江西省高考理科数学押题卷(二)&参考答案
- 格式:pdf
- 大小:23.63 KB
- 文档页数:1
2024年高考数学临考押题卷02(新高考通用)数学(考试时间:120分钟试卷满分:150分)注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试卷和答题卡一并上交。
一、单选题(本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}2210A x x x =+-<,(){}2lg 1B y y x ==+,则A B = ()A .(]1,0-B .10,2⎡⎫⎪⎢⎣⎭C .1,02⎛⎤- ⎥⎝⎦D .[)0,1【答案】B【分析】由一元二次不等式的解法,对数函数的值域,集合的交集运算得到结果即可.【详解】集合{}21210|12A x x x x x ⎧⎫=+-<=-<<⎨⎬⎩⎭,因为211x +≥,所以()2lg 10x +≥,所以集合(){}{}2lg 1|0B y y x y y ==+=≥,所以10,2A B ⎡⎫=⎪⎢⎣⎭,故选:B.2.复数()i 1i 35i+-的共轭复数为()A .41i 1717--B .41i 1717-+C .41i 1717-D .41i 1717+【答案】B【分析】利用复数的四则运算与共轭复数的定义即可得解.【详解】因为()()()()()i 1i 1i 35i 1i 82i 41i 35i35i 35i 35i 341717+-++-+--====-----+,所以()i 1i 35i+-的共轭复数为41i 1717-+.故选:B.3.等比数列{}n a 的前n 项和为n S ,已知3215S a a =+,54a =,则1a =()A .14B .14-C .12D .12-【答案】A【分析】把等比数列{}n a 各项用基本量1a 和q 表示,根据已知条件列方程即可求解.【详解】设等比数列{}n a 的公比为q ,由3215S a a =+,得:123215a a a a a ++=+,即:23114a a a q ==,所以,24q =,又54a =,所以,4222111()44a q a q a ==⨯=,所以,114a =.故选:A.4.若23a=,35b =,54c =,则4log abc =()A .2-B .12C .2D .1【答案】B【分析】根据题意,结合指数幂与对数的互化公式,结合对数的换底公式,即可求解.【详解】由23a=,35b =,54c =,可得235log 3,log 5,log 4a b c ===,所以235lg 3lg 5lg 4log 3log 5log 42lg 2lg 3lg 5abc =⨯⨯=⨯⨯=,则441log log 22abc ==.故选:B.5.关于函数()()sin f x A x =+ωϕ(0A >,0ω>,π02ϕ<<),有下列四个说法:①()f x 的最大值为3②()f x 的图象可由3sin y x =的图象平移得到③()f x 的图象上相邻两个对称中心间的距离为π2④()f x 的图象关于直线π3x =对称若有且仅有一个说法是错误的,则π2f ⎛⎫= ⎪⎝⎭()A .B .32-C .32D .2【答案】D【分析】根据题意,由条件可得②和③相互矛盾,然后分别验证①②④成立时与①③④成立时的结论,即可得到结果.【详解】说法②可得1ω=,说法③可得π22T =,则2ππT ω==,则2ω=,②和③相互矛盾;当①②④成立时,由题意3A =,1ω=,ππ2π32k ϕ+=+,k ∈Z .因为π0,2ϕ⎛⎫∈ ⎪⎝⎭,故0k =,π6ϕ=,即()3sin 6f x x π⎛⎫=+ ⎪⎝⎭,22f π⎛⎫= ⎪⎝⎭;说法①③④成立时,由题意3A =,2ω=,2ππ2π32k ϕ+=+,k ∈Z ,则ππ20,62k ϕπ⎛⎫=-∉ ⎪⎝⎭,故不合题意.故选:D.6.设O 为坐标原点,圆()()22:124M x y -+-=与x轴切于点A ,直线0x +交圆M 于,B C 两点,其中B 在第二象限,则OA BC ⋅=()A B C D 【答案】D 【分析】先根据圆的弦长公式求出线段BC 的长度,再求出直线0x +的倾斜角,即可求得OA 与BC的的夹角,进而可得出答案.【详解】由题意()1,0A ,圆心()1,2M ,()1,2M 到直线0x +距离为12,所以BC =直线0x +π6,则OA 与BC 的的夹角为π6,所以cos ,1OA BC OA BC OA BC ⋅===故选:D .7.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A .3π24R B .3π24R C .3π12R D .3π12R 【答案】C【分析】分别求得面α截圆锥时所得小圆锥的体积和平面α与圆柱下底面之间的部分的体积,结合祖暅原理可求得结果.【详解】 平面α截圆柱所得截面圆半径r ,∴平面α截圆锥时所得小圆锥的体积2311ππ3212V r R =⋅=,又平面α与圆柱下底面之间的部分的体积为232ππ22V R R R =⋅根据祖暅原理可知:平面α与半球底面之间的几何体体积33321V V V R R R =-.故选:C.8.定义{}{},,max ,,min ,,,a a b b a ba b a b b a b a a b ≥≥⎧⎧==⎨⎨<<⎩⎩,对于任意实数0,0x y >>,则2211min max 2,3,49x y x y ⎧⎫⎧⎫+⎨⎨⎬⎬⎩⎭⎩⎭的值是()AB C D 【答案】A【分析】设2211max{2,3,}49x y M x y +=,则2211323(2)(3)M x y x y ≥+++,构造函数21()0)f x x x x=+>,利用导数求出函数()f x 的最小值进而得23632M ≥,化简即可求解.【详解】设2211max{2,3,}49x y M x y +=,则22112,3,49M x M y M x y ≥≥≥+,得222211113232349(2)(3)M x y x y x y x y ≥+++=+++,设21()(0)f x x x x =+>,则33322()1x f x x x -'=-=,令()00f x x '<⇒<<,()0f x x '>⇒>所以函数()f x 在上单调递减,在)+∞上单调递增,故min 233()2f x f ==,即233()2f x ≥,得223333(2)(3)22f x f y ≥≥,所以2222233311336323(2)(3)(2)(3)222M x y f x f y x y ≥+++=+≥+=,得2322M ≥2211min{max{2,3,}}49x y x y +=.故选:A【点睛】关键点点睛:本题考查导数在函数中的综合应用,本题解题的关键是由222211113232349(2)(3)M x y x y x y x y ≥+++=+++构造函数21()0)f x x x x =+>,利用导数求得M 即为题意所求.二、多选题(本题共3小题,每小题6分,共18分。
江西省赣州市(新版)2024高考数学苏教版考试(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知,则()A.0B.C.D.第(2)题下列关于统计概率知识的判断,正确的是()A.将总体划分为2层,通过分层随机抽样,得到两层的样本平均数和样本方差分别为,和,,且已知,则总体方差B.在研究成对数据的相关关系时,相关关系越强,相关系数 r越接近于1C.用来刻画回归效果,值越大,说明拟合效果越好D.回归直线恒过样本点的中心,且至少过一个样本点第(3)题圆心在轴上,半径为1,且过点的圆的方程是()A.B.C.D.第(4)题已知数列是等差数列,其前项和为,则等于()A.63B.C.45D.第(5)题复数的虚部是()A.B.C.D.第(6)题已知奇函数及其导函数的定义域均为,且对一切成立.关于数列,,…,有以下两个论断:①存在,使得数列中恰有112项为1;②存在,使得数列中恰有448项为0.则()A.①是真命题,②是假命题B.①是假命题,②是真命题C.①、②都是真命题D.①、②都是假命题第(7)题某次实验得交变电流(单位:A)随时间(单位:s)变化的函数解析式为,其中且,其图象如图所示,则下列说法错误的是()A.B.C .当时,D.当时,第(8)题在一间长、宽、高分别为7米、5米、4米的长方体形房间内,距离角落的八个顶点一米范围内的区域为“危险区域”,房间内其他区域为“安全区域”,一只苍蝇在房间内飞行到任意位置是随机的,则某时刻这只苍蝇位于“危险区域”的概率为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数(其中)的部分图象如图所示,则()A.B.C.D.第(2)题已知函数满足,则()A.B.C.是偶函数D.是奇函数第(3)题如图,一个半径为的筒车按逆时针方向每分钟转1.5圈,筒车的轴心O距离水面的高度为.设筒车上的某个盛水筒P到水面的距离为d(单位:)(在水面下则d为负数),若以盛水筒P刚浮出水面时开始计算时间,则d与时间:(单位:s)之间的关系为下列结论正确的是()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题对于实数和,定义运算:,设,且关于的方程为恰有三个互不相等的实数根,则的取值范围是___________.第(2)题曲线在点处的切线与曲线的公共点个数为_______.第(3)题已知圆心在x轴上,半径为的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的方程是______四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知数列的通项公式为,其中,、.(1)试写出一组、的值,使得数列中的各项均为正数.(2)若,,数列满足,且对任意的(),均有,写出所有满足条件的的值.(3)若,数列满足,其前项和为,且使(、,)的和有且仅有组,、、…、中有至少个连续项的值相等,其它项的值均不相等,求、的最小值.第(2)题已知函数.(1)证明:函数有三个零点;(2)若对,不等式恒成立,求实数a的取值范围.第(3)题若数列满足则称为数列.记(1)若为数列,且试写出的所有可能值;(2)若为数列,且求的最大值;(3)对任意给定的正整数是否存在数列使得?若存在,写出满足条件的一个数列;若不存在,请说明理由.第(4)题已知函数.(1)讨论的单调性;(2)函数,若对于,使得成立,求的取值范围.第(5)题已知椭圆的左、右焦点分别为,弦过点,的周长为,椭圆的离心率为(1)求椭圆的方程;(2)若,求的面积.。
2024年新高考数学押题密卷(二)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1,2,0,2A =-,{}2,B y y x x x A ==+∈,{}2Z 60C x x x =∈-≤.则B C ⋂=()A .{}0,2B .{}0,2,6C .{}1,2,0,2-D .{}0,2,6,22.用最小二乘法得到一组数据(),(1,2,3,4,5,6)i i x y i =的线性回归方程为ˆ23yx =+,若6130i i x ==∑,则61i i y ==∑()A .11B .13C .63D .783.在ABC 中,4AB =,3AC =,且AB AC AB AC +=- ,则AB BC ⋅=()A .16B .16-C .20D .20-4.已知函数22()sin cos (),()f x x x x f x =-∈'R 是()f x 的导数,则以下结论中正确的是()A .函数π2f x ⎛⎫+ ⎪⎝⎭是奇函数B .函数()f x 与()f x '的值域相同C .函数()f x 的图象关于直线4x π=对称D .函数()f x 在区间ππ,63⎛⎫⎪⎝⎭上单调递增5.将一个棱长为4的正四面体同一侧面上的各棱中点两两连接,得到一多面体,则这个多面体的外接球的体积为()A .8πB .8π3C D .36.已知集合1111,,,,2,32323A ⎧⎫=--⎨⎬⎩⎭,若,,a b c A ∈且互不相等,则使得指数函数x y a =,对数函数log b y x =,幂函数c y x =中至少有两个函数在(0,)+∞上单调递增的有序数对(,,)a b c 的个数是()A .16B .24C .32D .487.已知数列{}n a 的各项均为正数,记()12n A n a a a =+++ ,()231n B n a a a +=+++ ,()342n C n a a a +=+++ ,*n ∈N ,设甲:{}n a 是公比为q 的等比数列;乙:对任意*n ∈N ,()A n ,()B n ,()C n 三个数是公比为q 的等比数列,则()A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分又不必要条件8.设O 为坐标原点,直线l 过抛物线2:2(0)C x py p =>的焦点10,4F ⎛⎫⎪⎝⎭,且与C 交于,M N 两点,其中M 在第一象限,则下列正确的是()A .C 的准线为14x =-B .1344MF NF MF NF ++⋅的最小值为38C .以MN 为直径的圆与x 轴相切D .若(0,)Q p 且MQ MF =,则180ONQ OMQ ∠+∠>二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数12,z z ,则下列命题正确的是()A .若12=z z ,则12=±z z B .若21z z =,则2121z z z =C .若1z 是非零复数,且2112z z z =,则12z z =D .若1z 是非零复数,则1110z z +≠10.已知函数()()2e xf x x ax b =++,下列结论正确的是()A .若函数()f x 无极值点,则()f x 没有零点B .若函数()f x 无零点,则()f x 没有极值点C .若函数()f x 恰有一个零点,则()f x 可能恰有一个极值点D .若函数()f x 有两个零点,则()f x 一定有两个极值点11.正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当0λ=,1μ=时,AP 与平面ABC 所成角为π4B .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥C .当1λ=,12μ=时,平面1AB P ⊥平面1A ABD .若1AP =,则点P 的轨迹长度为π2第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。
一、单选题二、多选题三、填空题四、解答题1. 在中,若,则等于A.B.C .或D .或2.已知双曲线方程为是双曲线的左顶点,是双曲线的左焦点,直线与相交于,若双曲线离心率为,则的余弦值为( )A.B.C.D.3. 已知是等比数列,是16与的等差中项,则数列的前10项和( )A.B.C.D.4.定义在上的函数满足,当时,,则( )A.B .1C .3D .95. 若,则( )A.B.C.D.6. 在的展开式中,含项的系数为( )A .71B .70C .21D .497. 已知椭圆的左右焦点分别为,,直线与椭圆E 交于A ,B 两点,C ,D 分别为椭圆的左右顶点,则下列命题正确的有( )A .若直线CA的斜率为,BD 的斜率,则B .存在唯一的实数m使得为等腰直角三角形C.取值范围为D .周长的最大值为8. 下列选项正确的是( )A .有6个不同的球,取5个放入5个不同的盒子中,每个盒子恰好放1个,则不同的存放方式有720种B .有7个不同的球,全部放入5个相同的盒子中,每个盒子至少放1个,则不同的存放方式有140种C .有7个相同的球,取5个放入3个不同的盒子中,允许有盒子空,则不同的存放方式有18种D .有7个相同的球,全部放入3个相同的盒子中,允许有盒子空,则不同的存放方式有8种9.函数在区间上的值域为________________.10.设集合,,且,则实数m 的值组成的集合为______11. 已知,则的值等于______________.12.已知,则___________,满足f (x )<2的x 的取值范围是___________.13.已知圆内有一点,过点作直线交圆于、两点.江西省赣州市2023届高三模考押题卷(二)数学试题(高频考点版)江西省赣州市2023届高三模考押题卷(二)数学试题(高频考点版)(1)当经过圆心时,求直线的方程;(2)当弦的长为时,求直线的方程.14. 已知.(1)当时,解不等式;(2)若关于x的方程的解集中恰好有一个元素,求实数a的值;(3)若对任意,函数在区间上总有意义,且最大值与最小值的差等于2,求a的取值范围.15. 如图,某市管辖的海域内有一圆形离岸小岛,半径为1公里,小岛中心O到岸边AM的最近距离OA为2公里.该市规划开发小岛为旅游景区,拟在圆形小岛区域边界上某点B处新建一个浴场,在海岸上某点C处新建一家五星级酒店,在A处新建一个码头,且使得AB与AC满足垂直且相等,为方便游客,再建一条跨海高速通道OC连接酒店和小岛,设.(1)设,试将表示成的函数;(2)若OC越长,景区的辐射功能越强,问当为何值时OC最长,并求出该最大值.16. 已知抛物线C:y2=2px(p>0)的焦点F到双曲线的渐近线的距离为1.(1)求抛物线C的方程;(2)若抛物线C上一点P到F的距离是4,求P的坐标;(3)若不过原点O的直线l与抛物线C交于A、B两点,且OA⊥OB,求证:直线l过定点.。
2025届江西省高中名校高考压轴卷数学试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12B .21C .24D .362.设集合{}1,0,1,2A =-,{}22530B x x x =-++>,则AB =( )A .{}0,1,2B .{}0,1C .{}1,2D .{}1,0,1-3.若x 、y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为( )A .5B .9C .6D .124.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( ).A .收入最高值与收入最低值的比是3:1B .结余最高的月份是7月份C .1与2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元{}{}A .{}12x x -≤≤ B .{}02x x <≤C .{}04x x <≤D .{}14x x -≤≤6.函数()2ln xf x x x =-的图象大致为( ) A . B .C .D .7.若,则( )A .B .C .D .8.已知双曲线22214x y b-=(0b >)的渐近线方程为30x y ±=,则b =( )A .23B .3C .32D .439.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( ).A .15B .25C .310D .1410.在311(21)x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为( ) A .1B .2C .3D .711.阅读如图的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是( )A .5i >B .8i >C .10i >D .12i >12.下列几何体的三视图中,恰好有两个视图相同的几何体是( ) A .正方体 B .球体C .圆锥D .长宽高互不相等的长方体二、填空题:本题共4小题,每小题5分,共20分。
2025届江西省宜春市上高县二中高考数学押题试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设()y f x =是定义域为R 的偶函数,且在[)0,+∞单调递增,0.22log 0.3,log 0.3a b ==,则( ) A .()()(0)f a b f ab f +>> B .()(0)()f a b f f ab +>> C .()()(0)f ab f a b f >+>D .()(0)()f ab f f a b >>+2.集合{|20}N A x x B =-≤=,,则A B =( )A .{}1B .{}1,2C .{}0,1D .{}0,1,23.第24届冬奥会将于2022年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P ,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N 个点,经统计落入五环内部及其边界上的点数为n 个,已知圆环半径为1,则比值P 的近似值为( )A .8Nnπ B .12nNπ C .8nNπ D .12Nnπ4.如图是正方体截去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是( )A .12B .13C .23D .565.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( )A .B .C .D .6.已知函数()22018tan 1xx m f x x x m =+++()0,1m m >≠,若()13f =,则()1f -等于( )A .-3B .-1C .3D .07.已知双曲线2221x y a -=的一条渐近线方程是33y x =,则双曲线的离心率为( )A .33B .63C .32D .2338.已知集合U =R ,{}0A y y =≥,{}1B y y x ==+,则UAB =( )A .[)0,1B .()0,∞+C .()1,+∞D .[)1,+∞ 9.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有( ) A .12种B .18种C .24种D .64种10.定义在R 上函数()f x 满足()()f x f x -=,且对任意的不相等的实数[)12,0,x x ∈+∞有()()12120f x f x x x -<-成立,若关于x 的不等式()()()2ln 3232ln 3f mx x f f mx x --≥--++在[]1,3x ∈上恒成立,则实数m 的取值范围是( ) A .1ln6,126e ⎡⎤+⎢⎥⎣⎦B .1ln3,126e ⎡⎤+⎢⎥⎣⎦C .1ln3,23e ⎡⎤+⎢⎥⎣⎦D .1ln6,23e ⎡⎤+⎢⎥⎣⎦11.如图示,三棱锥P ABC -的底面ABC 是等腰直角三角形,90ACB ∠=︒,且2PA PB AB ===,3PC =,则PC 与面PAB 所成角的正弦值等于( )A .13B .63C .33D .2312.已知集合2{|1}M x x ==.N 为自然数集,则下列表示不正确的是( ) A .1M ∈B .{1,1}M =-C .M ∅⊆D .M N ⊆二、填空题:本题共4小题,每小题5分,共20分。
江西省抚州市临川区第二中学2025届高考数学押题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .22.某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( ).A .22S ,且3SB .22S ,且23SC .22S ,且3SD .22S ,且23S3.设函数()()21ln 11f x x x=+-+,则使得()()1f x f >成立的x 的取值范围是( ). A .()1,+∞ B .()(),11,-∞-+∞ C .()1,1-D .()()1,00,1-4.在边长为1的等边三角形ABC 中,点E 是AC 中点,点F 是BE 中点,则AF AB ⋅=( ) A .54B .34C .58D .385.已知数列{}n a 满足12n n a a +-=,且134,,a a a 成等比数列.若{}n a 的前n 项和为n S ,则n S 的最小值为( ) A .–10B .14-C .–18D .–206.已知椭圆2222:19x y C a a +=+,直线1:30l mx y m ++=与直线2:30l x my --=相交于点P ,且P 点在椭圆内恒成立,则椭圆C 的离心率取值范围为( ) A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭7.下列函数中,值域为R 且为奇函数的是( ) A .2y x =+B .y sinx =C .3y x x =-D .2x y =8.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥则“αβ⊥”是“a b ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .即不充分不必要条件9.已知函数2sin ()1x f x x =+.下列命题:①函数()f x 的图象关于原点对称;②函数()f x 是周期函数;③当2x π=时,函数()f x 取最大值;④函数()f x 的图象与函数1y x=的图象没有公共点,其中正确命题的序号是( ) A .①④B .②③C .①③④D .①②④10.已知六棱锥P ABCDEF -各顶点都在同一个球(记为球O )的球面上,且底面ABCDEF 为正六边形,顶点P 在底面上的射影是正六边形ABCDEF 的中心G,若PAAB =,则球O 的表面积为( )A .163πB .94π C .6πD .9π11.过双曲线22221x y a b-= (0,0)a b >>的左焦点F 作直线交双曲线的两天渐近线于A ,B 两点,若B 为线段FA 的中点,且OB FA ⊥(O 为坐标原点),则双曲线的离心率为( ) ABC .2D12.已知函数1212log ,18()2,12x x x f x x ⎧+≤<⎪=⎨⎪≤≤⎩,若()()()f a f b a b =<,则ab 的最小值为( ) 参考数据:2ln 20.69,ln 20.48≈≈A .12B.4C.2logD.2二、填空题:本题共4小题,每小题5分,共20分。
2024年新高考数学押题试卷(二)注意事项:1.答卷前,考生务必要填涂答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动、先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.请考生保持答题卷的整洁,考试结束后,将答题卷交回.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知i ⋅z =5-2i ,则z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限 2.设 的取值范围为()A ={x ∈-2<x <3},Z B ={x 4x -a ≥0},且A B ={12},则,a A .(0,1]C .(0,4B .(0,1)]D .(0,4) 3.为了了解小学生的体能情况,抽取了某小学四年级100名学生进行一分钟跳绳次数测试,将所得数据整理后,绘制如下频率分布直方图.根据此图,下列结论中错误的是()A .x =0.015B .估计该小学四年级学生的一分钟跳绳的平均次数超过125C .估计该小学四年级学生的一分钟跳绳次数的中位数约为119D .四年级学生一分钟跳绳超过125次以上优秀,则估计该小学四年级优秀率为35%ππ24.若α∈4⎫⎛-,- ⎪⎝⎭3π12,且cos 2α+cos 2⎛+2α⎫=- ⎪⎝,则tan α=(⎭)C .-B .-A .23D .-5.设,为双曲线C :的左、右焦点,Q 为双曲线右支上一点,点P (0,2).当1F 2F 2213xy -=1QF PQ+取最小值时,的值为( ) 2QFA B CD22+6.安排5名大学生到三家企业实习,每名大学生只去一家企业,每家企业至少安排1名大学生,则大学生甲、乙到同一家企业实习的概率为( )A .B .C .D .153103256257.对于数列,若存在正数,使得对一切正整数,都有,则称数列是有界的.若这样{}n a M n n a M ≤{}n a 的正数不存在,则称数列是无界的.记数列的前项和为,下列结论正确的是( ) M {}n a {}n a n n S A .若,则数列是无界的 B .若,则数列是有界的 1n a n={}n a sin n a n n ={}n a C .若,则数列是有界的D .若,则数列是有界的 ()1nn a =-{}n S 212n a n =+{}n S8.如图,中,,为的中点,将沿折叠成三棱锥ABC A 90BAC ∠=︒AB AC ==D BC ABC A AD ,则当该三棱锥体积最大时它的外接球的表面积为( )A BCD -A .B .C .D .π2π3π4π二、选择题:本题共4小题,每小题5分,共20分。
江西省吉安市峡江县峡江中学2025届高考数学押题试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数为纯虚数(为虚数单位),则实数( )A .-1B .1C .0D .22.两圆()224x a y ++=和()221x y b +-=相外切,且0ab ≠,则2222a b a b+的最大值为( ) A .94B .9C .13D .13.已知ba b c a 0.2121()2,log 0.2,===,则,,a b c 的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .b c a <<4.函数cos 23sin 20,2y x x x π⎛⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的单调递增区间是( ) A .06,π⎡⎤⎢⎥⎣⎦B .0,3π⎡⎤⎢⎥⎣⎦ C .,62ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎤⎢⎥⎣⎦ 5.执行如图所示的程序框图,则输出的S 的值是( )A .8B .32C .64D .1286.已知椭圆22y a +22x b=1(a >b >0)与直线1y a x b -=交于A ,B 两点,焦点F (0,-c ),其中c 为半焦距,若△ABF 是直角三角形,则该椭圆的离心率为( ) A .5-12B .3-12C .314+ D .514+ 7.已知函数()2943,02log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数()()y f f x =的零点所在区间为( ) A .73,2⎛⎫ ⎪⎝⎭B .()1,0-C .7,42⎛⎫ ⎪⎝⎭D .()4,58.已知抛物线C :22y px =(0p >)的焦点为F ,01,2M y ⎛⎫⎪⎝⎭为该抛物线上一点,以M 为圆心的圆与C 的准线相切于点A ,120AMF ∠=︒,则抛物线方程为( ) A .22y x =B .24y x =C .26y x =D .28y x =9.执行如图所示的程序框图,若输入2020m =,520n =,则输出的i =( )A .4B .5C .6D .710.已知函数()sin3(0,)f x a x a b a x =-++>∈R 的值域为[5,3]-,函数()cos g x b ax =-,则()g x 的图象的对称中心为( ) A .,5()4k k π⎛⎫-∈⎪⎝⎭Z B .,5()48k k ππ⎛⎫+-∈⎪⎝⎭Z C .,4()5k k π⎛⎫-∈ ⎪⎝⎭Z D .,4()510k k ππ⎛⎫+-∈⎪⎝⎭Z11.已知集合2{|23}A x y x x ==-++,{}2|log 1B x x =>则全集U =R 则下列结论正确的是( ) A .AB A =B .A B B ⋃=C .()UA B =∅ D .UB A ⊆12.已知(1,2)a =,(,3)b m m =+,(2,1)c m =--,若//a b ,则b c ⋅=( ) A .7-B .3-C .3D .7二、填空题:本题共4小题,每小题5分,共20分。
江西省新余市第四中学2025届高考数学试题押题密卷(全国新课标II 卷)考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足()117i z i +=-,则z 在复平面内的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知实数x ,y 满足约束条件2211x y y x y kx +≥⎧⎪-≤⎨⎪+≥⎩,若2z x y =-的最大值为2,则实数k 的值为( )A .1B .53C .2D .733.如图所示程序框图,若判断框内为“4i <”,则输出S =( )A .2B .10C .34D .984.在等腰直角三角形ABC 中,,222C CA π∠==,D 为AB 的中点,将它沿CD 翻折,使点A 与点B 间的距离为23ABCD 的外接球的表面积为( ).A .5πB .2053C .12πD .20π5.已知点()2,0A 、()0,2B -.若点P 在函数y x =PAB △的面积为2的点P 的个数为( )A .1B .2C .3D .46.已知集合{}2230A x x x =--≤{}2B x x =<,则AB =( )A .()1,3B .(]1,3C .[)1,2-D .()1,2-7.函数()256f x x x =-+的定义域为( )A .{2x x ≤或}3x ≥B .{3x x ≤-或}2x ≥- C .{}23x x ≤≤D .{}32x x -≤≤-8.已知,,,m n l αβαβαβ⊥⊂⊂=,则“m ⊥n”是“m ⊥l ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若,AB a AD b ==,1AA c =,则与BM 相等的向量是( )A .1122a b c ++ B .1122a b c --+ C .1122a b c -+ D .1122-++a b c 10.设等差数列{}n a 的前n 项和为n S ,若5632a a a +=+,则7S =( ) A .28 B .14C .7D .211.设22(1)1z i i=+++(i 是虚数单位),则||z =( ) A .2B .1C .2D .512.已知空间两不同直线m 、n ,两不同平面α,β,下列命题正确的是( ) A .若m α且n α,则m n B .若m β⊥且m n ⊥,则n βC .若m α⊥且m β,则αβ⊥D .若m 不垂直于α,且n ⊂α,则m 不垂直于n二、填空题:本题共4小题,每小题5分,共20分。