人教八年级数学上册教案11.1 与三角形有关的线段
- 格式:doc
- 大小:56.00 KB
- 文档页数:4
《与三角形有关的线段》教案一、教学目标(1)知识与技能:理解并掌握三角形的中线、高线、角平分线的定义,并能够正确画出图形。
(2)过程与方法:通过观察、操作、比较、分析等方法,探究三角形的中线、高线、角平分线的定义,并能够在实际问题中应用。
(3)情感态度与价值观:通过探究三角形的中线、高线、角平分线的定义,培养学生的合作精神和实践能力,进一步发展学生的空间观念。
二、教学重点与难点(1)重点:掌握三角形的中线、高线、角平分线的定义,并能够正确画出图形。
(2)难点:在实际问题中应用三角形的中线、高线、角平分线的定义解决问题。
三、教学内容及过程(一)导入新课1.复习三角形的概念和分类。
2.让学生动手做一个三角形,并指出这个三角形的中线、高线和角平分线。
3.引入新课,介绍三角形的中线、高线、角平分线的定义。
(二)探究新知1.三角形的中线(1)让学生动手画一个三角形,并画出其中一条边的中线。
(2)让学生观察并总结中线的定义和性质。
(3)通过例题讲解中线的应用。
1.三角形的高线(1)让学生动手画一个三角形,并画出其中一条边的高线。
(2)让学生观察并总结高线的定义和性质。
(3)通过例题讲解高线的应用。
1.三角形的角平分线(1)让学生动手画一个三角形,并画出其中两个角的角平分线。
(2)让学生观察并总结角平分线的定义和性质。
(3)通过例题讲解角平分线的应用。
(三)巩固练习1.请学生分别画出三角形的中线、高线和角平分线,并标明名称。
2.请学生根据定义,指出下列图形中的中线、高线和角平分线。
3.请学生解决实际问题,如修建一个三角形花坛,如何设计其中一条边的中线、高线和角平分线?(四)课堂小结1.回顾三角形的中线、高线和角平分线的定义和性质。
2.总结这些线段在实际问题中的应用。
3.提醒学生在以后的学习中要重视对这些知识的理解和应用。
第十一章三角形11.1 与三角形有关的线段11.1.1 三角形的边教师备课素材示例●归纳导入三角形是一种最常见的几何图形,(投影)如古埃及金字塔,香港中银大厦,交通标志等等,处处都有三角形的形象.【归纳】由不在同一条直线上的__三条线段__首尾顺次相接所组成的图形叫做三角形.问题:你能指出三角形的边、角、顶点吗?三角形的边有什么性质呢?【教学与建议】教学:让学生认识三角形在生活中是非常常见的图形,进而引导学生归纳三角形的定义、元素以及表示方法等.建议:在师生的交流中,学生与教师共同归纳三角形的定义及表示方法.●置疑导入在小学,我们学习了关于三角形的哪些知识?(1)画图并用语言说明怎样的图形是三角形.(2)在画出的图形中标注顶点字母,指出三角形各部分的名称.(3)三角形按边分类,有哪几种?(4)我们学过哪些特殊的三角形?画图说明它们有什么典型特征.(5)三角形的三边之间有什么关系?(6)三角形的面积怎么求?画图说明.【教学与建议】教学:学生小学阶段已经学习了三角形的一些初步知识,主要包括三角形的概念、图形、三种基本要素、表示方法、按边分类、直角三角形、等腰三角形与等边三角形等特殊三角形的识别、三边关系、面积公式等,这些知识为学习本课奠定了基础.建议:从三角形的概念、图形、表示方法、分类、性质等方面讲解归纳,让学生明白三角形知识的大致框架.数三角形个数的方法(列举法):(1)按图形形成的过程去数;(2)按大小顺序去数;(3)从图中的某一条线段开始沿着一定方向去数;(4)先固定一个顶点,再变换另两个顶点来数.【例1】找一找,图中有多少个三角形,并把它们写下来.解:图中有5个三角形,分别是:△ABE,△ABC ,△BCE ,△BCD ,△DEC.三角形按角分类如下:三角形⎩⎪⎨⎪⎧锐角三角形直角三角形钝角三角形三角形按边分类如下:三角形⎩⎪⎨⎪⎧等腰三角形⎩⎪⎨⎪⎧腰和底边不相等的等腰三角形等边三角形不等边三角形【例2】三角形按边分类可以用集合来表示,如图,图中小圆里的A 表示(D)A.直角三角形B .锐角三角形C .钝角三角形D .等边三角形【例3】下面给出的四个三角形都有一部分被遮挡,其中不能判断三角形类型(按角分)的是(C)A B C D判断三条线段能否构成三角形的方法:若两条较短的线段长之和大于最长的线段,能组成三角形;反之,则不能.【例4】下列长度的三条线段,能组成三角形的是(D)A .2,2,4B .5,6,12C .5,7,2D .6,8,10【例5】已知三角形的两边长分别为3和6,则这个三角形的第三条边长可以是__4(答案不唯一)__.(写出一个即可)1.涉及等腰三角形边的问题时,常需要分情况讨论,然后看它们是否满足三边关系,不满足的要舍去.2.求第三边长的取值范围:已知两边长之差(长边-短边)<第三边长<已知两边长之和.【例6】若等腰三角形的两边长分别是3和6,则它的周长为(B) A.17B.15C.13D.13或17【例7】一个三角形三条边长分别是为,(,则x的取值范围为__3<x≤14__.高效课堂教学设计1.认识三角形的边、内角、顶点,能用符号语言表示三角形;理解三角形的分类.2.掌握三角形三边关系,会判断已知的三条线段能否组成三角形,会求三角形第三边的取值范围.▲重点理解三角形三边关系.▲难点三角形三边关系的运用.◆活动1 新课导入情景导入:如图,从教室到食堂有两条路可走,你会走哪条?为什么?◆活动2 探究新知1.如图:提出问题:(1)哪些图形是三角形?(2)三角形有什么特点?什么叫三角形?(3)在三角形的概念中,你认为不可或缺的要素是什么?(4)请指出图①中三角形的顶点、角、边.学生完成并交流展示.2.教材P2思考.提出问题:(1)三角形除了按角分类,还可以按什么分?这样分的依据是什么?(2)按(1)的方法分类,分成的三角形有哪些特殊的三角形?学生完成并交流展示.3.教材P 3 探究.提出问题:(1)在△ABC 中,从点B 出发,沿三角形的边到点C ,有几条线路可以选择?每条线路的长有什么关系?从中你能得出什么结论?(2)从三角形的任意一个顶点出发到另一个顶点,上述结论都成立吗?学生完成并交流展示.◆活动3 知识归纳1.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做__三角形__.2.三角形的分类:(1)按照三个内角的大小,可将三角形分为__锐角三角形__、__直角三角形__、__钝角三角形__.(2)三角形按边的相等关系分类:三角形⎩⎪⎨⎪⎧三边都不相等的三角形 等腰三角形 ⎩⎪⎨⎪⎧底边和腰不相等的等腰三角形 等边三角形3.三角形两边的和__大于__第三边,三角形两边的差__小于__第三边.◆活动4 例题与练习例1 如图,在△ABC 中,点D ,E 分别在BC ,AB 上,AD 交CE 于点F.图中AC 是哪些三角形的边?∠B 是哪些三角形的内角?解:图中AC 是△AFC,△AEC ,△ADC ,△ABC 的边;∠B 是△ABC,△ABD ,△EBC 的内角.例2 教材P 3例.例3 已知在等腰三角形中,一边的长为9cm ,另一边的长为4cm. 小伟:“这个三角形的周长为17cm.”小宇:“你说的不对,这个三角形的周长为22cm.”同学们,你认为谁说的对呢?说说你的理由.解:小宇说的对,∵当腰长为4cm 时,4+4<9,不能组成三角形,∴该等腰三角形的腰长为9cm,周长为9+9+4=22(cm).练习1.教材P4练习第1,2题.2.若等腰三角形的两边长分别为3和7,则它的周长为__17__;若等腰三角形的两边长分别是3和4,则它的周长为__10或11__.3.已知△ABC的两边AB=2cm,AC=9cm.(1)求第三边BC的长的取值范围;(2)若第三边BC的长是偶数,求BC的长;(3)若△ABC是等腰三角形,求其周长.解:(1)7cm<BC<11cm;(2)BC的长是8cm或10cm;(3)∵△ABC是等腰三角形,∴BC=9cm或BC=2cm.当BC=2cm时,2+2<9,不能组成三角形,∴BC=9cm.∴△ABC的周长为2+9+9=20(cm).◆活动5 课堂小结1.三角形的概念.2.三角形的分类.3.三角形的三边关系.1.作业布置(1)教材P9习题11.1第1题;(2)对应课时练习.2.教学反思。
人教版数学八年级上册教案《11-1与三角形有关的线段》(第2课时)一. 教材分析《11-1与三角形有关的线段》是人教版数学八年级上册的教学内容,本节课主要让学生了解三角形的高的概念,掌握三角形高的计算方法,并能够运用三角形的高解决一些实际问题。
教材通过丰富的情境图片和实例,引发学生的思考,培养学生的空间想象能力和抽象思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念,如三角形的边、角等。
同时,学生已经学习了勾股定理,对直角三角形有一定的了解。
但是,学生对于三角形的高的概念可能比较陌生,需要通过实例和练习来逐步理解和掌握。
三. 教学目标1.让学生了解三角形的高的概念,理解三角形高的计算方法。
2.培养学生空间想象能力和抽象思维能力。
3.能够运用三角形的高解决一些实际问题。
四. 教学重难点1.三角形的高的概念。
2.三角形高的计算方法。
3.运用三角形的高解决实际问题。
五. 教学方法采用情境教学法、引导发现法、合作交流法等多种教学方法,激发学生的学习兴趣,引导学生主动探究,培养学生的空间想象能力和抽象思维能力。
六. 教学准备1.教学PPT。
2.三角板。
3.练习题。
七. 教学过程导入(5分钟)教师通过展示一些生活中的图片,如电线、树木等,引导学生观察并思考:这些图片中的线段有什么特点?学生通过观察,发现这些线段都是垂直于某个平面的。
教师引导学生思考:在三角形中,是否存在这样的线段?由此引入三角形的高的概念。
呈现(10分钟)教师通过PPT展示三角形的高的定义,并用三角板演示三角形的高的画法。
同时,教师引导学生思考:如何计算三角形的高?学生通过观察和思考,得出计算三角形高的方法。
操练(10分钟)教师给出一些三角形,让学生独立画出三角形的高,并计算出高的长度。
教师选取一些学生的作品进行展示和讲解,引导学生正确理解和掌握三角形的高的计算方法。
巩固(10分钟)教师给出一些实际问题,让学生运用三角形的高的知识进行解决。
人教版数学八年级上册教学设计11.1《与三角形有关的线段》一. 教材分析人教版数学八年级上册第11.1节《与三角形有关的线段》主要包括三角形的两边之和大于第三边,两边之差小于第三边的基本性质。
这些性质是三角形的基本构成要素,对于学生深入理解三角形的结构特征,以及在后续学习中解决三角形相关问题具有重要意义。
二. 学情分析学生在七年级已经学习了线段的性质,能够理解线段的基本概念和性质。
但是对于三角形两边之和大于第三边,两边之差小于第三边的性质的理解,还需要通过具体操作和实例来加深。
此外,学生对于抽象几何图形的理解能力也在逐步提高,但仍需要具体的形象支持。
三. 教学目标1.知识与技能:理解并掌握三角形的两边之和大于第三边,两边之差小于第三边的性质。
2.过程与方法:通过观察、操作、证明等方法,培养学生的几何思维和解决问题的能力。
3.情感态度价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.教学重点:三角形的两边之和大于第三边,两边之差小于第三边的性质。
2.教学难点:对于这些性质的理解和应用。
五. 教学方法采用问题驱动法、观察操作法、小组合作法等,引导学生主动探究,发现并证明三角形的这些基本性质。
六. 教学准备1.教师准备:教材、PPT、几何模型等。
2.学生准备:课本、笔记本、尺子、圆规等。
七. 教学过程1.导入(5分钟)通过提问方式复习线段的性质,为新课的学习打下基础。
然后,引入三角形的基本性质,激发学生的学习兴趣。
2.呈现(10分钟)利用PPT展示三角形的两边之和大于第三边,两边之差小于第三边的性质,引导学生观察和思考。
3.操练(10分钟)学生分组进行操作,用尺子和圆规构造三角形,验证这两条性质。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成教材中的相关练习题,教师选取部分题目进行讲解和分析,巩固所学知识。
5.拓展(10分钟)引导学生思考:这些性质在实际生活中有哪些应用?如何解决与三角形相关的实际问题?6.小结(5分钟)教师引导学生总结本节课所学内容,强调三角形的两边之和大于第三边,两边之差小于第三边的性质。
人教版八年级上册11.1与三角形有关的线段(1)课程设计一、课程内容本节课主要围绕与三角形有关的线段展开,涉及到以下内容:1.角平分线及其性质2.中线及其性质3.高线及其性质二、教学目标1.了解角平分线、中线、高线的定义。
2.掌握三角形中角平分线、中线、高线的性质。
3.能够解决与三角形中角平分线、中线、高线相关的问题。
三、教学方法1.演示法:通过绘制图形,示范性地教授三角形中角平分线、中线、高线的概念和性质。
2.研究法:引导学生自主探究角平分线、中线、高线的性质和相关问题策略。
3.讨论法:途中会有小组讨论,学生在小组内互相学习、交流。
四、教学流程1. 导入环节(1)四边形知识的回顾通过复习四边形的知识,引导学生了解四边形的性质,以及四边形中的对角线,为后面的三角形知识介绍做准备。
(2)名词解释解释角平分线、中线、高线的定义,引导学生了解新的几何学知识的基本概念。
2. 观察与实验(1)实验1:角平分线利用三角板和Drawing工具等辅助工具,引导学生探究三角形中角平分线的概念和性质。
(2)实验2:中线利用同样的辅助工具,引导学生探究三角形中中线的概念和性质。
(3)实验3:高线利用同样的辅助工具,引导学生探究三角形中高线的概念和性质。
3. 总结(1)小组讨论将学生分为小组讨论学习过程中的收获和问题,并交流解题策略与方法。
(2)概念总结对刚才讨论的概念进行总结,并整理提纲,为下面的课堂测试做好准备。
4. 课堂测试通过不同难度和形式的小测试,帮助学生检查自己对概念的掌握和实际能力,同时加深对几何概念的理解。
5. 课后作业通过对不同难度的练习题和题目的布置,引导学生加强对三角形的相关知识的学习,并在课后温习与复习,为下一堂课的学习做好准备。
五、教学评估1.课堂测试:用于检查学生对角平分线、中线、高线的掌握情况和能力。
2.课后作业答案:用于检查学生在学后能否自主完成与角平分线、中线、高线相关的题目。
以上是本文对人教版八年级上册11.1与三角形有关的线段(1)课程设计的详细介绍,通过分析本节课的主要内容、教育目标、教学方法及流程,容易看出该课程设计对于学生的知识理解能力和应用能力有非常重要的帮助作用。
人教版八年级上册数学教学设计《11.1 与三角形有关的线段》一. 教材分析本节课的主题是“与三角形有关的线段”,这是人教版八年级上册数学的一个重要内容。
本节课主要让学生了解并掌握三角形的中线、角平分线、高线等概念,以及它们之间的关系。
通过对这些线段的性质和作用的学习,培养学生空间想象能力和逻辑思维能力,为学生进一步学习几何知识打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,如三角形的内角和、三角形的分类等。
但学生对三角形的中线、角平分线、高线等概念及性质可能较为陌生,因此,教师在教学中要注重引导学生从已知知识出发,探索新知识,培养学生自主学习的能力。
三. 教学目标1.知识与技能:让学生掌握三角形的中线、角平分线、高线的概念,理解它们之间的关系。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:三角形的中线、角平分线、高线的概念及性质。
2.难点:三角形的中线、角平分线、高线之间的相互关系。
五. 教学方法1.情境教学法:通过设置问题情境,引导学生观察、操作、猜想、验证,激发学生的学习兴趣。
2.合作学习法:学生进行小组讨论,培养学生合作意识,提高学生解决问题的能力。
3.启发式教学法:教师引导学生从已知知识出发,探索新知识,培养学生的自主学习能力。
六. 教学准备1.教具:三角板、直尺、圆规、多媒体设备等。
2.学具:学生每人一份三角板、直尺、圆规等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师利用多媒体展示三角形的中线、角平分线、高线的图片,引导学生观察并思考这些线段的特征。
3.操练(10分钟)教师学生进行小组讨论,让学生通过实际操作,探索三角形的中线、角平分线、高线之间的关系。
人教版八年级上册11.1:与三角形有关的线段(1)教学设计一、教学目标1.了解三角形内部和外部的线段以及它们的性质。
2.学习运用线段的性质解决与三角形有关的问题。
二、教学重点和难点1.教学重点:三角形中位线、角平分线等线段的性质以及其衍生出的定理。
2.教学难点:将线段的性质运用到实际问题中,需要提高学生的思维能力。
三、教学内容及安排时间教学内容学生活动5分钟引入老师介绍本节课的内容,激发学生学习兴趣。
10分钟介绍线段的性质老师向学生介绍线段的性质,并讲解其在数学中的应用。
20分钟讲解三角形内部和外部的线段性质老师讲解三角形内部和外部的线段性质,并给出具体的例子。
10分钟练习老师给出一些练习题,让学生巩固所学知识。
15分解决实际问题老师结合实际问题,让学生运用线段的时间教学内容学生活动钟性质解决问题。
5分钟总结老师总结本节课的主要内容,并引导学生进行思考和回顾。
四、教学方法1.讲授法:通过讲解和举例子的方式,让学生了解线段的性质和三角形内部、外部线段的性质。
2.实践法:通过练习题和实际问题的解决,让学生运用所学知识和技能。
五、教学评价1.实时评价:在课堂上通过课堂练习、举手回答等方式来检测学生对所学知识的掌握程度。
2.作业评价:通过布置家庭作业的方式,让学生进行自主学习和回顾,并通过作业的成绩来评估学生的学习效果。
六、教学资源1.教材:人教版八年级上册。
2.PPT课件:通过PPT课件来展示线段的性质、三角形内部和外部线段的性质等内容。
3.练习题:将练习题打印出来,发给学生练习。
人教版八年级数学上册教学设计11.1 与三角形有关的线段一. 教材分析人教版八年级数学上册第11.1节“与三角形有关的线段”,主要包括三角形的两边之和大于第三边、三角形的两边之差小于第三边以及三角形的高的概念。
这些内容是学生进一步学习三角形性质的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析八年级的学生已经学习了平面几何的基本概念和性质,对图形的认识有一定的基础。
但是,对于三角形的高的概念和性质,以及如何运用三角形的性质解决实际问题,学生可能还比较陌生。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出三角形的性质,并通过大量的实例来加深学生对三角形性质的理解。
三. 教学目标1.理解三角形的两边之和大于第三边、两边之差小于第三边的性质。
2.掌握三角形的高的概念,能画出一个三角形的所有高。
3.会运用三角形的性质解决一些实际问题。
四. 教学重难点1.教学重点:三角形的两边之和大于第三边、两边之差小于第三边的性质,三角形的高的概念。
2.教学难点:如何运用三角形的性质解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出三角形的性质。
2.利用多媒体课件,生动形象地展示三角形的性质,帮助学生直观理解。
3.通过大量的练习,巩固学生对三角形性质的理解。
4.采用小组合作的学习方式,培养学生的团队合作能力。
六. 教学准备1.多媒体课件七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些实际问题,如:在平面上有三个点,如何判断这三个点能否构成一个三角形?引导学生从实际问题中感受到三角形性质的重要性。
2.呈现(10分钟)介绍三角形的两边之和大于第三边、两边之差小于第三边的性质,并通过多媒体课件展示相应的图形,帮助学生直观理解。
3.操练(10分钟)让学生在纸上画出一个任意的三角形,然后用尺子量出三角形的三条边的长度,验证三角形的两边之和大于第三边、两边之差小于第三边的性质。
人教版数学八年级上册教案11.1《与三角形有关的线段》一. 教材分析人教版数学八年级上册第11.1节《与三角形有关的线段》主要介绍了三角形的中线、角平分线和高的概念。
通过本节课的学习,学生能够理解三角形中线、角平分线和高的定义,掌握它们的基本性质,并为后续的三角形全等和三角形的证明打下基础。
二. 学情分析学生在七年级已经学习了线段的性质和三角形的基本概念,对线段和三角形有一定的认识。
但部分学生对概念的理解不够深入,对性质的运用不够熟练。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,加深对三角形中线、角平分线和高的理解,提高运用性质解决问题的能力。
三. 教学目标1.了解三角形的中线、角平分线和高的定义,掌握它们的基本性质。
2.能够运用中线、角平分线和高的性质解决一些简单问题。
3.培养学生的观察能力、操作能力、思考能力和交流能力。
四. 教学重难点1.重点:三角形的中线、角平分线和高的定义及基本性质。
2.难点:运用中线、角平分线和高的性质解决问题。
五. 教学方法1.采用问题驱动法,引导学生观察、操作、思考、交流,发现规律。
2.运用多媒体辅助教学,展示清晰的图形和动画,帮助学生形象地理解概念和性质。
3.采用案例分析法,精选典型例题,让学生在解决实际问题中掌握知识。
六. 教学准备1.多媒体教学设备。
2.三角板、直尺、量角器等绘图工具。
3.准备相关课件和教学素材。
七. 教学过程1. 导入(5分钟)利用多媒体展示一个三角形,引导学生观察并思考:三角形有哪些特殊的线段?2. 呈现(10分钟)介绍三角形的中线、角平分线和高的概念,并用多媒体展示它们的定义和性质。
让学生通过观察和思考,发现它们之间的关系。
3. 操练(10分钟)学生分组讨论,每组选择一个三角形,画出它的中线、角平分线和高,并观察它们之间的关系。
教师巡回指导,解答学生的疑问。
4. 巩固(10分钟)学生独立完成教材中的练习题,教师选取部分题目进行讲解和分析。
人教版数学八年级上册教学设计《11-1与三角形有关的线段》(第1课时)一. 教材分析《11-1与三角形有关的线段》是人教版数学八年级上册的教学内容,本节课主要介绍三角形的中线、角平分线和高的概念及其性质。
通过本节课的学习,学生能够理解三角形中线、角平分线和高的定义,掌握它们的基本性质,并为后续解三角形和三角形全等的学习打下基础。
二. 学情分析学生在七年级时已经学习了多边形的基本概念和性质,对图形的观察和操作能力有所提高。
但他们对三角形中线、角平分线和高的概念及性质的了解可能还不够深入,需要通过本节课的学习来进一步掌握。
三. 教学目标1.知识与技能:理解三角形的中线、角平分线和高的概念,掌握它们的基本性质。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:三角形的中线、角平分线和高的概念及其性质。
2.难点:三角形中线、角平分线和高的性质的证明和应用。
五. 教学方法采用问题驱动法、合作学习法和直观演示法进行教学。
通过设置问题,引导学生观察、思考、交流,从而掌握三角形中线、角平分线和高的概念及性质。
六. 教学准备1.教学课件:制作课件,展示三角形的中线、角平分线和高的定义及性质。
2.教具:准备一些三角形模型,用于直观演示。
3.练习题:准备一些有关三角形中线、角平分线和高的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过提问方式复习七年级学过的多边形的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)利用课件展示三角形的中线、角平分线和高的定义及性质,引导学生观察、思考。
3.操练(10分钟)学生分组合作,利用教具进行直观演示,验证三角形中线、角平分线和高的性质。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)学生独立完成练习题,教师及时批改、反馈,帮助学生巩固所学知识。
教学目标:
知识与技能:结合三角形的实例,探索、掌握三角形3条边之间的关系.
会用符号表示三角形,了解按边关系对三角形进行分类.
理解三角形三边之间的不等关系,并会初步应用它们来解决问
题.
过程与方法:结合具体实例,进一步认识三角形的概念及其基本要素,掌握三角形三边关系。
情感、态度和价值观:通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力
重点:三角形的三边之间的不等关系.
难点:应用三角形的三边之间的不等关系判断3条线段能否组成三角形. 教学过程:
一、问题情境:
三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?对于三角形,你了解了哪些方面的知识?你能画一个三角形吗?
二、新课学习:
⒈三角形的相关概念.
⑴什么是三角形:
如图⑴,由不在同一条直线上的三条线段首尾顺次相接
所组成的图形叫做三角形.
⑵三角形的有关概念:
①边:组成三角形的三条线段叫做三角形的三条边.
②角:三角形相邻两边的夹角叫做三角形的内角,简称三角形的角 .
③顶点:三角形相邻两边的公共端点叫做三角形的顶点.
⑶三角形的表示:
如图⑴以A、B、C为顶点的三角形记作“⊿ABC ”,读作“三角形ABC”.
⑷三角形的分类:如图⑵
①等边三角形:图⑵中⑴的⊿ABC的边
AB=BC=AC,⊿ABC是等边三角形.
即:三条边都相等的三角形叫做等边三角形.
②等腰三角形:图⑵中⑵的⊿ABC的边
AB=AC,但AB≠BC, AC≠BC,⊿ABC是等腰三角形.
即:有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的边叫做腰,另一边叫做底,两腰的夹角叫做顶角,腰和底的夹角叫做底角.
注意:等边三角形是特殊的等腰三角形,即腰和底相等的等腰三角形.
③不等边三角形:图⑵中⑶的⊿ABC的边AB≠AC≠BC≠AB,⊿ABC是不等边三角形.
即:三条边都不相等的三角形叫做不等边三角形.
综上三角形按边分类关系如下
三条边都不相等的三角形: .
三角形腰和底不相等的: .
有两条边相等的三角形
⎧⎪⎧⎪⎪⎪⎧⎨⎨⎨⎪⎪⎩⎩⎪⎪⎩
定义:由不在同一条直线上的三条线段首尾依次连接所组成的图形不等边三角形按边分类底边和腰不等的等腰三角形等腰三角形等边三角形三边不等关系:任意一边之小于其它两边的和而大于其它两边的差边腰和底相等的: .
⑸练习:教材P65练习 “1”(口答)
⑹讨论与交流: 如图⑶,存在AB 1,AB 2,AB 3,···AB 9,
AB 10,10条线段,且B 1,B 2, ···B 10在同一条直线上,
则,图中三角形共有45 个.
⒉三角形三边关系: 阅读教材P64“探究”完成下列问题:
⑴如图⑷,根据线段公里“两点之间线段最短”可得,⊿ABC 的三边 满足下列关系:AB +BC >AC ;AB +AC >BC ;BC +AC >AB .
或:c +a >b ; c +b >a ; a +b >c .
即:三角形任意两边的和 大于第三边 .
上述关系也可表示为:
a -
b <
c ; b -c <a ; c -a <b 或b -a <c ; c -b <a ; a -c <b .
即:三角形任意两边的差 小于第三边 .
注意:综合上可知:三角形任意一边小于 其他两边的和,并且大于 其他两边的差.
⑵练习:教材P65练习“2” (口答)
说明:应用三角形三边之间的关系判定三条线段能否构成三角形时,常常只要两
条较短的线段长度之和大于第三条线段的长度即可.
⑶例解与应用:阅读教材P64例,解答下列问题:
一个等腰三角形的周长为28cm.
①已知腰长是底边长的3倍,求各边的长;
②已知其中一边的长为6cm,求其它两边的长.
解:①设底边长为x cm ,则腰长为3x cm ,根据题意得x +3x +3x =28
解得 x =4.
所以 3x =3×4=12.即:等腰三角形的三边长分别为4 cm ,12 cm ,12 cm .
②若腰长为6cm ,则底边长为28-2×6=16cm ,此时6+6<16,故不能组成三角形,所以腰长不能为6.
若底边长为6cm ,则腰长为﹙28-6﹚÷2=11cm ,它能构成三角形.
所以它的其它边长为11cm 、11cm .
⑷讨论与交流:
①如果三条线段的比是①1∶3∶4;②1∶2∶3;③1∶4∶6;④3∶3∶6;⑤6∶6∶
10;⑥3∶4∶5.其中能构成三角形的有 2 个.
②若a ,b ,c 分别是三角形的三边,化简︱a -b -c ︱+︱b -c -a ︱+︱c -a +b ︱
= .
③已知一个等腰三角形的两边长分别为5cm 和9cm ,那么这个三角形的周长为19cm 或23cm. .
三、课堂小结:
四、课堂检测:
1.如图⑸,共有个三角形,
其中以AC为边的三角形有个.
2.一个等腰三角形的两边分别为7cm和10cm,则它的周长
为 .
3.一个等腰三角形的两边分别为2cm和5cm;则它的周长为 .
4.一个三角形的周长为15cm,且其中两边都等于第三边的2倍,,那么这个三角形的最短边长为 .
5.已知一个三角形的两边长分别为5cm和9cm,那么这个三角形的第三边x的取
值范围
是<x< .
六、课后作业
⒈书面作业:
⑴课本P69习题7.1“1”(做书上)
⑵课本P69习题7.1“2”(做书上)
⑶等腰三角形底边为4.腰长为b,则b一定满足( )
A.b>2 B. 2<b<4 C. 2<b<8 D.b<8 ⑷已知三条线段的比是:①2∶3∶4;②1∶2∶3;③2∶4∶6;④3∶3∶6;⑤6∶6∶10;⑥6∶8∶10.其中可构成三角形的有 ( )
A. 1个
B. 2个
C. 3个
D. 4个
⑸已知三角形的三边长为连续的整数,且周长为12cm,则它的最短边长为( )
A. 2cm
B. 3cm
C. 4cm
D. 5cm
⑹已知a,b,c为三角形的三边,则︱a+b―c︱-︱b-c-a︱的化简结果是( )
A.2a
B. -2b
C.2a+2b
D.2b-2c
⑺已知等腰三角形的两边长分别为4cm和6cm,且它的周长大于14cm,则第三边长为
⑻已知等腰三角形的两边长分别为4,9,求它的周长.
⒉跟踪训练:
⑴如图⑹所示,为估计池塘岸边A、B的距离,小方在池塘
的一侧选取一点O,测得OA=15cm,OB=10cm,A、B间的
距离不可能是()
A.20cm
B.15cm
C.10cm
D.5cm
⑵下列说法①等边三角形是等腰三角形;
②三角形任意两边的和大于第三边;
③三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;
④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有()
A. 1个
B. 2个
C. 3个
D. 4个
⑶已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()
A.13cm
B.6cm
C.5cm
D.4cm
⑷三角形的一边长为5,一边长为13,则第三边x的取值范围是()
A. 5<x< 13
B. 8<x<18
C.x>8
D. x<18
⑸已知三角形三边的比是3∶4∶5,其周长为48cm,那么它的三边长为 .
⑹三角形有两边长为5和1,第三边为奇数,则此三角形的周长为 .
⑺已知周长小于13的三角形三边长都是质数,且其中一条边a长为3,求符合条件的三角形的个数.
⑻一个等腰三角形的一条边长为6,另两边长是不小于3且不大于13的奇数,求这个等腰三角形的周长.。