基于最小二乘法的系统参数辨识
- 格式:doc
- 大小:194.00 KB
- 文档页数:6
在线参数辨识方法1. 简介在线参数辨识方法是指在系统运行过程中,利用实时采集的数据对系统的参数进行估计和辨识的方法。
通过在线参数辨识,可以实时更新系统模型的参数,提高系统的控制性能和适应性。
在线参数辨识方法在自动控制领域具有广泛的应用。
它可以用于工业过程控制、机器人控制、飞行器控制等各种领域。
通过不断地对系统进行参数辨识,可以使系统更好地适应不确定性和变化。
本文将介绍在线参数辨识方法的基本原理、常用算法以及应用案例,并分析其优点和不足之处。
2. 基本原理在线参数辨识方法基于最小二乘法原理,通过最小化测量值与模型预测值之间的误差来估计系统的参数。
其基本步骤如下:1.收集实时数据:利用传感器等设备采集系统的输入输出数据。
2.确定模型结构:根据系统特性选择合适的数学模型,并确定模型中需要估计的参数。
3.建立误差函数:将测量值与模型预测值之间的误差表示为一个函数,通常采用最小二乘法。
4.参数估计:通过优化算法求解误差函数的最小值,得到系统的参数估计值。
5.参数更新:根据新获得的参数估计值更新系统模型,以便在下一次辨识时使用。
3. 常用算法在线参数辨识方法有多种常用的算法,下面介绍其中几种常见的算法:3.1 最小二乘法最小二乘法是在线参数辨识中最基本也是最常用的方法。
它通过最小化测量值与模型预测值之间的平方误差来估计系统的参数。
最小二乘法可以通过解析方法或迭代方法求解。
3.2 递推最小二乘法递推最小二乘法是一种在线更新参数的方法。
它利用递推公式和滑动窗口技术,在每个时间步都更新参数估计值。
递推最小二乘法能够实时跟踪系统参数变化,并具有较好的收敛性能。
3.3 卡尔曼滤波器卡尔曼滤波器是一种基于状态空间模型和观测方程的滤波器,可以用于在线参数辨识。
它通过对系统状态和观测数据的联合估计,实现对系统参数的在线估计。
3.4 神经网络神经网络是一种基于人工神经元模型的参数辨识方法。
通过训练神经网络,可以实现对系统参数的在线辨识。
基于遗忘因子递推最小二乘法的锂电池等效电路模型参数辨识
方法
基于遗忘因子递推最小二乘法的锂电池等效电路模型参数辨识方法是一种将遗忘因子递推最小二乘法应用于锂电池等效电路模型参数辨识的方法。
锂电池等效电路模型是描述锂电池动态响应的数学模型,通过辨识锂电池等效电路模型的参数,可以准确预测锂电池的充放电过程。
遗忘因子递推最小二乘法是一种增量式最小二乘法,可以实时辨识参数,并能快速适应参数变化。
在锂电池等效电路模型参数辨识中,遗忘因子递推最小二乘法可以根据实时观测数据,不断更新锂电池等效电路模型的参数。
具体的方法步骤如下:
1. 设置初始参数。
根据锂电池等效电路模型的特性,设置初始参数的取值。
2. 获取实时观测数据。
通过实验或监测系统获取锂电池的实时观测数据,例如电压、电流等。
3. 根据观测数据计算预测值。
利用当前的参数值和锂电池等效电路模型,计算预测的电压、电流等值。
4. 计算测量误差。
将观测数据与预测值进行比较,计算测量误差。
5. 更新参数。
利用遗忘因子递推最小二乘法的更新公式,根据测量误差调整参数值。
6. 重复步骤3-5,直到达到收敛条件。
通过以上步骤,可以实现锂电池等效电路模型参数的实时辨识
和更新。
这种方法具有较高的辨识精度和实时性,适用于锂电池等效电路模型参数的在线辨识和控制应用。
学号:XXXX大学系统辨识实验报告最小二乘辨识的应用院(系)计算机与信息工程学院专业控制理论与控制工程学生姓名XXXXX成绩指导教师2013年6月摘要:系统辨识在工程中的应用非常广泛,系统辨识的方法有很多种,最小二乘法是一种应用极其广泛的系统辨识方法。
本文阐述了动态系统模型的建立及其最小二乘法在系统辨识中的应用,并通过实例分析说明了最小二乘法应用于系统辨识,比如模糊最小二乘辨识应用于等精度测量,最小二乘法辨识算法在故障检测中的应用,最小二乘辨识模型的控制器误差修正。
关键词:最小二乘法;系统辨识;辨识精度随着科学技术的不断发展,人们认识自然、利用自然的能力越来越强,对于未知对象的探索也越来越深入。
我们所研究的对象,可以依据对其了解的程度分为三种类型:白箱、灰箱和黑箱。
如果我们对于研究对象的内部结构、内部机制了解很深入的话,这样的研究对象通常称之为“白箱”;而有的研究对象,我们对于其内部结构、机制只了解一部分,对于其内部运行规律并不十分清楚,这样的研究对象通常称之为“灰箱”;如果我们对于研究对象的内部结构、内部机制及运行规律均一无所知的话,则把这样的研究对象称之为“黑箱”。
研究灰箱和黑箱时,将研究的对象看作是一个系统,通过建立该系统的模型,对模型参数进行辨识来确定该系统的运行规律。
对于动态系统辨识的方法有很多,但其中应用最广泛,辨识效果良好的就是最小二乘辨识方法,研究最小二乘法在系统辨识中的应用具有现实的、广泛的意义。
1 动态系统模型的建立要想了解动态系统的特性,首先就要根据先验知识和对于该系统了解的程度建立该动态系统的模型。
动态系统的建模问题是进行系统辨识首先要解决的问题。
建立被控系统的数学模型通常有理论分析和试验分析两种方法。
理论分析方法就是在已知系统内部规律的基础上(此时该系统即为“白箱”),推导出系统的动态方程和输入输出关系。
然而人们对一些复杂被控对象(“灰箱”或“黑箱”)的内部规律及其诸多重要参数认识得并不十分清楚。
基于广义最小二乘法的系统参数辨识与仿真摘要:系统辨识是自动控制学科的一个重要分支,由于其特殊作用,已经广泛应用于各种领域,尤其是复杂系统或参数不容易确定的系统的建模。
过去,系统辨识主要用于线性系统的建模,经过多年的研究,已经形成成熟的理论。
但随着社会、科学的发展,非线性系统越来越受到人们的关注,其控制与模型之间的矛盾越来越明显,因而非线性系统的辨识问题也越来越受到重视,其便是理论不断发展和完善。
本文重点介绍了系统参数辨识中广义最小二乘法的基本原理,具体说明了基于广义最小二乘法参数辨识在Matlab中的实现方法,结合实例给出相应的仿真程序及结果分析。
关键词:系统辨识;参数辨识;广义最小二乘法;Matlab1.引言所谓辨识就是通过测取研究对象在人为输入作用下的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。
这是因为对象的动态特性被认为必然表现在它的变化着的输入输出数据之中,辨识只不过是利用数学的方法从数据序列中提炼出对象的数学模型而已。
在系统辨识领域中,最小二乘法是最基本最常用的方法。
可用于动态、静态、线性、非线性系统。
这种方法只适用于噪声是不相关随机序列时才是无偏估计,但大多数情况下噪声却是相关随机序列。
所以本文讨论克服最小二乘法有偏估计的一种方法—广义最小二乘法。
2.系统辨识一般而言,建立系统的数学模型有两种方法:激励分析法和系统辨识法。
前者是按照系统所遵循的物化(或社会、经济等)规律分析推导出模型。
后者则是从实际系统运行和实验数据处理获得模型。
如图1所示,系统辨识就是从系统的输入输出数据测算系统数学模型的理论和方法。
更进一步的定义是L.A.Zadeh曾经与1962年给出的,即“系统辨识是在输入和输出的基础上,从系统的一类系统范围内,确立一个与所实验系统等价的系统。
”另外,系统辨识还应该具有3个基本要素,即模型类、数据和准则。
被辨识系统模型根据模型形式可分为参数模型和非参数模型两大类。
系统辨识大作业最小二乘法及其相关估值方法应用学院:自动化学院学号:姓名:日期:基于最小二乘法的多种系统辨识方法研究一、实验原理1.最小二乘法在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。
设单输入-单输出线性定长系统的差分方程为(5.1.1)式中:为随机干扰;为理论上的输出值。
只有通过观测才能得到,在观测过程中往往附加有随机干扰。
的观测值可表示为(5.1.2)式中:为随机干扰。
由式(5.1.2)得(5.1.3)将式(5.1.3)带入式(5.1.1)得(5.1.4)我们可能不知道的统计特性,在这种情况下,往往把看做均值为0的白噪声。
设(5.1.5)则式(5.1.4)可写成(5.1.6)在观测时也有测量误差,系统内部也可能有噪声,应当考虑它们的影响。
因此假定不仅包含了的测量误差,而且包含了的测量误差和系统内部噪声。
假定是不相关随机序列(实际上是相关随机序列)。
现分别测出个随机输入值,则可写成个方程,即上述个方程可写成向量-矩阵形式(5.1.7) 设则式(5.1.7)可写为(5.1.8)式中:为维输出向量;为维噪声向量;为维参数向量;为测量矩阵。
因此式(5.1.8)是一个含有个未知参数,由个方程组成的联立方程组。
如果,方程数少于未知数数目,则方程组的解是不定的,不能唯一地确定参数向量。
如果,方程组正好与未知数数目相等,当噪声时,就能准确地解出(5.1.9)如果噪声,则(5.1.10)从上式可以看出噪声对参数估计是有影响的,为了尽量较小噪声对估值的影响。
在给定输出向量和测量矩阵的条件下求系统参数的估值,这就是系统辨识问题。
可用最小二乘法来求的估值,以下讨论最小二乘法估计。
2.最小二乘法估计算法设表示的最优估值,表示的最优估值,则有(5.1.11)写出式(5.1.11)的某一行,则有(5.1.12) 设表示与之差,即-(5.1.13)式中成为残差。
把分别代入式(5.1.13)可得残差。
设则有(5.1.14) 最小二乘估计要求残差的平方和为最小,即按照指数函数(5.1.15) 为最小来确定估值。
基于递推最小二乘法的永磁伺服系统参数辨识荀倩;王培良;李祖欣;蔡志端;秦海鸿【摘要】为使永磁同步电机(PMSM)控制系统在复杂环境中具有较好的动态性能,伺服系统必须具有参数辨识和参数自整定的功能,而转动惯量与负载转矩辨识是其首要解决的问题.采用零阶保持器对电机运动方程进行离散化建模,考虑了摩擦系数对辨识结果的影响,将基于遗忘因子递推最小二乘辨识算法应用于该离散模型可以同时辨识出系统转动惯量、负载转矩和摩擦系数.同时,针对Matlab/Simulink中库模型参数不能在线动态修改的缺点,提出改进型PMSM模型,以此搭建了伺服系统的仿真控制模型,完成了定参数与变参数的动态仿真.最后,在stm32微控制器上进行了实验验证.仿真和实验表明该文提出的电机离散化模型和参数辨识方法具有一定的准确性和实时性,仿真结果验证了改进型PMSM模型在变参数仿真研究中的实用性.【期刊名称】《电工技术学报》【年(卷),期】2016(031)017【总页数】9页(P161-169)【关键词】永磁同步电机;动态性能;参数辨识;离散模型;遗忘因子递推最小二乘法【作者】荀倩;王培良;李祖欣;蔡志端;秦海鸿【作者单位】湖州师范学院工学院湖州313000;湖州师范学院工学院湖州313000;湖州师范学院工学院湖州313000;湖州师范学院工学院湖州313000;南京航空航天大学江苏省新能源发电与电能变换重点实验室南京211100【正文语种】中文【中图分类】TM351永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)由于结构简单、运行可靠、功率密度大、效率高等优点,易于构成高性能的伺服系统,被广泛应用于家用电器、交通工具、工业控制等各个领域[1],在电力拖动系统中具有重要的应用价值。
而永磁同步电机是集电气与机械为一体的部件,机械在运动中会受到诸多无法预知因素的影响,如外界负载扰动、摩擦力扰动或系统参数变化等[2]。
《系统辨识基础》第17讲要点第5章 最小二乘参数辨识方法5.9 最小二乘递推算法的逆问题辨识是在状态可测的情况下讨论模型的参数估计问题,滤波是在模型参数已知的情况下讨论状态估计问题,两者互为逆问题。
5.10 最小二乘递推算法的几种变形最小二乘递推算法有多种不同的变形,常用的有七种情况:① 基于数据所含的信息内容不同,对数据进行有选择性的加权; ② 在认为新近的数据更有价值的假设下,逐步丢弃过去的数据; ③ 只用有限长度的数据;④ 加权方式既考虑平均特性又考虑跟综能力; ⑤ 在不同的时刻,重调协方差阵P (k ); ⑥ 设法防止协方差阵P (k )趋于零; 5.10.1 选择性加权最小二乘法 把加权最小二乘递推算法改写成[]⎪⎪⎩⎪⎪⎨⎧--=+--=--+-=-)1()]()([)(1)()1()()()()1()()()]1(ˆ)()()[()1(ˆ)(ˆ1k k k k k k k k k k k k k k k z k k k P h K P h P h h P K h K τττθθθI ΛΛ算法中引进加权因子,其目的是便于考虑观测数据的可信度.选择不同的加权方式对算法的性质会有影响,下面是几种特殊的选择:① 一种有趣的情况是Λ()k 取得很大,在极限情况下,算法就退化成正交投影算法。
也就是说,当选择⎩⎨⎧=-≠-∞=0)()1()(,00)()1()(,)(k k k k k k k h P h h P h ττΛ 构成了正交投影算法⎪⎪⎩⎪⎪⎨⎧--=--=--+-=)1()]()([)()()1()()()1()()]1(ˆ)()()[()1(ˆ)(ˆk k k k k k k k k k k k k z k k k P h K P h P h h P K h K τττθθθI 算法初始值取P ()0=I 及 ()θε0=(任定值),且当0)()1()(=-k k k h P h τ时,令K ()k =0。
基于最小二乘法的系统参数辨识研究生二队李英杰 082068摘要:系统辨识是自动控制学科的一个重要分支,由于其特殊作用,已经广泛应用于各种领域,尤其是复杂系统或参数不容易确定的系统的建模。
过去,系统辨识主要用于线性系统的建模,经过多年的研究,已经形成成熟的理论。
但随着社会、科学的发展,非线性系统越来越受到人们的关注,其控制与模型之间的矛盾越来越明显,因而非线性系统的辨识问题也越来越受到重视,其辨识理论不断发展和完善本。
文重点介绍了系统参数辨识中最小二乘法的基本原理,并通过热敏电阻阻值温度关系模型的辨识实例,具体说明了基于最小二乘法参数辨识在Matlab中的实现方法。
结果表明基于最小二乘法具有算法简单、精度较高等优点。
1. 引言所谓辨识就是通过测取研究对象在人为输入作用下的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。
这是因为对象的动态特性被认为必然表现在它的变化着的输入输出数据之中,辨识只不过是利用数学的方法从数据序列中提炼出对象的数学模型而已[1]。
最小二乘法是系统参数辨识中最基本最常用的方法。
最小二乘法因其算法简单、理论成熟和通用性强而广泛应用于系统参数辨识中。
本文基于热敏电阻阻值与温度关系数据,介绍了最小二乘法的参数辨识在Matlab中的实现。
2. 系统辨识一般而言,建立系统的数学模型有两种方法:激励分析法和系统辨识法。
前者是按照系统所遵循的物化(或社会、经济等)规律分析推导出模型。
后者则是从实际系统运行和实验数据处理获得模型。
如图1 所示,系统辨识就是从系统的输入输出数据测算系统数学模型的理论和方法。
更进一步的定义是L.A.Zadeh 曾经与1962 年给出的,即“系统辨识是在输入和输出的基础上,从系统的一类系统范围内,确立一个与所实验系统等价的系统”。
另外,系统辨识还应该具有3 个基本要素,即模型类、数据和准则[5]。
被辨识系统模型根据模型形式可分为参数模型和非参数模型两大类。
所谓参数模型是指微分方程、差分方程、状态方程等形式的数学模型;而非参数模型是指频率响应、脉冲响应、传递函数等隐含参数的数学模型。
在辨识工程中,模型的确定主要根据经验对实际对象的特性进行一定程度上的假设,如对象的模型是线性的还是非线性的、是参数模型还是非参数模型等。
在模型确定之后,就可以根据对象的输入输出数据,按照一定的辨识算法确定模型的参数[4]。
图1 被研究的动态系统3. 最小二乘法(LS)参数估计方法对于参数模型辨识结构,系统辨识的任务是参数估计,即利用输入输出数据估计这些参数,建立系统的数学模型。
在参数估计中最常用的是最小二乘法(LS)、误差预测估计法、辅助变量法(IV 估计)、神经网络法等[4]。
由于最小二乘法容易理解和掌握,利用最小二乘法原理所拟定的辨识算法在实施上比较简单,并且不需要数理统计的知识,使得最小二乘法广泛应用于系统辨识领域,但它也存在着一定的局限和不足,当系统噪声为有色噪声时,最小二乘法不能给出无偏一致估计[5]。
本文应用热敏电阻阻值温度关系模型进行了参数辨识。
设一个SISO(单输入/单输出)过程的“黑箱”结构,如图2:图2 SISO 系统的“黑箱”结构系统的传递函数为:nn n n z a z a z a z b z b z b k u k y z G ------+++++++== 221122111)()()(,则∑∑==-+--=ni i ni i i k u b i k y a k y 11)()()(。
若考虑被辨识系统或观测信息中含有噪声)(k v ,最终输出)()()()(11k v i k u b i k y a k z ni i ni i +-+--=∑∑==。
其中:)(k z 为系统输出量的第k 次观测值;)(k y 为系统输出量的第k 次真值; )(k u 为系统的第k 个输入值; )(k v 是均值为0的随机噪声。
如果定义)](,),2(),1(),(,),2(),1([)(n k u k u k u n k y k y k y k h ---------= ,T n n b b b a a a ],,,,,,,[2121 =θ,)(k z 可以表示为:)()()(k v k h k z +=θ,式中θ为待估参数。
令m k ,,2,1 =,则有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()2()1(m z z z Z m ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()1()()1()2()1()2()1()1()0()1()0()()2()1(n m u m u n m y m y n u u n y y n u u n y y m h h h H m[]T n n b b a a 11=θ,[]T m m v v v V )()2()1( =,m m m V H Z +=θ最小二乘的思想就是寻找一个θ的估计值θˆ,使得各次测量的),1(m i Z i=与由估计θˆ确定的量测估计θˆˆi i H Z =之差的平方和最小,即:m in )()()(=--=∧∧∧θθθm m Tm m H Z H Z J ,0)ˆ(2ˆ=--=∂∂=θθθθm m T m H Z H J,可得m T m mT m Z H H H =θˆ。
如果mH 的行数大于等于列数,即n m 2≥,m T m H H 满秩,即n H H m Tm 2)(rank =,则1)(-m Tm H H 存在。
则θ的最小二乘估计为m T m m T m Z H H H 1)(ˆ-=θ 最小二乘估计虽然不能满足量测方程中的每一个方程,使每个方程都有偏差,但它使所有方程偏差的平方和达到最小,兼顾了所有方程的近似程度,使整体误差达到最小,这对抑制测量误差),,1)((m i i v =是有益的。
4. 实例分析表1中是在不同温度下测量同一热敏电阻的阻值,根据测量值确定该电阻的数学模型,并求出当温度在C ︒70时的电阻值。
图3在给定的温度下热敏电阻的测量值可以假设阻值与温度的关系为bt a R +=,则参数a 、b 的最小二乘估计为:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛--=∑∑∑∑∑∑∑∑∑∑∑===========2112111211211121ˆˆN i i N i i N i i N i i N i i i N i i N i i N i i N i i i N i i N i i t t N t R t R N b t t N t t R t R a在Matlab 环境下,编辑M 函数文件 clear all close all clcT=[20.5 26 32.7 40 51 61 73 80 88 95.7]; %温度 R=[765 790 826 850 873 910 942 980 1010 1032]; %阻值 [m,n]=size(T); figure plot(T,R,'b+') t=0; z=0; tz=0; tt=0;for i=1:nt=t+T(i);tt=tt+T(i)*T(i);z=z+R(i);tz=tz+T(i)*R(i);enda=(tt*z-t*tz)/(n*tt-t*t);b=(n*tz-t*z)/(n*tt-t*t);R1=a+70*b;%最小二乘拟合A=polyfit(T,R,1);z=polyval(A,T);%画图figureplot(T,z);figureplot(T,R,'b+')hold onplot(T,z,'r');hold off经过仿真运算可得:a =702.7620,b =3.4344,t.=。
702+7620.3R4344 70时,电阻阻值R1=943.1681热敏电阻阻值与温度关系曲线如图4所示,在C︒最小二乘法的系统辨识模型同实际比较结果如图5所示。
图4 阻值与温度关系曲线图5 基于最小二乘法的系统辨识模型同实际比较结果从参数辨识的结果可得出结论:辨识模型同实际结果的拟合度可以看出,最小二乘法辨识参数估计精度比较高,证明了最小二乘法的有效性。
系统辨识的方法有很多,最小二乘法是其中最基本、应用最广泛的一种系统辨识方法。
最小二乘法可用于动态系统,也可以用于静态系统;可用于线性系统,也可以用于非线性系统;可用于离线估计,也可以用于在线估计,这种方法不仅在今天,而且在未来都会有非常广泛的应用前景。
参考文献[1] 李言俊,张科. 系统辨理论及应用[M]. 北京:国防工业出版社,2006[2] 刘叔军,盖晓华,樊京,崔世林等.MATLAB7.0 控制系统应用与实例[M]. 北京:机械工业出版社,2005[3] 石贤良,吴成富. 基于MTALAB 的最小二乘法参数辨识与仿真[J]. 微机处理,2005:44-46[4] 严晓久,周爱国,林建平,吴晔. 基于辅助变量法的系统参数辨识[J]. 机床与液压,2006:180-184[5] 王秀峰,卢桂章. 系统建模与辨识[M]. 北京:电子工业出版社,2004。