动态调节模型的最小二乘迭代辨识方法
- 格式:pdf
- 大小:152.96 KB
- 文档页数:4
电机动态参数的鲁棒最小二乘辨识方法研究电机动态参数的鲁棒最小二乘辨识方法是一种常用的电机参数辨识方法,它可以通过对电机的输入输出数据进行处理,得到电机的动态参数,从而实现对电机的控制和优化。
本文将介绍电机动态参数的鲁棒最小二乘辨识方法的研究。
一、电机动态参数的鲁棒最小二乘辨识方法的基本原理电机动态参数的鲁棒最小二乘辨识方法是一种基于最小二乘法的电机参数辨识方法。
它的基本原理是利用电机的输入输出数据,通过最小二乘法对电机的动态参数进行辨识。
具体来说,它可以通过以下步骤实现:1. 收集电机的输入输出数据,包括电机的电流、电压、速度、位置等参数。
2. 建立电机的动态模型,包括电机的电路模型和机械模型。
3. 利用最小二乘法对电机的动态参数进行辨识,包括电机的电阻、电感、转动惯量、摩擦系数等参数。
4. 对辨识结果进行鲁棒性分析,评估辨识结果的可靠性和精度。
二、电机动态参数的鲁棒最小二乘辨识方法的研究进展电机动态参数的鲁棒最小二乘辨识方法是一种经典的电机参数辨识方法,已经得到了广泛的应用和研究。
近年来,随着电机控制技术的不断发展和电机应用领域的不断拓展,电机动态参数的鲁棒最小二乘辨识方法也得到了进一步的研究和改进。
1. 基于神经网络的电机参数辨识方法神经网络是一种强大的模式识别和数据处理工具,已经被广泛应用于电机参数辨识领域。
基于神经网络的电机参数辨识方法可以通过对电机的输入输出数据进行训练,得到电机的动态参数,具有较高的精度和鲁棒性。
2. 基于模糊逻辑的电机参数辨识方法模糊逻辑是一种基于模糊集合理论的推理方法,可以处理不确定性和模糊性问题。
基于模糊逻辑的电机参数辨识方法可以通过对电机的输入输出数据进行模糊化处理,得到电机的动态参数,具有较高的鲁棒性和可靠性。
3. 基于深度学习的电机参数辨识方法深度学习是一种基于神经网络的机器学习方法,可以处理大规模、高维度的数据。
基于深度学习的电机参数辨识方法可以通过对电机的输入输出数据进行深度学习,得到电机的动态参数,具有较高的精度和鲁棒性。
第3章 线性动态模型参数辨识-最小二乘法3.1 辨识方法分类根据不同的辨识原理,参数模型辨识方法可归纳成三类: ① 最小二乘类参数辨识方法,其基本思想是通过极小化如下准则函数来估计模型参数:min )()ˆ(ˆ==∑=θθLk k J 12ε 其中)(k ε代表模型输出与系统输出的偏差。
典型的方法有最小二乘法、增广最小二乘法、辅助变量法、广义最小二乘法等。
② 梯度校正参数辨识方法,其基本思想是沿着准则函数负梯度方向逐步修正模型参数,使准则函数达到最小,如随机逼近法。
③ 概率密度逼近参数辨识方法,其基本思想是使输出z 的条件概率密度)|(θz p 最大限度地逼近条件0θ下的概率密度)|(0θz p ,即)|()ˆ|(0m a x θθz p z p −−→−。
典型的方法是极大似然法。
3.2 最小二乘法的基本概念● 两种算法形式 ① 批处理算法:利用一批观测数据,一次计算或经反复迭代,以获得模型参数的估计值。
② 递推算法:在上次模型参数估计值)(ˆ1-k θ的基础上,根据当前获得的数据提出修正,进而获得本次模型参数估计值)(ˆk θ,广泛采用的递推算法形式为() ()()()~()θθk k k k d z k =-+-1K h其中)(ˆk θ表示k 时刻的模型参数估计值,K (k )为算法的增益,h (k -d ) 是由观测数据组成的输入数据向量,d 为整数,)(~k z 表示新息。
● 最小二乘原理定义:设一个随机序列)},,,(),({L k k z 21∈的均值是参数θ 的线性函数E{()}()T z k k θ=h其中h (k )是可测的数据向量,那么利用随机序列的一个实现,使准则函数21()[()()]LT k J z k k θθ==-∑h达到极小的参数估计值θˆ称作θ的最小二乘估计。
● 最小二乘原理表明,未知参数估计问题,就是求参数估计值θˆ,使序列的估计值尽可能地接近实际序列,两者的接近程度用实际序列与序列估计值之差的平方和来度量。
动态调节模型的三阶段最小二乘辨识方法
王杰;初燕云
【期刊名称】《南京信息工程大学学报》
【年(卷),期】2013(005)001
【摘要】针对动态调节模型提出一种三阶段最小二乘辨识方法.先将模型变换为CARMA模型,估计出变换后的CARMA模型参数,再利用已得到的参数估计依次辨识原模型中的系统模型参数和噪声模型参数.该方法原理简单,有效可行.
【总页数】5页(P55-59)
【作者】王杰;初燕云
【作者单位】青岛大学自动化工程学院,青岛,266071;聊城职业技术学院工程学院,聊城,252000
【正文语种】中文
【中图分类】TP273
【相关文献】
1.辅助模型辨识方法(5):最小二乘辨识 [J], 丁锋
2.基于最小二乘模型的Bayes参数辨识方法 [J], 王晓侃
3.动态调节模型的最小二乘迭代辨识方法 [J], 陈晓伟;丁锋
4.基于粒子群算法和最小二乘法的磁流变阻尼器Bouc-Wen模型参数辨识方法 [J], 胡国良;林豪;李刚
5.带可变遗忘因子递推最小二乘法的超级电容模组等效模型参数辨识方法 [J], 谢
文超;赵延明;方紫微;刘树立
因版权原因,仅展示原文概要,查看原文内容请购买。
《系统辨识基础》第17讲要点第5章 最小二乘参数辨识方法5.9 最小二乘递推算法的逆问题辨识是在状态可测的情况下讨论模型的参数估计问题,滤波是在模型参数已知的情况下讨论状态估计问题,两者互为逆问题。
5.10 最小二乘递推算法的几种变形最小二乘递推算法有多种不同的变形,常用的有七种情况:① 基于数据所含的信息内容不同,对数据进行有选择性的加权; ② 在认为新近的数据更有价值的假设下,逐步丢弃过去的数据; ③ 只用有限长度的数据;④ 加权方式既考虑平均特性又考虑跟综能力; ⑤ 在不同的时刻,重调协方差阵P (k ); ⑥ 设法防止协方差阵P (k )趋于零; 5.10.1 选择性加权最小二乘法 把加权最小二乘递推算法改写成[]⎪⎪⎩⎪⎪⎨⎧--=+--=--+-=-)1()]()([)(1)()1()()()()1()()()]1(ˆ)()()[()1(ˆ)(ˆ1k k k k k k k k k k k k k k k z k k k P h K P h P h h P K h K τττθθθI ΛΛ算法中引进加权因子,其目的是便于考虑观测数据的可信度.选择不同的加权方式对算法的性质会有影响,下面是几种特殊的选择:① 一种有趣的情况是Λ()k 取得很大,在极限情况下,算法就退化成正交投影算法。
也就是说,当选择⎩⎨⎧=-≠-∞=0)()1()(,00)()1()(,)(k k k k k k k h P h h P h ττΛ 构成了正交投影算法⎪⎪⎩⎪⎪⎨⎧--=--=--+-=)1()]()([)()()1()()()1()()]1(ˆ)()()[()1(ˆ)(ˆk k k k k k k k k k k k k z k k k P h K P h P h h P K h K τττθθθI 算法初始值取P ()0=I 及 ()θε0=(任定值),且当0)()1()(=-k k k h P h τ时,令K ()k =0。
---------------------------------------------------------------最新资料推荐------------------------------------------------------系统辨识—最小二乘法最小二乘法参数辨识 1 引言系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。
现代控制理论中的一个分支。
通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。
对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。
对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。
而系统辨识所研究的问题恰好是这些问题的逆问题。
通常,预先给定一个模型类={M}(即给定一类已知结构的模型),一类输入信号 u 和等价准则 J=L(y,yM)(一般情况下,J 是误差函数,是过程输出 y 和模型输出 yM 的一个泛函);然后选择使误差函数J 达到最小的模型,作为辨识所要求的结果。
系统辨识包括两个方面:结构辨识和参数估计。
在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。
2 系统辨识的目的在提出和解决一个辨识问题时,明确最终使1 / 17用模型的目的是至关重要的。
它对模型类(模型结构)、输入信号和等价准则的选择都有很大的影响。
通过辨识建立数学模型通常有四个目的。
①估计具有特定物理意义的参数有些表征系统行为的重要参数是难以直接测量的,例如在生理、生态、环境、经济等系统中就常有这种情况。
这就需要通过能观测到的输入输出数据,用辨识的方法去估计那些参数。
②仿真仿真的核心是要建立一个能模仿真实系统行为的模型。
用于系统分析的仿真模型要求能真实反映系统的特性。
模型参数辨识方法1.最小二乘法(Least Squares Method)最小二乘法是一种常用的参数辨识方法,它通过最小化观测数据与模型预测值之间的平方误差来确定模型的参数值。
最小二乘法可以用于线性和非线性模型。
对于线性模型,最小二乘法可以直接求解闭式解;对于非线性模型,可以使用数值优化算法进行迭代计算。
2.极大似然估计(Maximum Likelihood Estimation)极大似然估计是一种常用的统计推断方法,也可以用于模型参数辨识。
该方法假设观测数据满足一些统计分布,通过最大化观测数据出现的概率来估计参数值。
具体方法是构造似然函数,即给定观测数据下的参数条件下的概率密度函数,并最大化该函数。
3.贝叶斯推断(Bayesian Inference)贝叶斯推断是一种基于贝叶斯定理的统计推断方法,它通过先验分布和观测数据的条件概率来更新参数的后验分布。
贝叶斯推断可以通过采样方法如马尔科夫链蒙特卡洛(MCMC)来计算参数的后验分布,进而得到参数的估计值和置信区间。
4.参数辨识的频域方法频域方法在信号处理和系统辨识中应用广泛。
它基于信号的频谱特性和一些假设,通过谱估计方法如传递函数辨识和系统辨识,来推断模型的参数。
典型的频域方法有最小相位辨识、系统辨识的频域特性估计等。
5.信息矩阵(Information matrix)和似然比检验(Likelihoodratio test)信息矩阵和似然比检验是统计推断中的基本工具,也可以用于模型参数辨识。
信息矩阵衡量了参数估计的方差和协方差,可以通过信息矩阵来进行参数辨识的有效性检验。
似然比检验则是比较两个模型的似然函数值,用于判断哪个模型更好地解释观测数据。
总之,模型参数辨识是通过观测数据,推断出模型的参数值。
常用的方法包括最小二乘法、极大似然估计、贝叶斯推断、频域方法和信息矩阵等。
在实际应用中,选择合适的参数辨识方法需要考虑模型的特点、数据的性质以及求解的复杂度等因素。