例函数图象上的一 点,则该反比例函数的表达式为A.xy 3=B.5yx =- C. 6y x =D.6y x =-5.已知△ABC ∽△A′B′C′,相似比为1:2,则△ABC 与△A′B′C′ 的面积的比为 A .1:2 B . 2:1 C . 1:4 D .4:16. 如图,弦AB ⊥ OC ,垂足为点C ,连接OA ,若OC =2,AB =4,则OA 等于 A ....7. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为A . 10mB . 12mC . 15mD .40m8. 如图,⊙O 的半径为2,点P 是半径OA 上的一个动点,过点P 作直线MN 且∠APN =60°,过点A 的切线AB 交MN 于点B . 设OP =x ,△P AB 的面积为 y ,则下列图象中, 能表示y 与x 的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9.如图,在△ABC 中,D 、E 分别是AB 、AC 边上的点,且 DE ∥BC , 若AD =5,DB =3,DE =4,则BC 等于 .10.如图,⊙O 的半径为2,4=OA ,AB 切⊙O 于B ,弦BC OA ∥连结AC , 则图中阴影部分的面积为 .11. 如图,⊙O 的直径CD 过弦AB 的中点E ,∠BCD =15°,⊙O 的半径为10,则AB = .12. 抛物线()()2211-11n y x x n n n n +=+++(其中n 是正整数)与x 轴交于A n 、B n 两点,若以A n B n 表示这两点间的距离,则A B _________=11; A B A B __________+=1122; n n A B A B A B A B ____________.+++⋅⋅⋅+=112233(用含n 的代数式表示) 二、解答题(本题共30分,每小题5分) 13.计算: 0111)2cos30()8--︒-+解:A E D xDC B ADC14.如图,C 为线段BD 上一点,AC CE ⊥,AB BD ⊥,ED BD ⊥.求证:AB BC CDDE=.解:15.已知二次函数12)3(2++-=x x k y 的图象与x 轴有交点,求k 的取值范围. 解:16. 如图,在ABC ∆中,90C ︒∠=,52sin =A ,D 为AC 上一点,45BDC ︒∠=,6=DC ,求AD 的长. 解:17. 小红想要测量校园内一座教学楼CD 的高度. 她先在A 处测得楼顶C 的仰角=α30°,再向楼的方向直行10米到达B 处,又测得楼顶C 的仰角=β60°,若小红的目高(眼睛到地面的高度)AE 为1.60米,请你帮助她计算出这座教学楼CD 的高度(结果精确到0.1米)参考数据:41.12≈,73.13≈,24.25≈解:EDCB ABAβαG F E CB18. 如图,直线y =3x 与双曲线ky x=的两个交点分别为A (1 , m )和B . (1)直接写出点B 坐标,并求出双曲线ky x=的表达式; (2)若点P 为双曲线ky x=上的点(点P 不与A 、B 重合),且满足PO=OB ,直接写出点P 坐标. 解:四、解答题(本题共20分,每小题5分)19. 抛物线2y x bx c =++与x 轴分别交于点A (-1,0)和点B ,与y 轴的交点C 坐标为(0,-3). (1)求抛物线的表达式;(2)点D 为抛物线对称轴上的一个动点,若DA +DC 的值最小,求点D 的坐标. 解:20. 如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A 、B ,并使AB 与车轮内圆相切于点D ,做CD ⊥AB 交外圆于点C .测得CD =10cm ,AB =60cm ,求这个车轮的外圆半径长.解:21.如图,AB 是⊙O 的直径, 点C 在⊙O 上,CE ⊥ AB 于E , CD 平分∠ECB , 交过 点B 的射线于D , 交AB 于F , 且BC=BD . (1)求证:BD 是⊙O 的切线; (2)若AE =9, CE =12, 求BF 的长. 解:22. 阅读下面的材料:小明在数学课外小组活动中遇到这样一个“新定义”问题:()()()0210.ab ba ab bb ⎧⎪⎪⎨⎪-⎪⎩=->;定义运算“: ※”求为※※<的值.小明是这样解决问题的:由新定义可知a =1,b =-2,又b <0,所以1※(-2)= 12.请你参考小明的解题思路,回答下列问题: (1) 计算:2※3= ;(2) 若5※m =56,则m = .(3) 函数y =2※x (x ≠0)的图象大致是( )五、解答题(本题共22分,其中23题7分,24题7分,25题8分)23. 直线y =﹣3x +3与x 轴交于点A , 与y 轴交于点B ,抛物线y =a (x ﹣2)2+k 经过点A 、B ,与x 轴的另一交点为C . (1)求a ,k 的值;(2)若点M 、N 分别为抛物线及其对称轴上的点, 且以A ,C ,M ,N 为顶点的四边形为平行四边形,请直接写出点M 的坐标.y x OyxOA B C DDAB24. 如图,⊙O 是△ABC 的外接圆,AC 是直径,过点O 作OD ⊥AB 于点D ,延长DO 交⊙O 于点P ,过点P 作PE ⊥AC 于点E ,作射线DE 交BC 的延长线于F 点,连接PF . (1)若∠POC =60°,AC =12,求劣弧PC 的长;(结果保留π) (2)求证:OD =OE ;(3)求证:PF 是⊙O 的切线. 解:25. 已知抛物线2154(3)22my x m x -=--+. (1) 求证:无论m 为任何实数,抛物线与x 轴总有两个交点;(2) 若A 2(3,2)n n -+、B 2(1,2)n n -++是抛物线上的两个不同点,求抛物线的表达式和n 的值; (3) 若反比例函数(0,0)ky k x x=>>的图象与(2)中的抛物线在第一象限内的交点的横坐标为0x ,且满足2<0x <3,求k 的取值范围.解:F房山区2014—2015学年度第一学期终结性检测试题九年级数学参考答案和评分参考二、填空题(每题4分)9. 325 10. 23π 11. 10 12. 12231n ;;n +(前两空每1分,最后一空2分) 三、解答题 13. 解:原式=1-2×32-8+2 3 …………………………4分 = 3 -7 ………………………………………5分14. 证明:∵90B ∠=,∴90A ACB ∠+∠=.∵C 为线段BD 上一点,且AC CE ⊥,∴90ACB ECD ∠+∠=.∴A ECD ∠=∠ . …………………………………………………………………2分 ∵B D ∠=∠=90, …………………………………………………………………3分 ∴△ABC ∽△CDE .………………………………………………………………4分 ∴AB BC CDDE=.………………………………………………………………………5分15. 由题意可知:30k -≠⎧⎨∆⎩≥ ……………………2分即()232430k k ≠⎧⎪⎨--⎪⎩≥…………………………3分解得34k k ≠⎧⎨⎩≤……………………………………4分∴ k 的取值范围是:k ≤4且k≠3……………5分16. 解:在BDC ∆中,090=∠C , 045=∠BDC ,6=DC∴tan 451BCDC︒== EDBA∴6BC = …………………………………1分 在ABC ∆中,52sin =A ,∴25BC AB =,……2分 ∴15AB =……………………………………3分∴AC ==…………………4分∴6AD =……………………………5分17. ∵=α30°,=β60°,∴∠ECF =αβ-=30°. ∴10==EF CF .在Rt △CFG 中,.35cos =⋅=βCF CG ……………………………………………3分 ∴3.106.135≈+=+=GD CG CD . ………………………………………………5分 答:这座教学楼的高度约为10.3米.18.(1)点B 坐标为(-1,-3)……………………………………1分∵直线y=3x 过点A(1,m ) ∴m=3×1=3∴A(1,3) ……………………………………………………2分 将A(1,3)代入y=kx中,得 k =xy =1×3=3∴y=3x …………………………………………………………3分(2) P 1(-3,-1), P 2(3,1)………………………………………………5分四、解答题19. 解:(1) 将A(-1,0)和C(0,-3)代入抛物线2y x bx c =++ 中得: 103b c c -+=⎧⎨=-⎩ , 解得:23b c =-⎧⎨=-⎩ (1)∴抛物线的解析式为223y x x =-- (2)由223y x x =--=()()()21413x x x --=+-知抛物线的对称轴为直线x =1,点B (3,0) 连接BC ,交对称轴x =1于点D 可求得直线BC :y =x -3 当x =1时,y =-2∴点D (1,-2)……………………………………………5分20. 如图,设点O 为外圆的圆心,连接OA 和OC ,……1分∵CD=10cm ,AB=60cm ,∴设半径为r ,则OD=r ﹣10,…………………………2分根据题意得:r 2=(r ﹣10)2+302,…………………3分 解得:r=50,…………………………………………5分 ∴这个车轮的外圆半径长为50.21. (1)证明:∵CE AB ⊥,∴ 90CEB ∠=.∵ CD 平分ECB ∠, BC =BD , ∴ 12∠=∠, 2D ∠=∠.∴ 1D ∠=∠. …………………………1分 ∴ CE ∥BD .∴ 90DBA CEB ∠=∠=.∵ AB 是⊙O 的直径,∴ BD 是⊙O 的切线. ………………………………………………………2分 (2)连接AC ,∵ AB 是⊙O 直径,∴ 90ACB ∠=. ∵CE AB ⊥, 可得 2CE AE EB =⋅.∴ .162==AECE EB ………………………………………………………3分 在Rt △CEB 中,∠CEB =90︒, 由勾股定理得20.BC = ……………4分 ∴ 20BD BC ==.∵ 1D ∠=∠, ∠EFC =∠BFD ,∴ △EFC ∽△BFD. ………………………………………………………5分 ∴ BFEFBD EC =. ∴121620BFBF-=. ∴ BF =10. ………………………………………………………………………6分22. 解:(1)23…………………1分 (2) ±6 ……………………3分 (3)D ………………………5分五、解答题(本题共22分,其中23题7分,24题7分,25题8分)23. (1)∵直线33y x =-+与x 轴、y 轴分别交于点A 、B ,∴(1,0)A ,(0,3)B . ……………………………………2分 又抛物线2(2)y a x k =-+经过点(1,0)A ,(0,3)B∴0,43;a k a k +=⎧⎨+=⎩解得1,1.a k =⎧⎨=-⎩即a ,k 的值分别为1,1-. ……………………………4分 (2)()()()1230,3,4,3,2,1M M M - …………………………………7分 24. (1)解:∵AC =12,∴CO =6, ∴==2π;(2)证明:∵PE ⊥AC ,OD ⊥AB ,∠PEA =90°,∠ADO =90° 在△ADO 和△PEO 中,,∴△POE ≌△AOD (AAS ), ∴OD =EO ;(3)证明:如图,连接AP ,PC ,∵OA =OP , ∴∠OAP =∠OP A , 由(1)得OD =EO , ∴∠ODE =∠OED , 又∵∠AOP =∠EOD , ∴∠OP A =∠ODE , ∴AP ∥DF , ∵AC 是直径, ∴∠APC =90°, ∴∠PQE =90° ∴PC ⊥EF , 又∵DP ∥BF , ∴∠ODE =∠EFC , ∵∠OED =∠CEF , ∴∠CEF =∠EFC ,∴CE =CF ,∴PC 为EF 的中垂线,∴∠EPQ =∠QPF ,∵△CEP ∽△CAP∴∠EPQ =∠EAP ,∴∠QPF =∠EAP ,∴∠QPF =∠OP A ,∵∠OP A +∠OPC =90°,∴∠QPF +∠OPC =90°,∴OP ⊥PF ,∴PF 是⊙O 的切线.25.(1)证明:令2154(3)022m x m x ---+=. 得[]2154(3)422m m -∆=---⨯⨯224m m =-+2(1)3m =-+. 不论m 为任何实数,都有(m -1)2+3>0,即△>0. ……………1分∴不论m 为任何实数,抛物线与x 轴总有两个交点. ……………… 2分(2)解:抛物线2154(3)22m y x m x -=--+的对称轴为 ∵抛物线上两个不同点A 2(3,2)n n -+、B 2(1,2)n n -++的纵坐标相同,∴点A和点B 关于抛物线的对称轴对称,则(3)(1)312n n m -+-+-==-. ∴2m =. ……………………………………………………… 3分 ∴抛物线的解析式为21322y x x =+-. ………………… 4分 ∵A 2(3,2)n n -+在抛物线21322y x x =+-上, ∴2213(3)(3)222n n n -+--=+. 化简,得2440n n ++=.∴ 2n =-. ……………………………………………… 5分(3) 当2<x <3时, 对于21322y x x =+-,y 随着x 的增大而增大, 对于(0,0)k y k x x=>>,y 随着x 的增大而减小. (3) 3.122m x m --=-=-⨯所以当02x =时,由反比例函数图象在二次函数图象上方, 得2k >2132222⨯+-, 解得k >5. …………………………………6分 当03x =时,由二次函数图象在反比例函数图象上方, 得2133322⨯+->3k,解得k <18.……………………………………7分 所以k 的取值范围为5<k <18.……………………………8分。
山西省运城市名校2014-2015上学期期末联合考试数学试题(时间:120分钟 满分:120分)2015、1、13 一、选择题(每题3分,共45分)1.如图所示几何体的主(正)视图是( )A .B .C .D .2.一个口袋中装有 4个白球,1个红球,7个黄球,搅匀后随机从袋中摸出 1个球是白球的概率是( ) A 21 B 31 C 41 D 513.抛物线42-=x y 的顶点坐标是( )A (2,0)B (-2,0)C (1,-3)D (0,-4)4.若x 1,x 2是一元二次方程2560x x -+=的两个根,则12x x +的值是( ) A .1 B .5 C .5- D .65.身高1.6米的小芳站在一棵树下照了一张照片,小明量得照片上小芳的高度是1.2厘米,树的高度为6厘米,则树的实际高度大约是( )A .8米B .4.5米C .8厘米D .4.5厘米6.顺次连结一个四边形各边中点所得的四边形必定是( )。
A 、平行四边形 B 、矩形 C 、菱形 D 、正方形.7. 如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠=( )A .40°B .30°C .20°D .10°8. 如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3, 则sinB 的值是( )A. 2 3B. 3 2C. 3 4D. 4 39.已知线段AB=1,C 是线段AB 的黄金分割点,则AC 的长度为( ) A.215- B .253- C .215-或253- D .以上都不对10.如图,在菱形ABCD 中,∠ABC =60°.AC =4. 则BD 的长为( )CABD (第8题图)第7题图A 'B DAC(A )38 (B )34 (C )32 (D )8 11. 如图,AB ∥CD ,BO :OC= 1:4,点E 、F 分别是OC , OD 的中点,则EF :AB 的值为( )A 、1B 、2C 、3D 、412.上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元. 下列所列方程中正确的是( )A .128)% 1(1682=+aB .128)% 1(1682=-a C .128)% 21(168=-a D .128)% 1(1682=-a13.已知点A (11x y ,)、B (22x y ,)是反比例函数xky =(0>k )图象上的两点,若210x x <<,则有( )A .210y y <<B .120y y <<C .021<<y yD .012<<y y14.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( ).A .2(1)3y x =---B .2(1)3y x =-+-C .2(1)3y x =--+ D .2(1)3y x =-++15.定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m] 的函数的一些结论: ① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有( )A. ①②③④B. ①②④C. ①③④D. ②④ 二、填空题(每空3分,共18分)16. 已知点A (2,m )在函数xy 2=的图象上,那么m=_________。
新人教版2014—2015年九年级上学期期末考试数学试题(试卷满分:120分考试时间:120分钟)2015、1、24一、选择题(本大题有10小题,每小题2分,共20分.每小题都有四个选项,其中有且只有一个选项正确)1. 下列事件中,属于必然事件的是A.任意画一个三角形,其内角和是180°B.某射击运动员射击一次,命中靶心C.在只装了红球的袋子中摸到白球D.掷一枚质地均匀的正方体骰子,向上的一面点数是32. 在下列图形中,属于中心对称图形的是A. 锐角三角形B. 直角三角形C. 钝角三角形D. 平行四边形3.二次函数y=(x-2)2+5的最小值是A. 2B. -2C. 5D.4. 如图1,点A在⊙O上,点C在⊙O内,点B在⊙O外,则图中的圆周角是A. ∠OABB. ∠OACC. ∠COAD. ∠B5. 已知一个一元二次方程的二次项系数是3,常数项是1,则这个一元二次方程可能是A.3x+1=0 B.x2+3=0 C.3x2-1=0 D.3x2+6x+1=06. 已知P(m,2m+1)是平面直角坐标系的点,则点P的纵坐标随横坐标变化的函数解析式可以是A.y=x B.y=2x C.y=2x+1 D.y=12x-127. 已知点A(1,2),O是坐标原点,将线段OA绕点O逆时针旋转90°,点A旋转后的对应点是A1,则点A1的坐标是A. (-2,1)B. (2, -1)C. (-1,2)D.(-1, -2)8.抛物线y=(1-2x)2+3的对称轴是A. x=1B. x=-1C. x=-12D. x=129. 青山村种的水稻2010年平均每公顷产7200kg,设水稻每公顷产量的年平均增长率为x,则2012年平均每公顷比2011年增加的产量是A. 7200(x+1)2 kg B.7200(x2+1) kg C.7200(x2+x) kg D.7200(x+1) kg10. 如图2,OA,OB,OC都是⊙O的半径,若∠AOB是锐角,且∠AOB=2∠BOC.图1则下列结论正确的是A. AB =2BCB. AB <2BCC. ∠AOB =2∠CABD. ∠ACB =4∠CAB二、填空题(本大题有6小题,每小题3分,共18分)11. 一个圆盘被平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,且落在圆盘内,则飞镖落在白色区域的概率是 . 12. 方程x 2-x =0的解是 .13. 已知直线y =kx +b 经过点A (0,3),B (2,5),则k = ,b = . 14. 抛物线y =x 2-2x -3的开口向 ;当-2≤x ≤0时,y 的取值范围是 . 15. 如图3,在⊙O 中, BC 是直径,弦BA ,CD 的延长线相交于点若∠P =50°,则∠AOD = .16. 一块三角形材料如图4所示,∠A =∠B =60°,用这块材料剪出一个矩形DEFG ,其中,点D ,E 分别在边AB ,AC 上,点F ,G 在边BC 上.设DE =x , 矩形DEFG 的面积s 与x 之间的函数解析式是 s =-32x 2+3x ,则AC 的长是 .三、解答题(本大题有11小题,共82分)17.(本题满分6分)如图5,已知AB 是⊙O 的直径,点C 在⊙O 上,若∠CAB =35°,求∠ABC的值.18.(本题满分6分)在平面直角坐标系中,已知点A (-4,2),B (-4,0),C (-1, 1),请在图6上画出△ABC ,并画出与△ABC 关于 原点O 对称的图形.图5图2图4GFADECB图319.(本题满分6分)甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码1,2;这些球除数字外完全相同.从甲、乙两口袋中分别随机地摸 出一个小球,求这两个小球的号码都是1的概率.20.(本题满分6分)解方程x 2+2x -2=0.21.(本题满分7分)画出二次函数y =x 2的图象.22.(本题满分7分)如图7,已知△ABC 是直角三角形,∠C =90°,BC =3,AC =4,将线段BA 绕点B 逆时针旋转90°,设点A 旋转后的对应点是点A 1, 根据题意画出示意图并求AA 1的长.23.(本题满分7分)如图8,已知AB 是⊙O 的直径,点D 在⊙O 上,C 是⊙O 外一点,若AD ∥OC ,直线BC 与⊙O 相交,判断直线CD 与⊙O 的位置关系, 并说明理由. 图7A B C图824.(本题满分7分)已知点P 是直线y =3x -1与直线y =x +b (b >0)的交点,直线y =3x-1与x 轴交于点A ,直线y =x +b 与y 轴交于点B .若△PAB 的面积是23,求b 的值.25.(本题满分7分)若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且满足x 1+2x 2=c +2,则称方程x 2+bx +c =0为“T 系二次方程” .如方程x 2-2x =0,x 2+5x +6=0,x 2-6x -16=0,x 2+4x +4=0都是“T 系二次方程” .是否存在实数b ,使得关于 x 的方程x 2+bx +b +2=0是“T 系二次方程”,并说明理由.26.(本题满分11分)在平面直角坐标系中,原点为O ,直线l 经过两点A (2,0)和点B (0,4),点P (m ,n )(mn ≠0)在直线l 上. (1)若OP =2,求点P 的坐标;(2)过点P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别为M ,N ,设矩形OMPN 周长的一半为t ,面积为s .当m <2时,求s 关于t 的函数解析式.图927.(本题满分12分)已知四边形ABCD内接于⊙O,对角线AC,BD交于点P.(1)如图9,设⊙O的半径是r,若︵AB l+︵CD i=πr,求证:AC⊥BD;(2)如图10,过点A作AE⊥BC,垂足为G,AE交BD于点M,交⊙O于点E;过点D作DH⊥BC,垂足为H,DH交AC于点N,交⊙O于点F;若AC⊥BD,求证:MN=EF.图10。
BA延庆县2014-2015学年第一学期期末测试卷初 三 数 学一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个是符合题........意.的. 1. 下列图形中,是中心对称图形的是A .B .C .D .2.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为A. 15B. 25C. 35D. 453. 抛物线2(2)3y x =-+的顶点坐标是A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3) 4. 如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F , 则EF :FC 等于A .1:1B .1:2C .1:3D .2:35.如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,OC =5,CD =8, 则OE 的长为A .1B .2 C .3D . 4 6.在Rt △ABC 中,∠C =90°,若AB BC =2,则sin B 的值为 A BC .12D .27.二次函数2y ax bx c =++的图象如图所示, 则下列结论中错误..的是 A BCDE FnAB 22A .函数有最小值B .当-1 < x < 2时,0y >C .0a b c ++<D .当12x <,y 随x 的增大而减小 8.如图,矩形ABCD 中,对角线AC ,BD 交于点O ,E ,F 分别是边BC ,AD 的中点, AB =3,BC =4,一动点P 从点B 出发,沿着B ﹣A ﹣D ﹣C 在矩形的边上运动,运动到 点C 停止,点M 为图1中某一定点,设点P 运动的路程为x ,△BPM 的面积为y ,表 示y 与x 的函数关系的图象大致如图2所示.则点M 的位置可能是图1中的A .点CB .点FC .点D D .点O二、填空题 (本题共16分,每小题4分)9.如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积是________ cm 2. 10. 请写出一个开口向下,并且与y 轴交于点(0,-2)的抛物线的表达式__________. 11. 已知关于x 的一元二次方程2410x x m -+-=无实数根,那么m 的取值范围是____. 12. 如图,AD 是⊙O 的直径.(1)如图1,垂直于AD 的两条弦B 1C 1,B 2C 2把圆周4等分,则∠B 1的度数是 ,∠B 2的度数是 ;(2)如图2,垂直于AD 的三条弦B 1C 1,B 2C 2,B 3C 3把圆周6等分,则∠B 3的度数是 ; (3)如图3,垂直于AD 的n 条弦B 1C 1,B 2C 2,B 3 C 3,…,B n C n 把圆周2n 等分,则∠B n的度数是 (用含n 的代数式表示∠B n 的度数).图1 图2 图3图2图1三、解答题(本题共35分,每小题5分)13. 021(2015)()2π-︒+++14. 解方程:2450x x --=15. 已知:二次函数的图象过点A (2,-3),且顶点坐标为C (1,-4). (1)求此二次函数的表达式;(2)画出此函数图象,并根据函数图象写出:当12x -<<时,y 的取值范围. 16. 如图,在⊙O 中,弦AC 与BD 交于点E ,AB =8,AE =6,ED =4,求CD 的长.(第16题)60°A B 30°CD17.如图,一渔船由西往东航行,在A 点测得海岛C 位于北偏东60°的方向,前进30海里到达B 点,此时,测得海岛C 位于北偏东30°的方向,求海岛C 到航线AB 的距离 CD 的长(结果保留根号).18. 已知:AD 是△ABC的高,AD AB =4,tan ACD ∠=BC 的长.19. 某种商品每天的销售利润y (元)与销售单价x (元)之间 满足关系:y = ax 2+ bx ﹣75.其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?(第19题)(第17题)B四、解答题(本题共15分,每小题5分)20. 有六张完全相同的卡片,分A ,B 两组,每组三张,在A 组的卡片上分别画上☆○☆,B 组的卡片上分别画上☆○○,如图1所示.(1)若将卡片无标记的一面朝上摆在桌上,再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是☆的概率(请用画树形图法或列表法求解)(2)若把A ,B 两组卡片无标记的一面对应粘贴在一起得到3张卡片,其正反面标记如图2所示,将卡片正面朝上摆放在桌上,并用瓶盖盖住标记.若揭开盖子,看 到的卡片正面标记是☆后,猜想它的反面也是☆,求猜对的概率是多少?21. 如图,在△ABC 中,以AC 为直径作⊙O 交BC 于点D ,交AB 于点G ,且D 是BC 中点,DE ⊥AB ,垂足为E , 交AC 的延长线于点F .(1)求证:直线EF 是⊙O 的切线; (2)CF =5,cos ∠A = 25,求BE 的长.○☆B 组A 组☆☆○○ 图1○○ ○☆反面正面☆☆图2AE C FBAB CCBA22. 探究发现:如图1,△ABC是等边三角形,点E在直线BC上,∠AEF=60°,EF交等边三角形外角平分线CF于点F,当点E是BC的中点时,有AE=EF成立;数学思考:某数学兴趣小组在探究AE,EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E是直线BC上(B,C除外)(其它条件不变),结论AE=EF仍然成立.请你从“点E在线段BC上”;“点E在线段BC延长线”;“点E在线段BC反向延长线上”三种情况中,任选一种情况,在图2中画出图形,并证明AE=EF.拓展应用:当点E在线段BC的延长线上时,若CE=BC,在图3中画出图形,并运用上述结论求出S△ABC:S△AEF的值.图1图2图3五、解答题(本题共22分,第23题7分,第24题9分,第25题6分) 23. 已知关于x 的一元二次方程21202k x x -++=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2122k y x x -=++的图象 向下平移9个单位,求平移后的图象的表达式;(3)在(2)的条件下,平移后的二次函数的图象与x 轴交于点A ,B (点A 在点B 左侧),直线(0)y kx b k =+>过点B ,且与抛物线的另一个交点为C ,直线BC 上方的抛物线与线段BC 组成新的图象,当此新图象的最小值大于-5时,求k 的取值范围.C24. 已知:△ABC 是⊙O 的内接三角形,AB =AC ,在∠BAC 所对弧AC 上,任取一点D ,连接AD ,BD ,CD ,(1)如图1,BAC α∠=,直接写出∠ADB 的大小(用含α的式子表示); (2)如图2,如果∠BAC =60°,求证:BD+CD=AD ;(3)如图3,如果∠BAC =120°,那么BD+CD 与AD 之间的数量关系是什么?写出猜测并加以证明;(4)如果BAC α∠=,直接写出BD+CD 与AD 之间的数量关系.图1图2图325. 在平面直角坐标系xOy 中,已知抛物线C 1: 224y mx mx =-++(0≠m )与抛物线C 2:22y x x =-,(1)抛物线C 1与y 轴交于点A ,其对称轴与x 轴交于点B .求点A ,B 的坐标; (2)若抛物线C 1在21x -<<-这一段位于C 2下方,并且抛物线C 1在13x <<这一段位于C 2上方,求抛物线C 1的解析式.----------------5分------------------4分 ------------------4分 ------------------5分------------------4分 ------------------5分------------------5分------------------4分 延庆县2014—2015学年第一学期期末测试答案初 三 数 学一、选择题(共32分,每小题4分)二、填空题(共16分,每题4分)三、解答题(本题共35分,每小题5分) 13. 02145(2015)()2π-︒+++= 414+ =514.解方程:2450x x --= 解1: (5)(1)0x x -+=∴125,1x x ==-解2: 2450x x --= 2449x x -+= 2(2)9x -= 23x ∴-=±∴125,1x x ==-解3: 2450x x --= ∵a =1,b =-4,c =-5∴462x ±==∴125,1x x ==--------4分-----------2分 ---------3分----------------------2分----------------------1分-----------5分---------------3分-------5分15.(1) 设二次函数的表达式为2()y a x h k =-+∵此函数图象顶点C (1,﹣4) ∴2(1)4y a x =-- 过点A (2,-3),∴a =1∴二次函数的解析式: 223y x x =-- (2)二次函数的解析式: 223y x x =--当x = -1时,y =0当x =1时,y 有最小值,为y =-4 ∵x =1在12x -<<内∴当12x -<<时,y 的取值范围-4 ≤ y <016. 解:∵∠B =∠C ,∠A =∠D ∴△ABE ∽△CDE∴AB AECD DE= ∵AB =8,AE =6,ED =4, ∴864CD = ∴163CD =---------1分---------2分 ---------3分--------4分 ---------5分E2D60°AB30°CD1---------2分 ---------3分---------5分---------4分 DCB ADC A17. 解:∵DA ⊥AD ,∠DAC =60°, ∴∠1=30°.∵EB ⊥AD ,∠EBC =30°, ∴∠2=60°. ∴∠ACB =30°. ∴BC = AB=30.在Rt △ACD 中,∵∠CDB =90°,∠2=60°, ∴tan 2CDBC∠=∴tan 6030CD ︒==∴CD =18. 分两种情况: (1)如图1在Rt △ABD 中,∠CDB =90°,AD =AB =4,由勾股定理可得:3BD ===. 在Rt △ACD 中,∠ADC =90°,AD =∵tan ACD ∠=,AD =∴tan ADACD CD∠== ∴CD =1. ∴BC =4. (2)如图2同理可求:BD =3,CD =1 ∴BC =2.综上所述:BC 的长为4或2.图1 图2---------2分---------4分 ---------5分---------3分---------1分○☆☆○○○○○☆☆☆---------5分---------4分 19. 解:(1)y =ax 2+bx ﹣75图象过点(5,0)、(7,16),∴,解得,y =﹣x 2+20x ﹣75的顶点坐标是(10,25) 当x =10时,y 最大=25,答:销售单价为10元时,该种商品每天销售利润最大,最大利润为25元; (2)∵函数y =﹣x 2+20x ﹣75图象的对称轴为直线x =10,可知点(7,16)关于对称轴的对称点是(13,16), 又∵函数y =﹣x 2+20x ﹣75图象开口向下, ∴当7≤x ≤13时,y ≥16.答:销售单价不少于7元且不超过13元时,该商品每天销售利润不低于16元.20.(1)方法1:由题意:从树状图中可以看到,所有可能结果共9种,且每种结果出现的可能性相等,其中两张卡片上标记都是☆的结果共2种,所以 2()9P =两张都是☆. 方法1:由题意可列表如下:从表中可以看到,所有可能结果共9种,且每种结果出现的可能性相等,其中两张卡片上标记都是☆的结果共2种,所以 2()9P =两张都是☆. (2)12---------2分---------1分---------3分---------4分 ---------5分21.证明:(1)连接CD ∵AO=CO ,CD=BD∴OD //AB ∴∠ODE =∠DEB ∵DE ⊥AB ∴∠DEB=90° ∴∠ODE=90° ∴OD ⊥BC∴直线EF 是⊙O 的切线(2)设⊙O 的半径为x ,则OC=OA=OD ,∵OD //AB∴∠ODC =∠B ,∠FOD =∠A ∵OC =OD ∴∠ODC =∠OCD ∴∠B =∠OCD∴AC=BC=2x在Rt △ODF 中,∠ODF =90°, ∴2cos cos 5OD FOD A OF ∠=∠== ∴255xx =+ ∴103x =在Rt △AEF 中,∠FEA =90°, ∴2cos 5AE A AF ∠== ∴23553AE =∴143AE =∴BE =2B---------3分---------2分---------1分22. 数学思考:证明:如图一,在AB 上截取AG ,使AG=EC ,连接EG , ∵△ABC 是等边三角形, ∴AB=BC ,∠B =∠ACB =60°. ∵AG=EC , ∴BG=BE ,∴△BEG 是等边三角形,∠BGE =60°, ∴∠AGE =120°. ∵FC 是外角的平分线, ∴∠ECF =120°=∠AGE . ∵∠AEC 是△ABE 的外角, ∴∠AEC =∠B +∠GAE =60°+∠GAE . ∵∠AEC =∠AEF +∠FEC =60°+∠FEC , ∴∠GAE =∠FEC . 在△AGE 和△ECF 中,∴△AGE ≌△ECF (ASA ), ∴AE =EF ;拓展应用:如图二:∵△ABC 是等边三角形,BC=CE ∴CE=BC=AC , ∴∠CAH =30°, 作CH ⊥AE 于H 点, ∴∠AHC =90°. ∴CH =AC ,AH =AC ,∵AC=CE ,CH ⊥AE ∴AE=2AH =AC .---------5分---------4分°CAB-3-1-2-4-3-1-22O-4311-5y-6-7∴.由数学思考得AE=EF , 又∵∠AEF =60°, ∴△AEF 是等边三角形, ∴△ABC ∽△AEF . ∴==.五、解答题(本题共22分,第23题7分,第24题9分,第25题6分) 23.(1)∵关于x 的一元二次方程21202k x x -++=有实数根 ∴2144402k b ac -∆=-=-⨯≥ ∴12k -≤∴3k ≤…………………………………………………1分 ∵k 为正整数∴k 的值是1,2,3 ……………………………………2分 (2)方程有两个非零的整数根当1k =时,220x x +=,不合题意,舍 当2k =时,21202x x ++=,不合题意,舍 当3k =时,2210x x ++=,121x x ==-∴3k = ……………………………3分∴221y x x =++∴平移后的图象的表达式228y x x =+- ……(3)令y =0,2280x x +-= ∴124,2x x =-=∵与x 轴交于点A ,B (点A 在点B 左侧)∴A (-4,0),B (2,0)∵直线l :y kx b =+(0)k >经过点B , ∴函数新图象如图所示,当点C 在抛物 线对称轴左侧时,新函数的最小值有(1)902ADB α∠=︒-可能大于5-.令5y =-,即2285x x +-=-.解得 13x =-,21x =(不合题意,舍去). ∴抛物线经过点(3,5)--. ……………5分当直线y kx b =+(0)k >经过点(-3,-5),(2,0)时,可求得1k =…………6分由图象可知,当01k <<时新函数的最小值大于5-. ………………………7分 (也可以用三角形相似求出-5以及k 的值) 24.………………1分(2)延长BD 到E ,使得DE=DC ∵∠BAC =60°,AB =AC∴△ABC 是等边三角形 ………………2分 ∴BC=AC ,∠BAC =∠ACB=60°∵四边形ABCD 内接于圆 ∴∠BAC +∠BDC=180° ∵∠BDC +∠EDC=180° ∴∠BAC=∠EDC=60° ∵DC=DE∴△DCE 是等边三角形 ………………3分 ∴∠DCE=60° ∴∠ACD=∠BCE ∴△ACD ≌△BCE ∴BE=AD ∵BE=BD+DE∴AD=BD+CD ………………4分 (3)延长DB 到E ,使得BE=DC ,连接AE , 过点A 作AF ⊥BD 于点F ,∵AB =AC ∴∠1=∠2 ………………5分∵四边形ABCD 内接于圆 ∴∠DBA +∠ACD=180° ∵∠EBA +∠DBA =180° ∴∠EBA=∠DCA ∵BE=CD ,AB=AC∴△EBA ≌△DCA ∴∠E=∠1 ∴AE=AD ………………6分在Rt △ADF 中,∠AFD =90°, ∴cos 1DFAD∠= ………………………………7分∵∠1=90°-2α=30°, ∴cos30DF AD AD =︒=∴2DE DF == ∵ BE =BD +CD∴BD CD += …………………………………………8分 (4) 2cos(90)2DF AD α=︒- ……………………………………………9分25.(1)根据:224y mx mx =-++ 2122b mx a m=-=-=- 可得点A (0,4),B (1,0) ……………………………2分(2)根据对称, 抛物线C 1在21x -<<-这一段位于C 2下方,相当于抛物线C 1在34x <<这 一段位于C 2下方 ……………………………3分 ∵抛物线C 1在13x <<这一段位于C 2上方, ∴两条抛物线的交点横坐标:x =3……………………………4分 ∴把x =3代入22y x x =- ∴y=3∴抛物线C 1:224y mx mx =-++经过点(3,3)……………………………5分 ∴13m =-∴抛物线C 1的解析式: 212433y x x =-+……………………………6分。
2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。
新北师大版2014-2015年九年级上学期期末考试数学试题( 时间:120分钟 分值:120分)测试范围:九年级上下册全部2015、1、1 一、选择题(24分)1、已知6,4,3,2====d c b a ,则下列各式中正确的是 ( ) A .d c b a = B .d c a b = C .b c d a = D .da b c = 2、已知线段a =9cm ,c =4cm ,b 是a , c 的比例中项,则b 等于 ( ) A . 6cm B . -6cm C .±6cm D .814cm 3、在半径为1的⊙O 中,120°的圆心角所对的弧长是 ( )A .3π B .23π C .πD .32π4则这组数据的中位数与众数分别是 ( ) A .26.5,27 B .27.5,28 C .28,27 D . 27,285、已知函数12)3(2++-=x x k y 的图象与x 轴有交点,则k 的取值范围是 ( ) A .4<k B .k ≤4 C .4<k 且3≠k D .4≤k 且3≠k6、在同一坐标系中,一次函数1+=ax y 与二次函数a x y +=2的图像可能是 ( )7、下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆;⑤两个等边三角形相似.其中正确命题的个数为 ( ) A .2B .3C .4D .5 8、如右图,点C、D 是以线段AB 为公共弦的两条圆弧的中点, AB =2,点E 、F 分别是线段CD ,AB 上的动点,设AF =x , AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( )二、填空题(20分)9、已知2x -5y =0,则x :y = ;10、当k = 时,函数()112+-=+kkx k y 为二次函数;11、小刚的身高是1.6m ,他在阳光下的影长是1.2m ,在同一时刻测得某棵树的影长为3.6m ,则这棵树的高度约为 m ; 12、计算:tan 245°-1= ;13、已知某样本的方差是4,则这个样本的标准差是 ;14、已知弦AB 的长等于⊙O 的半径,弦AB 所对的圆周角是____ ___ 度;15、如图,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A (3,0),则由图象可知,不等式ax 2+bx+c >0的解集是 ;16、已知圆锥底面半径是2,母线长是4,则圆锥的侧面展开的扇形圆心角是 ; 17、如图,已知⊙P 的半径为1,圆心P 在抛物线2112y x =-上运动,当⊙P 与x 轴相切 时,圆心P 的坐标为 ;18、如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)根据这个规律,第2014个点的坐标为 。
新华师大版九年级数学上册期末试卷(含答案解析)一、选择题(以下每道题只有一个正确的选项,请将答题卡上的正确选项涂黑,12小题,每小题3分,共36分)1.若反比例函数y=﹣的图象经过点A(2,m),则m的值是()D.A.﹣2 B.2C.﹣2.在Rt△ABC轴,∠C=90°,a=4,b=3,则cosA的值是()A.B.C.D.3.如图,由几个小正方体组成的立体图形的左视图是()4.一个口袋轴装有3个红球,4个绿球,2个黄球,每个球除颜色外其它都相同,搅匀后随机地从中摸出一个球不是红球的概率是()A.B.C.D.5.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.200元B.240元C.250元D.300元6.如图,△ABC中,AB=AC=8,BC=6,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.10 B.11 C.12 D.137.下列命题中,不正确的是()A.对角线相等的平行四边形是矩形B.有一个角为60°的等腰三角形是等边三角形C.直角三角形斜边上的高等于斜边的一半D.正方形的两条对角线相等且互相垂直平分8.)将二次函数y=x2﹣2x﹣3化成y=(x﹣h)2+k形式,则h+k结果为()A.﹣5 B.5C.3D.﹣39.在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边中垂线的交点D.三边上高的交点10.如图,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.B A=BC B.A C、BD互相平分C.A C=BD D.A B∥CD11.如图,一天晚上,小颖由路灯A下的B处走到C处时,测得影子CD的长为1米,当她继续往前走到D处时,测得此时影子DE的长刚好是自己的身高,已知小颖的身高为1.5米,那么路灯A 的高度AB为()A.3米B.4.5米C.6米D.8米12.如图为二次函数y=ax2+bx+c的图象,则下列说法中错误的是()A.a c<0 B.2a+b=0C.4a+2b+c>0 D.对于任意x均有ax2+bx≥a+b二、填空题(每小题3分,满分12分)13.一元二次方程x2=3x的解是:_________.14.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们座上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有10只.请你帮助工作人员估计这片山林中雀鸟的数量约为_________.15.定义运算“@”的运算法则为:x@y=,则(2@6)@8=_________.16.(3分)反比例函数y1=,y2=(k≠0)在第一象限的图象如图,过y1上的任意一点A,作x 轴的平行线交y2于点B,交y轴于点C,若S△AOB=2,则k=_________.三、解答题(第17题5分,第18、20题,每题8分,第19、21题每题6分,第22题9分,第23题10分,共52分)17.(5分)计算:.18.(8分)解下列一元二次方程.(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2).19.(6分)如图,河对岸有古塔AB.小敏在C处测得塔顶A的仰角为30°,向塔前进20米到达D.在D处测得A的仰角为45°,则塔高是多少米?20.(8分)我县实施新课程改革后,学生的自主学习、合作交流能力有很大提高,胡老师为了了解班级学生自主学习、合作交流的具体情况,对某班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,胡老师一共调查了_________名同学,其中女生共有_________名;(2)将上面的条形统计图补充完整;(3)为了共同进步,胡老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.21.(6分)现有一块长20cm,宽10cm的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm2的无盖长方体盒子,请求出剪去的小正方形的边长.22.(9分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.23.(10分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C 为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC 的最大面积.参考答案一、选择题(以下每道题只有一个正确的选项,请将答题卡上的正确选项涂黑,12小题,每小题3分,共36分)1.C2.A3.A4.D5.B6.B7.C8.D9.C10.B11.B12.C二、填空题(每小题3分,满分12分)13.x1=0,x2=3.14.5000只.15、.16.12.三、解答题(第17题5分,第18、20题,每题8分,第19、21题每题6分,第22题9分,第23题10分,共52分)17.解:原式=3﹣+﹣1=2.18.解:(1)这里a=1,b=﹣5,c=1,∵△=25﹣4=21,∴x=;(2)方程变形得:3(x﹣2)2﹣x(x﹣2)=0,分解因式得:(x﹣2)(3x﹣6﹣x)=0,解得:x1=2,x2=3.19.解:在Rt△ABD中,∵∠ADB=45°,∴BD=AB.在Rt△ABC中,∵∠ACB=30°,∴BC=AB.设AB=x(米),∵CD=20,∴BC=x+20.∴x+20=x∴x==10(+1).即铁塔AB的高为10(+1)米.20.解:(1)调查学生数为3÷15%=20(人),“D”类别学生数为20×(1﹣25%﹣15%﹣50%)=2(人),其中男生为2﹣1=1(人),调查女生数为20﹣1﹣4﹣3﹣1=11(人),故答案为:20,11;(2)补充条形统计图如图所示;(3)根据胡老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,可以将A类与D类学生分为以下几种情况:利用图表可知所选两位同学恰好是一位男同学和一位女同学的概率为.21.解:设剪去的小正方形的边长为xcm,根据题意得:(20﹣2x)(10﹣2x)=56,整理得:(x﹣3)(x﹣12)=0,解得:x=3或x=12,经检验x=12不合题意,舍去,∴x=3,则剪去小正方形的边长为3cm.22.(1)证明:∵Rt△OAB中,D为OB的中点,∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,∴AO=BO•cos30°=8×=4,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.23.解:(1)将B、C两点的坐标代入得,解得:;所以二次函数的表达式为:y=x2﹣2x﹣3(3分)(2)存在点P,使四边形POP′C为菱形;设P点坐标为(x,x2﹣2x﹣3),PP′交CO于E若四边形POP′C是菱形,则有PC=PO;连接PP′,则PE⊥CO于E,∴OE=EC=∴y=;(6分)∴x2﹣2x﹣3=解得x1=,x2=(不合题意,舍去)∴P点的坐标为(,)(8分)(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2﹣2x﹣3),易得,直线BC的解析式为y=x﹣3则Q点的坐标为(x,x﹣3);S四边形ABPC=S△ABC+S△BPQ+S△CPQ=AB•OC+QP•BF+QP•OF==(10分)当时,四边形ABPC的面积最大此时P点的坐标为,四边形ABPC的面积的最大值为.(12分)。