八上期末复习---勾股定理难题训练(无答案)
- 格式:docx
- 大小:136.24 KB
- 文档页数:5
八年级勾股定理压轴题八年级勾股定理选择压轴题一、单选题1.下列各组数中,是勾股数的是( )A. 12,15,18B. 12,35,36C. 2,3,4D. 5,12,13【答案】D2.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于( )A. 1-B. 1-C.D.【答案】D【解析】试题分析:设CD与B′C′相交于点O,连接OA.根据旋转的性质,得∠BAB′=30°,则∠DAB′=60°.3.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )A. 5B. 25C. 10 +5D. 35【答案】B【解析】试题解析:将长方体展开,连接A、B,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:AB= .4.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=( )A. 4B. 5C. 6D. 7【答案】A【解析】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A.5.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为81,小正方形面积为16,若用x,y表示直角三角形的两直角边(x>y),请观察图案,指出以下关系式中不正确的是( )A. x2+y2=81B. x+y=13C. 2xy+16=81D. x-y=4【答案】B6.如图,带阴影的长方形面积是( )A. 9 cm2B. 24 cm2C. 45 cm2D. 51 cm2【答案】C【解析】试题解析:由图可知,△ABC是直角三角形,∵AC=8cm,BC=12cm,∴AB= =15cm,∴S阴影=15×3=45cm2.故选C.7.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则大正方形与小正方形的面积差是( )A. 9B. 36C. 27D. 34【答案】B【解析】大正方形的面积为32+62=45,小正方形的面积为(6-3)2=9,则面积差为45-9=36.故选B.8.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为( )A. B. C. 3 D. 2【答案】B故选B.9.如图,一棵大树在一次强台风中于离地面5m处折断倒下,倒下后树顶落在树根部大约12m处。
八年级上册勾股定理难题Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】勾股定理专题1、已知直角三角形的两分别为4和5,则第三条边是____________.2.若等腰三角形的两边长为4和6,则底边上的高等于__________________.3.△ABC 中,AB=13,AC=15,高AD=12,则△ABC 的周长为________________.4.已知△ABC 中,a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由.5.已知a 、b 、c 为∆ABC 的三边,且满足a c b c a b 222244-=-,试判断∆ABC 的形状.6.在直线l 上依次摆放着七个正方形(如图4所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S 12、、S S S S S S 341234、,则+++=_____________。
7.长方体的长为15,宽10,高20,点B 与点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B,那么它需要爬行的最短距离是___________.8.高分别是5cm ,4cm ,3cm 的长方体木块,一只蚂蚁要从长方体的一个顶点A 处沿长方体的表面爬到长方体上和A 相对的顶点B 处,则需要爬行的最短路径长为9.图,在Rt△ABC 中,∠C =90°,AC =4,BC =3.在Rt△ABC 的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,如图所示.要求:在答题卡的两个备用图中分别画出两种与示例不同的拼接方法,并在图中标明拼接的直角三角形的三边长.10.△ABC 中,BC=a ,AC=b ,AB=c ,若∠C=90°,如图9(1),根据勾股定理,则a b c 222+=。
若△ABC 不是直角三角形,如图9(2)和9(3),请你类比勾股定理,试猜想a b 22+与c 2的关系,并证明你的结论。
勾股定理中的常考问题6种类型48道【类型一用勾股定理解决折叠问题】1.如图,将长方形ABCD沿着AE折叠,点D落在BC边上的点F处,已知AB=8,BC=10,则EC的长为()A.4B.3C.5D.2【答案】B【分析】长方形ABCD沿着AE折叠,得AD=AF=BC=10,EF=ED,根据勾股定理得BF=6,则CF=4,设EC=x,ED=8−x,根据勾股定理得EF2=EC2+CF2,即可解得EC的长.【详解】解:∵四边形ABCD是长方形,∴AD=BC=10,DC=AB=8,∵长方形ABCD沿着AE折叠,∴AD=AF=BC=10,EF=ED,∴BF=√AF2−AB2=√100−64=6,CF=BC−BF=4,设EC=x,ED=8−x,∴EF2=EC2+CF2,即(8−x)2=x2+42,解得x=3,所以EC=3,故选:B.【点睛】本题主要考查了图形折叠以及勾股定理等知识内容,掌握图形折叠的性质是解题的关键.2.如图,有一块直角三角形纸片,∠C=90°,AC=4,BC=3,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为()【答案】C【分析】利用勾股定理求得AB=5,由折叠的性质可得AB=AE=5,DB=DE,求得CE=1,设DB=DE=x,则CD=3−x,根据勾股定理可得12+(3−x)2=x2,进而求解即可.【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=√32+42=5,由折叠的性质得,AB=AE=5,DB=DE,∴CE=1,设DB=DE=x,则CD=3−x,在Rt△CED中,12+(3−x)2=x2,,解得x=53故选:C.【点睛】本题考查勾股定理、折叠的性质,熟练掌握勾股定理是解题的关键.【答案】B【分析】根据图形翻折变换的性质可知,AE=BE,设AE=x,则BE=x,CE=8−x,再Rt△BCE中利用勾股定理即可求出CE的长度.【详解】解:∵△ADE翻折后与△BDE完全重合,∴AE=BE,设AE=x,则BE=x,CE=8−x,∵在Rt△BCE中,CE2=BE2−BC2,即(8−x)2=x2−62,解得,x=7,4.∴CE=74故选:B【点睛】本题考查了图形的翻折变换,解题中应注意折叠是一种对称变换,属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.4.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()【答案】B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=√AC2−AB2=√52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.【点睛】本题考查了勾股定理与折叠问题,熟练掌握勾股定理是解题的关键.5.如图,矩形纸片ABCD的边AB长为4,将这张纸片沿EF折叠,使点C与点A重合,已知折痕EF长为2√5,则BC长为()A.4.8B.6.4C.8D.10【答案】C【分析】过点F作FG⊥BC于点G,则四边形ABGF是矩形,从而FG=AB=4,在Rt△EFG中,利用勾股定理求得EG=√EF2−FG2=√(2√5)2−42=2.设BE=x,则BG=BE+EG=x+2.由∠AFE=∠CEF=∠AEF 得到AE=AF=BG=x+2,从而在Rt△ABE中,有AB2+BE2=AE2,代入即可解得x的值,从而得到BE,CE的长,即可得到BC.【详解】过点F作FG⊥BC于点G∵在矩形ABCD中,∠DAB=∠B=90°∴四边形ABGF是矩形∴FG=AB=4∴在Rt△EFG中,EG=√EF2−FG2=√(2√5)2−42=2设BE=x,则BG=BE+EG=x+2∵在矩形ABCD中,BC∥AD∴∠AFE=∠CEF由折叠得∠CEF=∠AEF∴AE=AF∵在矩形ABGF中,AF=BG=x+2∴AE=AF=x+2∵在Rt△ABE中,AB2+BE2=AE2∴42+x2=(x+2)2解得x=3即BE=3,AE=5∴由折叠可得CE=AE=5∴BC=BE+EC=3+5=8故选:C【点睛】本题考查矩形的性质,勾股定理的应用,利用勾股定理构造方程是解决折叠问题的常用方法.A.7B.136【答案】B【分析】根据题意可得AD=AB=2,∠B=∠ADB,CE=DE,∠C=∠CDE,可得∠ADE=90°,继而设AE=x,则CE=DE=3−x,根据勾股定理即可求解.【详解】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,∴AD=AB=2,∠B=∠ADB,∵折叠纸片,使点C与点D重合,∴CE=DE,∠C=∠CDE,∵∠BAC=90°,∴∠B+∠C=90°,∴∠ADB+∠CDE=90°,∴AD2+DE2=AE2,设AE=x,则CE=DE=3−x,∴22+(3−x)2=x2,,解得x=136即AE=13,6故选:B【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.7.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边BC沿CE翻折,点B落在点F处,连接CF交AB于点D,则FD的最大值为()【答案】D【分析】根据将边BC沿CE翻折,点B落在点F处,可得FD=CF−CD=4−CD,即知当CD最小时,FD最大,此时CD⊥AB,用面积法求出CD,即可得到答案.【详解】解:如图:∵将边BC沿CE翻折,点B落在点F处,∴CF=BC=4,∴FD=CF−CD=4−CD,当CD最小时,FD最大,此时CD⊥AB,∵∠ACB=90°,AC=3,BC=4,∴AB=√AC2+BC2=√32+42=5,∵2S△ABC=AC⋅BC=AB⋅CD,∴CD=AC⋅BCAB =3×45=125,∴FD=CF−CD=4−125=85,故选:D.【点睛】本题考查直角三角形中的翻折问题,涉及勾股定理及应用,解题的关键是掌握翻折的性质.A.73B.154【答案】B【分析】先求出BD=2,由折叠的性质可得DN=CN,则BN=8−DN,利用勾股定理建立方程DN2= (8−DN)2+4,解方程即可得到答案.【详解】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将Rt△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC−CN=8−DN,在Rt△DBN中,由勾股定理得DN2=BN2+DB2,∴DN2=(8−DN)2+4,∴DN=17,4,∴BN=BC−CN=154故选:B.【点睛】本题主要考查了勾股定理与折叠问题,正确理解题意利用方程的思想求解是解题的关键.【类型二杯中吸管问题】9.如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一支15cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为()A.1cm B.2cm C.3cm D.不能确定【答案】B【分析】吸管露出杯口外的长度最少,即在杯内最长,可用勾股定理解答.【详解】解∶∵CD=5cm,AD=12cm,∴AC=√CD2+AD2=√52+122,露出杯口外的长度为=15−13=2(cm).故答案为:B.【点睛】本题考查勾股定理的应用,所述问题是一个生活中常见的问题,与勾股定理巧妙结合,可培养同学们解决实际问题的能力.10.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.3cm D.2cm【分析】根据勾股定理求得AC的长,进而即可求解.【详解】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm).则这只铅笔在笔筒外面部分长度为3cm.故选:C.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.11.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.4cm D.3cm【答案】D【分析】首先根据题意画出图形,利用勾股定理计算出AC的长度.然后求其差.【详解】解:根据题意可得:AB BC=9cm,在Rt△ABC中∶AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm),则这只铅笔在笔筒外面部分长度为3cm.故选:D.【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.12.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm<ℎ≤16cm【分析】根据勾股定理及直径为最大直角边时即可得到最小值,当筷子垂直于底面时即可得到最大值即可得到答案;【详解】解:由题意可得,当筷子垂直于底面时ℎ的值最大,ℎmax=24−8=16cm,当直径为直角边时ℎ的值最小,根据勾股定理可得,ℎmin=24−√82+152=7cm,∴7cm<ℎ≤16cm,故选D.【点睛】本题考查勾股定理的运用,解题的关键是找到最大与最小距离的情况.13.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm≤ℎ≤16cm【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出的取值范围.【详解】解:如图1所示,当筷子的底端在D点时,筷子露在杯子外面的长度最长,=24−8=16cm,∴ℎ最大如图2所示,当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=√AD2+BD2=17cm,=24−17=7cm,∴此时ℎ最小∴的取值范围是7cm≤h≤16cm.故选:D.【点睛】本题主要考查了勾股定理的应用,明确题意,准确构造直角三角形是解题的关键.A.5B.7C.12D.13【答案】A【分析】根据勾股定理求出h的最短距离,进而可得出结论.【详解】解:如图,当吸管、底面直径、杯子的高恰好构成直角三角形时,h最短,此时AB=√92+122=15(cm),故ℎ=20−15=5(cm);最短故选:A.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15.如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cm B.8cm C.7cm D.6cm【答案】D可.【详解】解:由题意,可得这只烧杯的直径是:√102−82=6(cm).故选:D.【点睛】本题考查了勾股定理的应用,能够将实际问题转化为数学问题是解题的关键.16.如图,一根长18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为h cm,则h的取值范围是()A.4<h<5B.5<h<6C.5≤h≤6D.4≤h≤5【答案】C【分析】根据题意,求出牙刷在杯子外面长度最小与最大情况即可得出取值范围.【详解】解:根据题意,当牙刷与杯底垂直时,ℎ最大,如图所示:故ℎ最大=18−12=6cm;∵当牙刷与杯底圆直径、杯高构成直角三角形时,ℎ最小,如图所示:在RtΔABC中,∠ACB=90°,AC=5cm,BC=12cm,则AB=√BC2+AC2=√52+122=13cm,∵牙刷长为18cm,即AD=18cm,∴ℎ最小=AD−AB=18−13=5cm,∴h的取值范围是5≤h≤6,故选:C.【点睛】本题考查勾股定理解实际应用题,读懂题意,根据牙刷的放置方式明确牙刷在杯子外面长度最小与最大情况是解决问题的关键.【类型三楼梯铺地毯问题】17.如图在一个高为3米,长为5米的楼梯表面铺地毯,则地毯至少需要().A.3米B.4米C.5米D.7米【答案】D【分析】当地毯铺满楼梯时的长度是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,即可求得地毯的长度.【详解】解:由勾股定理得:楼梯的水平宽度=√52−32=4(米),∵地毯铺满楼梯的长度应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(米).故选:D.【点睛】此题考查了生活中的平移现象以及勾股定理,属于基础题,利用勾股定理求出水平边的长度是解答本题的关键.18.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【详解】解:由勾股定理得:楼梯的水平宽度=√132−52=12m,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是12+5=17(m).故选B.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解答本题的关键.19.如图是楼梯的示意图,楼梯的宽为5米,AC=5米,AB=13米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为()A.65m2B.85m2C.90m2D.150m2【答案】B【分析】勾股定理求出BC,平移的性质推出防滑毯的长为AC+BC,利用面积公式进行求解即可.【详解】解:由图可知:∠C=90°,∵AC=5米,AB=13米,∴BC=√AB2−AC2=12米,由平移的性质可得:水平的防滑毯的长度=BC=12(米),铅直的防滑毯的长度=AC=5(米),∴至少需防滑毯的长为:AC+BC=17(米),∵防滑毯宽为5米∴至少需防滑毯的面积为:17×5=85(平方米).故选:B.【点睛】本题考查勾股定理.解题的关键是利用平移,将防滑毯的长转化为两条直角边的边长之和.A.13cm B.14cm C.15cm D.16cm【答案】A【分析】根据勾股定理即可得出结论.【详解】如图,由题意得AC=1×5=5(cm),BC=2×6=12(cm),故AB=√122+52=13(cm).故选:A.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.21.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【答案】C【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【详解】∵△ABC是直角三角形,BC=6m,AC=10m∴AB=√AC2−BC2=√102−62=8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选C【点睛】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系.22.某酒店打算在一段楼梯面上铺上宽为2米的地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要()A.2560元B.2620元C.2720元D.2840元【答案】C【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为√132−52=12米、5米,∴地毯的长度为12+5=17米,地毯的面积为17×2=34平方米,∴购买这种地毯至少需要80×34=2720元.故选C.【点睛】本题考查的知识点是勾股定理的应用,生活中的平移现象,解题关键是要注意利用平移的知识,把要求的所有线段平移到一条直线上进行计算.23.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m【答案】C【详解】楼梯竖面高度之和等于AB的长.由于AB=√AC2−BC2=√52−32=4,所以至少需要地毯长4+3=7(m).故选C24.如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5m B.3m C.3.5m D.4m【答案】C【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得AB,然后求得地毯的长度即可.【详解】解:由勾股定理得:AB=√2.52−1.52=2因为地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和所以地毯的长度至少是1.5+2=3.5(m)故选C.【点睛】本题考查了图形平移性质和勾股定理,解决本题的关键是要熟练掌握勾股定理.【类型四最短路径问题】25.如图,透明圆柱的底面半径为6厘米,高为12厘米,蚂蚁在圆柱侧面爬行.从圆柱的内侧点A爬到圆柱的外侧点B处吃食物,那么它爬行最短路程是厘米.(π≈3)【答案】30【分析】把圆柱的侧面展开,根据勾股定理即可得到结论.【详解】解:∵透明圆柱的底面半径为6厘米,∴透明圆柱的底面周长为2×6π=厘米≈36厘米,作点A关于直线EF的对称点A′,连接A′B,则A′B的长度即为它爬行最短路程,×36=18厘米,∴A′A=2AE=24厘米,AB=12∴A′B=√AB2+A′A2=√182+242=30(cm),故答案为:30.【点睛】本题考查平面展开-最短路径问题,解题的关键是计算出圆柱展开后所得长方形的长和宽的值,然后用勾股定理进行计算.【答案】10【分析】将圆柱侧面展开,由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,再由勾股定理求出.【详解】解:根据圆柱侧面展开图,cm,高为8cm,∵圆柱的底面半径为6π∴底面圆的周长为2×6×π=12cm,π×12=6cm,∴BC=8cm,AC=12由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,AB=√AC2+BC2=10cm,故答案为:10.【点睛】本题考查了平面展开最短路线问题,勾股定理,将立体图形转化成平面图形求解是解题的关键.27.如图有一个棱长为9cm的正方体,一只蜜蜂要沿正方体的表面从顶点A爬到C点(C点在一条棱上,距离顶点B 3cm处),需爬行的最短路程是cm.【答案】15【分析】首先把正方体展开,然后连接AC,利用勾股定理计算求解即可.【详解】解:如图,连接AC,由勾股定理得,AC=√92+(9+3)2=15,故答案为:15.【点睛】本题考查了正方体的展开图、勾股定理的应用,解题的关键在于明确爬行的最短路线.28.如图,桌上有一个圆柱形玻璃杯(无盖),高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的内壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是厘米.【答案】10【分析】将杯子侧面展开,作A关于杯口的对称点A′,根据两点之间线段最短可知A′P的长度即为所求,再结合勾股定理求解即可.【详解】解:如图所示:将杯子侧面展开,作A关于杯口的对称点A′,连接PA′,最短距离为PA′的长度,)2+(6−1.5+1.5)2=10(厘米),PA′=√PE2+EA′2=√(162最短路程为PA ′=10厘米.故答案为:10.【点睛】本题考查了平面展开−最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.【答案】20【分析】先把圆柱的侧面展开,连接AS ,利用勾股定理即可求得AS 的长.【详解】解:如图,∵在圆柱的截面ABCD 中,AB =24π,BC =32,∴AB =12×24π×π=12,BS =12BC =16, ∴AS =√AB 2+BS 2=20,故答案为:20.【点睛】本题考查平面展开图−最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解题的关键.30.如图,圆柱形玻璃杯的杯高为9cm ,底面周长为16cm ,在杯内壁离杯底4cm 的点A 处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm ,且与蜂蜜相对的点B 处,则蚂蚁从外壁B 处到内壁A 处所走的最短路程为 cm .(杯壁厚度不计)【答案】10【分析】如图(见解析),将玻璃杯侧面展开,作B关于EF的对称点B′,根据两点之间线段最短可知AB′的长度即为所求,利用勾股定理求解即可得.【详解】解:如图,将玻璃杯侧面展开,作B关于EF的对称点B′,作B′D⊥AE,交AE延长线于点D,连接AB′,BB′=1cm,AE=9−4=5(cm),由题意得:DE=12∴AD=AE+DE=6cm,∵底面周长为16cm,×16=8(cm),∴B′D=12∴AB′=√AD2+B′D2=10cm,由两点之间线段最短可知,蚂蚁从外壁B处到内壁A处所走的最短路程为AB′=10cm,故答案为:10.【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.31.如图所示,ABCD是长方形地面,长AB=20m,宽AD=10m.中间竖有一堵砖墙高MN=2m.一只蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它要走的路程s取值范围是.【答案】s≥26m【分析】连接AC,利用勾股定理求出AC的长,再把中间的墙平面展开,使原来的长方形长度增加而宽度不变,求出新长方形的对角线长即可得到范围.【详解】解:如图所示,将图展开,图形长度增加4m,原图长度增加4m,则AB=20+4=24m,连接AC,∵四边形ABCD是长方形,AB=24m,宽AD=10m,∴AC=√AB2+BC2=√242+102=26m,∴蚂蚱从A点爬到C点,它要走的路程s≥26m.故答案为:s≥26m.【点睛】本题考查的是平面展开最短路线问题及勾股定理,根据题意画出图形是解答此题的关键.【答案】5【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,∵圆柱高3米,底面周长2米,∴AC2=22+1.52=6.25,∴AC=2.5,∴每根柱子所用彩灯带的最短长度为5m.故答案为5.【点睛】本题考查了平面展开−最短路线问题,勾股定理的应用.圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.【类型五旗杆高度问题】【答案】6m【分析】设AD=x,在△ABC中,利用勾股定理列出方程,解之即可.【详解】解:∵BF=2m,∴CE=2m,∵DE=1m,∴CD=CE−DE=1m,设AD=x,则AB=x,AC=AD−CD=x−1,由题意可得:BC⊥AE,在△ABC中,AC2+BC2=AB2,即(x−1)2+32=x2,解得:x=5,即AD=5,∴旗杆AE的高度为:AD+DE=5+1=6m.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理的相关知识并在直角三角形中正确运用是解题的关键.34.荡秋千是深受人们喜爱的娱乐项目,如图,小丽发现,秋千静止时踏板离地面的垂直高度DE=0.5m,将它往前推送至点B,测得秋千的踏板离地面的垂直高度BF=1.1m,此时水平距离BC=EF=1.8m,秋千的绳索始终拉的很直,求绳索AD的长度.【答案】3m【分析】设绳索AD的长度为xm=(x−0.6)m,在Rt△ABC中,由勾股定理得出方程,解方程即可.【详解】解:设秋千的绳索AD长为xm,则AB为xm,∵四边形BCEF是矩形,∴BF=CE=1.1m,∵DE=0.5m,∴CD=0.6m则AC为(x−0.6)m在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即:(x−0.6)2+1.82=x2解得:x=3∴绳索AD的长度为3m.【点睛】本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.35.如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=1米,n=5米,求旗杆AB的长.【答案】12米【分析】设旗杆的高为x米,在Rt△ABC中,推出x2+52=(x+1)2,可得x=12,由此解决问题.【详解】解:设AB=x米,因为∠ABC=90°,所以在Rt△ABC中,根据勾股定理,得:x2+52=(x+1)2,解之,得:x=12,所以,AB的长为12米,答:旗杆AB的长为12米.【点睛】本题考查直角三角形、勾股定理等知识,解题的关键是理解题意,学会构建方程.【答案】风筝的高度CE为61.68米.【分析】利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度.【详解】解:在Rt△CDB中,由勾股定理,得CD=√CB2−BD2=√652−252=60(米).∴CE=CD+DE=60+1.68=61.68(米).答:风筝的高度CE为61.68米.【点睛】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.37.看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.【答案】17米【分析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【详解】解:如图所示设旗杆高度为x m,则AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2(x−2)2+82=x2解得:x=17,答:旗杆的高度为17m.【点睛】本题考查了勾股定理的应用,解题的关键是构造直角三角形.38.同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.【答案】12.5米【分析】过点E作EF⊥AB,垂足为F,在Rt△ABC和Rt△AEF中,根据勾股定理得出AC2=AB2+BC2,AE2= AF2+EF2,根据AC=AE,得出AB2+12=(AB−1)2+52,求出AB的长即可.【详解】解:过点E作EF⊥AB,垂足为F,如图所示:由题意可知:四边形BDEF是长方形,△ABC和△AEF是直角三角形,∴DE=BF=1,BD=EF=5,BC=1,在Rt△ABC和Rt△AEF中,根据勾股定理可得:AC2=AB2+BC2,AE2=AF2+EF2,即AC2=AB2+12,AE2=(AB−1)2+52,又∵AC=AE,∴AB2+12=(AB−1)2+52,解得:AB=12.5.答:学校旗杆的高度为12.5米.【点睛】本题主要考查了勾股定理的应用,解题的关键是根据勾股定理列出关于AB方程AB2+12= (AB−1)2+52.39.学过《勾股定理》后,某班兴趣小组来到操场上测量旗杆AB的高度,得到如下信息:①测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1米(如图1);②当将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为6米(如图2).根据以上信息,求旗杆AB的高度.【答案】9米【分析】设AB=x,则AC=x+1,AE=x−1,再根据勾股定理可列出关于x的等式,解出x即得出答案.【详解】解:设AB=x依题意可知:在Rt△ACE中,∠AEC=90°,AC=x+1,AE=x−1,CE=6,根据勾股定理得:AC2=AE2+CE2,即:(x+1)2=(x−1)2+62,解得:x=9答:旗杆AB的高度是9米.【点睛】本题考查勾股定理的实际应用.结合题意,利用勾股定理列出含未知数的等式是解题关键.40.如图,学校要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,求旗杆的高度.【答案】12米【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【详解】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12,答:旗杆的高度为12米.【点睛】本题考查了勾股定理的应用,熟知勾股定理是解题关键.【类型六航海问题】【答案】30海里/小时【分析】先根据题意结合方位角的描述求出∠ABC=90°以及AB、BC的长,再利用勾股定理求出AC的长即可得到答案.【详解】解:如图所示,由题意得,∠HAB=90°−60°=30°,∠MBC=90°−∠EBC=60°,∵AH∥BM,∴∠ABM=∠BAH=30°,∴∠ABC=∠ABM+∠MBC=90°,∵巡逻艇沿直线追赶,半小时后在点C处追上走私船,∴BC=18×0.5=9海里,在Rt△ABC中,∠ABC=90°,AB=12海里,BC=9海里,∴AC=√AB2+BC2=15海里,∴我军巡逻艇的航行速度是15=30海里/小时,0.5答:我军巡逻艇的航行速度是30海里/小时.【点睛】本题主要考查了勾股定理的实际应用,正确理解题意在Rt△ABC中利用勾股定理求出AC的长是解题的关键.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为处有一艘轮船准备沿直线向点多能收到多少次信号?(信号传播的时间忽略不计)【答案】(1)AB=1000海里(2)最多能收到14次信号【分析】(1)由题意易得∠ACB是直角,由勾股定理即可求得点A与点B之间的距离;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里,分别求得NH、MH的长,可求得此时轮船过MN时的时间,从而可求得最多能收到的信号次数;【详解】(1)由题意,得:∠NCA=54°,∠SCB=36°;。
勾股定理题型分类一:借助勾股定理求边长或面积例1:如图,在ΔABC中,AB=15cm, AC=13cm, BC=14cm, 求ΔABC的面积例2: 在RtΔABC中,∠ACB=90º, AB=10cm, AB边上的高CD=4.8cm, 则RtΔABC的周长为______cm. 变式练习1:如图在RtΔABC中,∠C=90º, 点D是BC上一点,AD=BD,若AB=8, BD=5,求CD的长变式练习2:如果直角三角形的三边长分别为10,6,x, 则最短边上的高为________例3: 如图,以RtΔABC的三边为斜边向外做等腰三角形,若斜边AB=3, 则图中ΔABE的面积是_____,阴影部分面积为____,ΔAHC, ΔBCF, ΔABE的面积间的关系为______变式练习3:如图,RtΔABC的周长为12,以AB, AC为边向外作正方形ABPQ和正方形ACMN,若这两个正方形的面积之和为25,则ΔABC的面积是___二:勾股定理解决一些实际问题例4:如图,校园内有两根电线杆,相距8米,一根电线杆高13米,另一根电线杆高7米,若一只小鸟从一根电线杆的顶端飞到另一根电线杆的顶端,则小鸟至少飞多少米?例5:如图,一辆小汽车在一条限速为70km/h的公路上直线行驰,某一时刻刚好行驰到路对面车速检测仪A正前方30m的B处,过了2s后,测得小汽车(位于C处)与车速检测仪A的距离为50m, 这辆小汽车超速了吗?变式练习4:如图,有一架秋千,当它静止时,踏板离地的垂直高度DE=1m, 将它往高推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=4m, 秋千的绳索始终拉的很直,则绳索AD的长度为____m变式练习5:如图,有一只喜鹊在一颗3m 高的小树顶觅食,它的巢筑在距离该树24m 远的一颗大树上,大树高14m, 且巢距离树顶部1m, 当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s, 那么它至少需要多长时间才能赶回巢中?三:勾股定理的逆定理及应用例6: 若a, b, c 是ΔABC 的三边长,且a, b, c 满足(a −5)2+(b −12)2+|c-13|=0, 则ΔABC 是直角三角形吗?说明理由例7: 如图,MN 为我国领海线,其方向为南北方向,MN 以西为我国领海,以东为公海,上午9时50分,我国反走私艇A 发现正东方有一走私艇C 以13海里/时的速度偷偷向我国领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B 密切注意,反走私艇B 和走私艇C 的距离是13海里,A, B 两艇的距离是5海里,反走私艇B 和走私艇C 的距离是12海里,若走私艇C 的速度不变,则最早会在什么时候进入我国领海?变式练习6: 如图,在ΔABC 中,BC=6, AC=8, 在ΔABE 中,DE 是AB 边上的高,DE=7, ΔABE 的面积为35求:(1)AB 的长 (2)四边形ACBE 的面积变式练习7:在B 港口有甲, 乙两艘渔船,若甲船沿北偏东60º方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿什么方向航行的吗?四::勾股定理求解折叠问题例8:如图,将长方形纸片ABCD 的一边AD 向下折叠,使D 和F 点重合,已知AB=CD=8, BC=AD=10,求EC 的长变式练习8:如图是一张直角三角形的纸片,两直角边AC=6cm, BC=8cm, 现将ΔABC折叠,使点B 与点A重合,折痕为DE,则BE的长为___变式练习9:如图,在长方形ABCD中,AB=8, BC=6, P为AD上一点,将ΔABP沿BP翻折至ΔEBP, PE与CD相交于点O,且OE=OD, 则AP的长为___五:勾股定理求解距离最短距离例9:已知某植物绕着树干向上生长(1)如果树干的周长(即图中圆柱的底面周长)为30cm, 绕行一圈升高(即圆柱的高)40cm, 则它绕行一圈的长度是多少?(2)如果树干的周长为80cm, 绕行一圈的长度是100cm, 绕10圈到达数顶,则数干高多少?变式练习10. 如图,一只蚂蚁在一块长方体木块的一个顶点A处,一只苍蝇在这个长方体的对顶角G 处,若AB=3cm, BC=5cm, BF=6cm, 问蜘蛛要沿着怎样的路线爬行,才能最快抓到苍蝇?这时蜘蛛走过的路程是多少厘米?变式练习11. 如图是放在地面上的一个长方体盒子,其中AB=18, BC=12, BF=10, 点M在棱AB 上,且AM=6, 点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N, 它需要爬行的最短路程的平方为______六: 勾股定理在动点问题中的应用例10:如图,在ΔABC中,∠ACB=90º, AB=5cm, BC=3cm, 点P从点A出发以2cm/s的速度沿折线A-C-B-A运动,当点P回到点A时,停止运动,设运动时间为t(t>0)s(1) 若点P在AC上,且满足PA=PB, 求t的值(2)若点P恰好在∠BAC平分线上,求t的值变式练习12. 如图,已知ΔABC中,∠B=90º, AB=8cm, BC=6cm, P, Q是ΔABC边上的两个动点,点P 从点A开始沿A-B方向运动,且速度为1cm/s, 点Q从点B开始沿B-C-A方向运动,且速度为2cm/s, 它们同时出发,设运动时间为t(1) 求运动几秒时,ΔAPC是等腰三角形(2)当点Q在边CA上运动时,求能使ΔBCQ成为等腰三角形的运动时间七:利用勾股定理探究规律例11:如图,已知ΔABC是腰长为1的等腰直角三角形,以RtΔABC的斜边AC为直角边,画第二个等腰直角三角形ACD, 再以RtΔACD的斜边AD为直角边画第三个等腰直角三角形ADE... 依次类推,第2013个等腰直角三角形的斜边的平方为______变式练习13:如图,OP=1, 过点P作P P1⊥OP, 且P P1=1, 得O P12=2, 再过点P1作P1P2⊥O P1,且P1P2=1,得O P22=3, 又过点P2作P2P3⊥O P2,且P2P3=1,得O P32=4…依次作下去,得2=_______O P2012。
2022-2023学年上学期初中数学北师大新版八年级期末必刷常考题之三角形一.选择题(共5小题)1.下列各组数据中,不能作为直角三角形三边长度的是()A.9,12,15B.7,24,25C.,2,D.1,,2.如图,将风筝放至高30m,牵引线与水平面夹角约为45°的高空中,则牵引线AB的长度所在范围最有可能是()A.36m至38m B.38m至40m C.40m至42m D.42m至44m 3.在Rt△ABC中,AB2=10,AC2=6.则BC2=()A.8B.16或64C.4D.4或164.下列各组数中,不能作为直角三角形三边长的是()A.6,8,10B.7,24,25C.8,15,17D.13,14,15 5.直角三角形的两条直角边长分别为2和3,那么它的斜边的长是()A.B.4C.D.二.填空题(共5小题)6.如图,一根长为18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度hcm,则h的取值范围是.7.如图,在四边形ABCD中,AB∥CD,E为BC上一点,且∠BAE=25°,∠CDE=65°,AE=2,DE=3,则AD的长为.8.如图①是第七届国际数学教育大会(ICME﹣7)的会徽图案,它是由一串有公共顶点O 的直角三角形演化而成的.如果图②中的OA1=A1A2=A2A3=…A7A8=2,那么OA8的长是.9.Rt△ABC中,三边分别是a,b,c,斜边c=3,则a2+b2+c2的值为.10.如图1,四个全等的直角三角形围成一个大正方形,中间是一个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.连接四条线段得到如图2的新的图案,如果图1中的直角三角形的长直角边为5,短直角边为3,图2中阴影部分的面积为S,那么S的值为.三.解答题(共5小题)11.如图①,长方体长AB为8cm,宽BC为6cm,高BF为4cm.在该长体的表面上,蚂蚁怎样爬行路径最短?(1)蚂蚁从点A爬行到点G,且经过棱EF上一点,画出其最短路径的平面图,并标出它的长.(2)设该长方体上底面对角线EG、FH相交于点O(如图②),则OE=OF=OG=OH=5cm.①蚂蚁从点B爬行到点O的最短路径的长为cm;②当点P在BC边上,设BP长为acm,求蚂蚁从点P爬行到点O的最短路的长(用含a的代数式表示).12.已知:如图,AB=4,AC=3,BD=12,CD=13,AB⊥AC.求四边形ABDC的面积.13.如图,每个小正方形的边长都为1,A、B、C、D均在网格格点上.(1)求四边形ABCD的面积;(2)∠BCD是直角吗?为什么?14.如图,在△ABC中,AD⊥BC于D,AC=5,BC=9,AD=4,求AB的长.15.如图,点P是线段AB的垂直平分线上的点,AB=4cm,连接P A、PB,当点P的位置发生变化时,△P AB的面积也会随着高PH的长度的变化而变化.(1)在这个变化过程中,是自变量,是因变量.(2)记△P AB的面积为y(cm2),PH的长是x(cm),则y与x之间的关系式是.(3)当高PH的长度由1cm变化到10cm时,△P AB的面积由cm2变化到cm2.(4)当△P AB为等腰直角三角形时,△P AB的面积为cm2.2022-2023学年上学期初中数学北师大新版八年级期末必刷常考题之三角形参考答案与试题解析一.选择题(共5小题)1.下列各组数据中,不能作为直角三角形三边长度的是()A.9,12,15B.7,24,25C.,2,D.1,,【分析】先分别求出两小边的平方和和最长边的平方,再根据勾股定理的逆定理逐个判断即可.【解答】解:A.∵92+122=81+144=225,152=225,∴92+122=152,∴以9,12,15为边能组成直角三角形,故本选项不符合题意;B.∵72+242=49+576=625,252=625,∴72+242=252,∴以7,24,25为边能组成直角三角形,故本选项不符合题意;C.∵()2+22=3+4=7,()2=5,∴()2+22≠()2,∴以,2,为边不能组成直角三角形,故本选项符合题意;D.∵12+()2=1+2=3,()2=3,∴12+()2=()2,∴以1,,为边能组成直角三角形,故本选项不符合题意;故选:C.【点评】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理是解此题的关键,注意:如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.2.如图,将风筝放至高30m,牵引线与水平面夹角约为45°的高空中,则牵引线AB的长度所在范围最有可能是()A.36m至38m B.38m至40m C.40m至42m D.42m至44m 【分析】过B作BC⊥水平面于C,证△ABC是等腰直角三角形,得AC=BC=30m,再由勾股定理求出AB的长,即可得出结论.【解答】解:如图,过B作BC⊥水平面于C,∵∠BAC=45°,∴△ABC是等腰直角三角形,∴AC=BC=30m,∴AB===30≈42.42(m),故选:D.【点评】本题考查了勾股定理的应用以及等腰直角三角形的判定与性质,熟练掌握勾股定理是解题的关键.3.在Rt△ABC中,AB2=10,AC2=6.则BC2=()A.8B.16或64C.4D.4或16【分析】分当∠C=90°或当∠A=90°两种情形,分别利用勾股定理计算即可.【解答】解:当∠C=90°时,BC2=AB2﹣AC2=10﹣6=4,当∠A=90°时,BC2=AB2+AC2=10+6=16,故答案为:D.【点评】本题主要考查了勾股定理,运用分类讨论思想是解题的关键.4.下列各组数中,不能作为直角三角形三边长的是()A.6,8,10B.7,24,25C.8,15,17D.13,14,15【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可.【解答】解:A、62+82=102,故是直角三角形,不符合题意;B、72+242=252,故是直角三角形,不符合题意;C、82+152=172,故是直角三角形,不符合题意;D、132+142≠152,故不是直角三角形,符合题意.故选:D.【点评】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.5.直角三角形的两条直角边长分别为2和3,那么它的斜边的长是()A.B.4C.D.【分析】直接利用勾股定理进行求解即可.【解答】解:∵直角三角形的两条直角边长分别为2和3,∴直角三角形的斜边长为:.故选:D.【点评】本题主要考查勾股定理,解答的关键是熟记勾股定理并灵活运用.二.填空题(共5小题)6.如图,一根长为18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度hcm,则h的取值范围是5≤h≤6.【分析】根据杯子内牙刷的长度取值范围得出杯子外面长度的取值范围,即可得出答案.【解答】解:当牙刷与杯底垂直时h最大,h最大=18﹣12=6(cm).当牙刷与杯底及杯高构成直角三角形时h最小,如图,此时,AB===13(cm),则h=18﹣13=5(cm).∴h的取值范围是5≤h≤6.故答案为:5≤h≤6.【点评】此题主要考查了勾股定理的应用,正确得出杯子内牙刷的取值范围是解决问题的关键.7.如图,在四边形ABCD中,AB∥CD,E为BC上一点,且∠BAE=25°,∠CDE=65°,AE=2,DE=3,则AD的长为.【分析】根据平行线的性质,可以得到∠AED的度数,然后根据勾股定理即可得到AD 的长.【解答】解:过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠BAE=∠AEF,∠FED=∠CDE,∵∠BAE=25°,∠CDE=65°,∴∠AEF=25°,∠FED=65°,∴∠AED=∠AEF+∠FED=25°+65°=90°,∵AE=2,DE=3,∴AD===,故答案为:.【点评】本题考查勾股定理、平行线的性质,解答本题的关键是求出∠AED的度数.8.如图①是第七届国际数学教育大会(ICME﹣7)的会徽图案,它是由一串有公共顶点O 的直角三角形演化而成的.如果图②中的OA1=A1A2=A2A3=…A7A8=2,那么OA8的长是.【分析】OA1=1,根据勾股定理可得OA2=,OA3=,找到OA n=2的规律,即可计算OA8的长.【解答】解:∵OA1=A1A2=A2A3=…A7A8=2,∴由勾股定理可得OA2=,,OA3=,…,∴OA n=2,∴OA8=.故答案为:.【点评】本题考查了勾股定理的灵活运用,本题中找到OA n=2的的规律是解题的关键.9.Rt△ABC中,三边分别是a,b,c,斜边c=3,则a2+b2+c2的值为18.【分析】先由勾股定理求得a2+b2=c2=9,然后求得a2+b2+c2的值.【解答】解:∵△ABC为直角三角形,斜边c=3,∴a2+b2=c2=32=9,∴a2+b2+c2=9+9=18.故答案为:18.【点评】本题考查了勾股定理,解题的关键是熟知直角三角形三边的关系.10.如图1,四个全等的直角三角形围成一个大正方形,中间是一个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.连接四条线段得到如图2的新的图案,如果图1中的直角三角形的长直角边为5,短直角边为3,图2中阴影部分的面积为S,那么S的值为16.【分析】利用勾股定理,求出空白部分面积,通过间接作差得出阴影部分面积.【解答】解:由题意作出如下图,得AC=,BD=2,AB=CD,△ABD是直角三角形,则大正方形面积=AC2=34,△ADC面积=(5×3﹣2×3)=4.5,阴影部分的面积S=34﹣4×4.5=16,故答案为:16.【点评】本题主要考查了勾股定理中赵爽弦图模型,关键在于正确找出勾股关系,利用转换面积作差求解.三.解答题(共5小题)11.如图①,长方体长AB为8cm,宽BC为6cm,高BF为4cm.在该长体的表面上,蚂蚁怎样爬行路径最短?(1)蚂蚁从点A爬行到点G,且经过棱EF上一点,画出其最短路径的平面图,并标出它的长.(2)设该长方体上底面对角线EG、FH相交于点O(如图②),则OE=OF=OG=OH =5cm.①蚂蚁从点B爬行到点O的最短路径的长为4cm;②当点P在BC边上,设BP长为acm,求蚂蚁从点P爬行到点O的最短路的长(用含a的代数式表示).【分析】(1)画出展开图连接AG交EF于点M,根据勾股定理求出AG的长即可;(2)①画出展开图连接OB,作ON⊥AB于点N,根据勾股定理求出OB的值即可;②画出展开图连接OP,作OQ⊥BC于点Q,根据勾股定理求出OP的值即可.【解答】解:(1)展开面HGFE和面ABFE如下图,连接AG交EF于点M,由题意知,AB=8cm,BG=BF+FG=6+4=10(cm),∴AG===2(cm),即AG的长为2cm;(2)①展开面HGFE和面ABFE如下图,连接OB,作ON⊥AB于点N,由题意知,ON=4+×6=7(cm),BN=8=4(cm),∴OB===(cm),故答案为:;②展开面HGFE和面BCGF如下图,连接OP,作OQ⊥BC于点Q,由题意知,OQ=+4=8(cm),PQ=|×6﹣a|=|3﹣a|(cm),∴OP===(cm),即蚂蚁从点P爬行到点O的最短路的长为cm.【点评】本题主要考查展开图的最短路径问题,熟练掌握勾股定理是解题的关键.12.已知:如图,AB=4,AC=3,BD=12,CD=13,AB⊥AC.求四边形ABDC的面积.【分析】在Rt△ABC中利用勾股定理即可求出BC的长度,运用勾股定理的逆定理即可判断BC⊥BD,再求出两个直角三角形的面积即可解决问题.【解答】解:在△ABC中,AB=4,AC=3,AB⊥AC,∴∠A=90°,∴BC===5,∵BC=5,BD=12,CD=13,∴BC2+BD2=25+144=169=132=CD2,∴∠CBD=90°,∴S四边形ABDC=S△ABC+S△BDC=×3×4+×5×12=36.故四边形ABDC的面积为36.【点评】本题考查了勾股定理及其逆定理,利用勾股定理求出BC的长度是解题的关键.13.如图,每个小正方形的边长都为1,A、B、C、D均在网格格点上.(1)求四边形ABCD的面积;(2)∠BCD是直角吗?为什么?【分析】(1)根据图形得出四边形ABCD的面积是5×5﹣﹣﹣﹣,再求出即可;(2)求出BC、CD、BD的值,根据求出的结果得出BC2+CD2=BD2,再根据勾股定理的逆定理得出即可.【解答】解:(1)四边形ABCD的面积是5×5﹣﹣﹣﹣﹣1×1=25﹣2.5﹣2﹣1﹣4﹣1=14.5;(2)∠BCD是直角,理由是:连接BD,由勾股定理得:BD2=32+42=25,BC2=22+42=20,CD2=12+22=5,所以BC2+CD2=BD2,即∠BCD是直角.【点评】本题考查了三角形的面积,勾股定理和勾股定理的逆定理等知识点,能熟记勾股定理和勾股定理的逆定理是解此题的关键,注意:如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.14.如图,在△ABC中,AD⊥BC于D,AC=5,BC=9,AD=4,求AB的长.【分析】由勾股定理可求得CD=3,再次利用勾股定理即可求AB的长度.【解答】解:∵AD⊥BC于D,AC=5,BC=9,AD=4,在Rt△ACD中,CD=,∴BD=BC﹣CD=6,在Rt△ABD中,AB=.故AB的长度为:.【点评】本题主要考查勾股定理,解答的关键是熟记勾股定理并灵活运用.15.如图,点P是线段AB的垂直平分线上的点,AB=4cm,连接P A、PB,当点P的位置发生变化时,△P AB的面积也会随着高PH的长度的变化而变化.(1)在这个变化过程中,高PH是自变量,△P AB的面积是因变量.(2)记△P AB的面积为y(cm2),PH的长是x(cm),则y与x之间的关系式是y=2x.(3)当高PH的长度由1cm变化到10cm时,△P AB的面积由2cm2变化到20 cm2.(4)当△P AB为等腰直角三角形时,△P AB的面积为4cm2.【分析】(1)根据变量的定义进行分析即可;(2)利用三角形的面积公式进行求解即可;(3)把相应的值代入(2)中的关系式进行运算即可;(4)当△P AB为等腰直角三角形时,则有AH=PH,由勾股定理可求得AP的值,从而可求△P AB的面积.【解答】解:(1)由题意得:在这个变化过程中,高PH是自变量,△P AB的面积是因变量.故答案为:高PH;△P AB的面积;(2)由题意得:y=AB•PH==2x,故答案为:y=2x;(3)当x=1cm时,y=2×1=2(cm2),当x=10cm时,y=2×10=20(cm2),故答案为:2,20;(4)当△P AB为等腰直角三角形时,则AH=PH=2,∴AP=(cm),∴△P AB的面积为:(cm2).故答案为:4.【点评】本题主要考查勾股定理,线段的垂直平分线的性质,解答的关键是对相应的知识的掌握与灵活运用.。
勾股定理练习题:练习一:(基础)1.等腰三角形的腰长为13,底边长为10,则顶角的平分线为__12_.2.一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是__240_.3.已知a ,b ,c 为△三边,且满足(a 2-b 2)(a 22-c 2)=0,则它的形状为( D )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形4.如图,一圆柱高8,底面半径2,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程( 取3)是( B ).(A )20 (B )10 (C )14 (D )无法确定5. 在△中,斜边2,则2+2+28.6.△一直角边的长为11,另两边为自然数,则△的周长为( C )A 、121B 、120C 、132D 、不能确定7.如图,正方形网格中的△,若小方格边长为1,则△是 (A )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对8.如果△的两直角边长分别为n 2-1,2n (n >1),则它的斜边长是( D )A 、2nB 、1C 、n 2-1D 、n 2+1ABC9.在△中,,90︒=∠C 若,7=+b a △的面积等于6,则边长 5 10.如图△中,BC BM AC AN BC AC ACB ====︒=∠,,5,12,90则 611.一个直角三角形的三边长的平方和为200,则斜边长为 1012.若△是直角三角形,两直角边都是6,在三角形斜边上有一点P ,到两直角边的距离相等,则这个距离等于 313.如图,一个牧童在小河的南4的A 处牧马,而他正位于他的小屋B 的西8北7处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?1714、有一个直角三角形纸片,两直角边68,现将直角边沿∠的角平分线折叠,使它落在斜边上,且与重合,你能求出的长吗?3AB 小河北牧童 小屋AEC DB15.校园里有一块三角形空地,现准备在这块空地上种植草皮以美化环境,已经测量出它的三边长分别是13、14、15米,若这种草皮每平方米售价120元,则购买这种草皮至少需要支出多少?因为高相等,底边15上的一条直角边长为X 1322=142-(15)26.6高为 132-6.62=11.2211.2 15*11.2*0.5=84 84*120=1008016、如图,在△中,∠ 90,6,把△进行折叠,使点A 与点D 重合,1:2,折痕为,点E 在上,点F 在上,求的长。
勾股定理初二练习题二十道1. 在直角三角形ABC中,角C=90°,AB=12cm,AC=5cm,求BC 的长度。
2. 在直角三角形DEF中,角D=90°,DE=8cm,DF=15cm,求EF 的长度。
3. 在直角三角形GHI中,角I=90°,GH=17cm,HI=8cm,求GI的长度。
4. 在直角三角形JKL中,角J=90°,KL=10cm,JL=6cm,求JK的长度。
5. 在直角三角形MNO中,角O=90°,MN=6cm,NO=10cm,求MO的长度。
6. 在直角三角形PQR中,角P=90°,PR=13cm,PQ=12cm,求QR 的长度。
7. 在直角三角形STU中,角T=90°,ST=21cm,TU=20cm,求SU 的长度。
8. 在直角三角形VWX中,角V=90°,VX=24cm,WX=7cm,求WV的长度。
9. 在直角三角形YZA中,角Z=90°,ZY=15cm,ZA=9cm,求YA 的长度。
BC的长度。
11. 在直角三角形EFG中,角E=90°,EG=7cm,FG=25cm,求EF 的长度。
12. 在直角三角形HIJ中,角H=90°,IJ=20cm,HJ=9cm,求HI的长度。
13. 在直角三角形KLM中,角K=90°,KL=16cm,LM=12cm,求KM的长度。
14. 在直角三角形NOP中,角N=90°,NO=5cm,OP=13cm,求NP 的长度。
15. 在直角三角形QRS中,角Q=90°,QR=30cm,RS=16cm,求QS的长度。
16. 在直角三角形TUV中,角T=90°,TV=25cm,UV=7cm,求TU 的长度。
17. 在直角三角形WXY中,角W=90°,WX=14cm,XY=9cm,求WY的长度。
18. 在直角三角形ZAB中,角Z=90°,ZA=11cm,AB=15cm,求ZB的长度。
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)一.选择题(共8小题)1.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.2.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c23.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+6.一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米7.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.48.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169二.填空题(共5小题)9.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是.10.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为米.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是(只填数,不填等式)13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.三.解答题(共27小题)14.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.15.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.16.如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?19.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC 边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t 秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.20.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.21.(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n >0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?23.(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S 的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).24.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代数式(x+1)2﹣4(x+1)+4的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB=;②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c 的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即∴.28.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)30.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.31.在一次“构造勾股数”的探究性学习中,老师给出了下表:其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a=,b=,c=.(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.32.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.33.阅读下面的情景对话,然后解答问题:(1)理解:①根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)②若某三角形的三边长分别为1、、2,则该三角形(是或不是)奇异三角形.(2)探究:若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)34.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112=+ ;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.38.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B 处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.39.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.40.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对2.图中字母所代表的正方形的面积为144的选项为()A.B.C.D.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.﹣C.2 D.﹣24.如图,带阴影的正方形面积是.5.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD=.6.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析一.选择题(共8小题)1.(2016秋•吴江区期中)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.(2016春•抚顺县期中)下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选C.【点评】本题考查了勾股定理的正确运用,只有斜边的平方才等于其他两边的平方和.3.(2016春•临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.4.(2015春•青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.5.(2016春•南陵县期中)如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.【解答】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选A.【点评】本题考查了勾股定理、实数与数轴.找出OA=OB是解题的关键.6.(2015春•蓟县期中)一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米【分析】先根据梯子的顶端下滑了0.4米求出A′C的长,再根据勾股定理求出B′C 的长,进而可得出结论.【解答】解:(1)∵在Rt△ABC中,AB=2.5m,BC=0.7m,∴AC===2.4(m).∵梯子的顶端下滑了0.4米,∴A′C=2m,∵在Rt△A′B′C中,A′B′=2.5m,A′C=2m,∴B′C==1.5m,∴BB′=B′C﹣BC=1.5﹣0.7=0.8m.故选C.【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(2015春•罗田县期中)在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.4【分析】根据勾股定理求出AB的长即可解答.【解答】解:在Rt△ABC中,根据勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=4.故选D.【点评】本题综合考查了勾股定理的应用,找到关系MN=AM+BN﹣AB是关键.8.(2016春•重庆校级期中)如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2的值.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选C.【点评】考查了勾股定理的证明,注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.二.填空题(共5小题)9.(2016春•固始县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是7cm≤h≤16cm.【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故答案为:7cm≤h≤16cm.【点评】本题考查了勾股定理的应用,求出h的值最大值与最小值是解题关键.10.(2015春•汕头校级期中)如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为(1+)米.【分析】根据题意利用勾股定理得出BC的长,进而得出答案.【解答】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC2,∴BC=,∴则树高为:(1+)m.故答案为:(1+).【点评】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.11.(2016春•高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,则Rt△ABC的面积为ab=24(cm2).故答案为:24cm2.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.(2016春•嘉祥县期中)观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是15,112,113(只填数,不填等式)【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数.【解答】解:∵第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春•武昌区期中)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=84,c=85.【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.【点评】认真观察各式的特点,总结规律是解题的关键.三.解答题(共27小题)14.(2016春•黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.(2016秋•永登县期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,=,S△DAC=,∴S△ABC∵AB=CB=,DA=1,AC=2,=1,S△DAC=1∴S△ABC而S=S△ABC+S△DAC,四边形ABCD=2.∴S四边形ABCD【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.16.(2016春•邹城市校级期中)如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春•平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A 点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC中,∴==200,∴A、C两点之间的距离为200km.【点评】本题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.(2015秋•新泰市期中)如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?【分析】(1)过A作AE⊥BD于E,线段AE的长即为台风中心与气象台A的最短距离,由含30°角的直角三角形的性质即可得出结果;(2)根据题意得出线段CD就是气象台A受到台风影响的路程,求出CD的长,即可得出结果.【解答】解:(1)过A作AE⊥BD于E,如图1所示:∵台风中心在BD上移动,∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.(2)∵台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12(小时).【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题(2)的关键.19.(2015春•阳东县期中)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.【分析】(1)我们求出BP、BQ的长,用勾股定理解决即可.(2)△PQB形成等腰三角形,即BP=BQ,我们可设时间为t,列出方程2t=8﹣1×t,解方程即得结果.(3)直线PQ把原三角形周长分成相等的两部分,根据勾股定理可知AC=10cm,即三角形的周长为24cm,则有BP+BQ=12,即2t+(8﹣1×t)=12,解方程即可.【解答】解:(1)出发2秒后,AP=2,BQ=4,∴BP=8﹣2=6,PQ==2;(3分)(2)设时间为t,列方程得2t=8﹣1×t,解得t=;(6分)(3)假设直线PQ能把原三角形周长分成相等的两部分,由AB=8cm,BC=6cm,根据勾股定理可知AC=10cm,即三角形的周长为8+6+10=24cm,则有BP+BQ=×24=12,设时间为t,列方程得:2t+(8﹣1×t)=12,解得t=4,当t=4时,点Q运动的路程是4×2=8>6,所以直线PQ不能够把原三角形周长分成相等的两部分.(10分)【点评】本题重点考查了利用勾股定理解决问题的能力,综合性较强.20.(2014秋•江阴市期中)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.。
江苏省无锡市八年级数学上册 第二章 勾股定理 3 立方根学案(无答案)北师大版一、预习检查:1.因为 的立方是-64,所以-64的立方根是 ,即=364- 2.27的立方根是 ,0的立方根是 ,-1的立方根是 . 3. 正数的立方根是 数,0的立方根是 ,负数的立方根是 数. 4.一个体积为8cm 3的正方体,其棱长是 cm 5.一个数的立方根是它本身,则这个数是( )A 、1B 、 0或1C 、 -1或1D 、 1,0或-1 6.若一个数的平方根是8±,则这个数的立方根是 ( ) A 、4 B 、4± C 、2 D 、2±二、自主学习,生生互动7.一个正方体A 的体积是 棱长为9cm 的正方体B 的体积的271,则A 的棱长是多少厘米?8.求下列各数的立方根8 6427- 64611- 09.计算: (1)33001.0833+ (2)3216- (3)312527三、师生互动,引领提升10、解方程: (1) x 3=8 (2) 2x 3-54=0 (3) (x-1)3-27=011、如果a 是(-3)2的平方根,那么3a 等于( )A .-3B .-33C .±3D .33或-3312、若 x <0,则332x x -等于( )A .xB .2xC .0D .-2x13、若 a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A .0B .±10C .0或10D .0或-1014、如果 2(x -2)3=643,则x 等于( ) A .21B .27C .21或27D .以上答案都不对四、课堂检测1.计算:=--327 ,()=-338 ,()383-= .2.3827的绝对值为 ,相反数为 ,倒数为 . 3.若()233-=a ,则a = ,若33-=x ,则x =4.下列各式中,正确的是( )A 、39=--B 、283-=C 、21813±= D 、3273-=-5.下列运算正确的是 ( ) A 、3333--=- B 、 3333=- C 、3333-=- D 、3333-=-6. 下列说法中正确的是 ( )A 、一个正数的平方根和立方根都只有一个B 、零的平方根和立方根是零C 、1的平方根与立方根都等于它本身D 、一个数的立方根与其自身相等的数只有-17.-125的立方根是( )A 、±5B 、-5C 、5D 、没有意义 8.33)4(-的值是 ( )A 、-4B 、4C 、±4D 、169. 下列说法中正确的是 ( )A 、512的立方根是8,记作85123=B 、负数没有立方根C 、一个数的立方根与平方根同号D 、如果一个数有立方根,那么它一定有平方根10.下列说法中错误的是 ( )A 、9的算术平方根是3B 、16的平方根是2±C 、27的立方根为3±D 、立方根等于1的数1五、提补作业1.求下列各数的立方根(用立方根符号表示)。
八年级上册数学勾股定理复习题(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除勾股定理的复习 一、全章要点1、勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2)2、勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。
3、勾股定理的证明 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c⨯+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证4、勾股数 记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17;9,40,41等例1.如图,矩形纸片ABCD 的边AB=10,BC=6,E 为BC 上一点将矩形纸片沿AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的。
例2、如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,请你求出旗杆在离底部多少米的位置断裂吗?cb aHG F EDCBA a bc cbaE D CBA ba cbac cabcab ECB例3、有一块直角三角形纸片,两直角边AC=6㎝,BC=8㎝,现将ABC 沿直线AD 折叠,使AC 落在斜边AB 上,且与AE 重合,求CD 的长例4、如图1-4,一架梯子长25米,斜靠在一面墙上,梯子顶端离地面15米,要使梯子顶端离地24米,则梯子的底部在水平方向上应滑动多少米例5、 如图所示的一块草地,已知AD=4m,CD=3m,AB=12m,BC=13m,且∠CDA=900, 求这块草地的面积。
八上期末复习---勾股定理难题训练
一、选择题
1. 如图,Rt △ABC 中,∠C =90°,AC =12,BC =5,分别以AB 、AC 、BC 为边在AB 的同侧作正方形ABDE 、ACFG 、BCIH ,则图中阴影部分的面积之和( )
A. 60
B. 90
C. 144
D. 169
2. 如图,在正方形网格中,以格点为顶点的△ABC 的面积等于3,
则点A 到边BC 的距离为( )
A. √3
B. 3√2
C. 4
D. 3 3. 如图,正方形ABCD 的边长为2,其面积标记为S 1,以
CD 为斜边作等腰直角三角形,以该等腰直角三角形的一
条直角边为边向外作正方形,其面积标记为S 2,…,按照
此规律继续下去,则S 2018的值为( )
A. (12)2015
B. (√22)2016
C. (√22)2015
D. (1
2)2016 4. 如图所示,在矩形ABCD 中,F 是DC 上一点,AE 平分∠BAF
交BC 于点E ,且DE ⊥AF ,垂足为点M ,BE =3,AE =2√6,
则MF 的长是( )
A. √15
B. √
1510 C. 1 D. √1515
5. 如图,在矩形ABCD 中,点E ,F ,G 分别是AD ,CD ,BC
上的点,且BE =EF ,BE ⊥EF ,EG ⊥BF ,若FC =1,
AE =2,则BG 的长是( )
A. 2.6
B. 2.5
C. 2.4
D. 2.3
6. 如图,将矩形MNPQ 放置在矩形ABCD 中,使点M ,N
分别在AB ,AD 边上滑动,若MN =6,PN =4,在滑动
过程中,点A 与点P 的距离AP 的最大值为( )
A. 4
B. 2√13
C. 7
D. 8
二、填空题
7. 如图:在矩形ABCD 中,AB =6,BC =8,P 为AD 上
任一点,过点P 作PE ⊥AC 于点E ,PF ⊥BD 于点F ,则
PE +PF =______.
8.如图,正方形ABCD的边长为2√2,对角线AC、BD相交
于点O,E是OC的中点,连接BE,过点A作AM⊥BE于
点M,交BD于点F,则FM的长为______ .
9.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=6,若点P是边AB上的一个
动点,以每秒3个单位的速度按照从A→B→A运动,同时点Q从B→C以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动.在运动过程中,设运动时间为t,若△BPQ为直角三角形,则t的值为______ .
10.如图,矩形ABCD中,AB=3,BC=4,点E是射线BC上的一
个动点,把△ABE沿AE折叠,当点B的对应点B′刚好落在线段
AD的垂直平分线上时,线段BE的长为_____________.
11.如图,四边形ABCD中,AC,BD是对角线,
△ABC是等边三角形,∠ADC=30°,AD=3,
BD=5,则四边形ABCD的面积为______.
12.三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长
线上,点B在ED上,AB//CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度是______.
13.如图,在等腰直角三角形ABC中,∠ABC=90°,AB=BC=2,
P是△ABC所在平面内一点,且满足PA⊥PB,则PC的取值
范围为______.
14.我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为
“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL 的边长为2,且IJ//AB,则正方形EFGH的边长为______.
三、解答题
15.已知∠ACD=90°,MN是过A点的直线,AC=DC,DB⊥MN于点B,连接BC.
(1)如图1,将△BCD绕点C逆时针方向旋转90°得到△ECA.
①求证:点E在直线MN上;
②猜想线段AB、BD、CB满足怎样的数量关系,并证明你的猜想.
(2)当MN绕点A旋转到如图2的位置时,猜想线段AB、BD、CB又满足怎样的数
列关系,并证明你的猜想.
16.如图,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分线,DE分别
交BC、AB于点D、E.
(1)求证:△ABC为直角三角形.
(2)求AE的长.
17.如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂
足分别为D、E,F为BC中点,BE与DF,DC分别交于点G,
H,∠ABE=∠CBE.
(1)求证:BH=AC;
(2)求证:BG2−GE2=EA2.
18.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上
的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
(1)出发2秒后,求PQ的长;
(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?
(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
19.如图,在△ABC中,AB=AC=2,BC=2√3,且∠BAC=120°,点D是线段BC
上的一动点(不与点B、C重合),连接AD,作∠ADE=30°,DE交AC于点
E.
(1)求证:∠BAD=∠EDC;
(2)当BD=____时,△ABD≌△DCE,并说明理由.
(3)当△ADE是直角三角形时,求AD的长?
20.如图,在平面直角坐标系中,△AOB的三个顶点的坐标分别是A(4,3),O(0,0),B(6,0).
点M是OB边上异于O,B的一动点,过点M作MN//AB,点P是AB边上的任意点,连接AM,PM,PN,BN.设点M(x,0),△PMN的面积为S.
(1)求出OA所在直线的解析式,并求出点M的坐标为(1,0)时,点N的坐标;
(2)求出S关于x的函数关系式,写出x的取值范围,并求出S的最大值;
(3)若S:S△ANB=2:3时,求出此时N点的坐标.。