2018高考全国2卷理科数学及答案.doc
- 格式:doc
- 大小:687.04 KB
- 文档页数:9
2018 年一般高等学校招生全国一致考试新课标2 卷理科数学注意事项:1.答卷前,考生务势必自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及稿本纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项吻合题目要 求的。
1+2i1. 1-2i =( )4 3 4 3 343 4A .- 5-5iB . - 5 + 5iC .- 5-5iD . - 5 + 5i分析:选 D2.已知会集 A={(x,y)|x2+y 2≤ 3,x ∈Z,y ∈ Z } ,则 A 中元素的个数为 ( )A . 9B . 8C . 5D . 4分析:选 A 问题为确立圆面内整点个数3.函数 f(x)=e x -e -x的图像大体为 ( ) x 2分析:选 B f(x) 为奇函数,消除A,x>0,f(x)>0,消除 D, 取 x=2,f(2)=e 2-e -2>1, 应选 B44.已知向量 a , b 满足 |a|=1 , a · b=-1 ,则 a · (2a-b)= ( )A . 4B . 3C . 2D . 0分析:选 B a · (2a-b)=2a 2-a ·b=2+1=32-y 25.双曲线 x22 =1(a > 0, b > 0) 的离心率为 3,则其渐近线方程为( )ab23A . y= ± 2xB . y=± 3xC . y=± 2 xD . y=± 2 x分析:选 A e=222a3 c =3a b=C 56.在 ABC 中, cos 2= 5 , BC=1, AC=5,则 AB= ( )A .4 2B . 30C . 29D .2 5分析:选 A cosC=2cos2C3 222-1= -AB=AC+BC-2AB · BC ·cosC=32 AB=4 2251 / 61 1 - 1 1 1( )7. 算 S=1- +3+⋯⋯+- , 了右 的程序框 , 在空白框中 填入2 499100开始N 0,Ti 1是100 否i1S NTN NiT T1出 Si 1束A . i=i+1 B. i=i+2C . i=i+3D. i=i+4分析: B8.我国数学家 景 在哥德巴赫猜想的研究中获得了世界 先的成就. 哥德巴赫猜想是“每个大于2 的偶数可以表示 两个素数的和”,如30=7+23.在不超 30 的素数中,随机 取两个不一样的数,其和等于30 的概率是 ()1111A .B .C .D .121415 18 分析: C不超30 的素数有 2, 3, 5, 7, 11, 13, 17,19, 23, 29 共 10 个,从中 2 个其和 30 的3 2= 17+23, 11+19, 13+17,共 3 种情况,所求概率 P= 15C109.在 方体 ABCD-AB C D 中, AB=BC=1, AA =3, 异面直 AD 与 DB 所成角的余弦 ()1 1 1 11111552A .B .C .D .5652分析: C建立空 坐 系,利用向量 角公式可得。
2018年普通高等学校招生全国统一考试理科综合能力测试本试卷共38题,共100分,共16页,考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂:非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带刮纸刀。
可能用到的相对原子质量:H1 C12 N14 O16 Na23 P31 S32 Fe56一、选择题:本题共13小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列关于人体中蛋白质功能的叙述,错误的是A.浆细胞产生的抗体可结合相应的病毒抗原B.肌细胞中的某些蛋白质参与肌肉收缩的过程C.蛋白质结合Mg2+形成的血红蛋白参与O2运输,D.细胞核中某些蛋白质是染色体的重要组成成分2.下列有关物质跨膜运输的叙述,正确的是A.巨噬细胞摄入病原体的过程属于协助扩散B.固醇类激素进入靶细胞的过程属于主动运输C.神经细胞受到刺激时产生的Na+内流属于被动运输D.护肤品中的甘油进入皮肤细胞的过程属于主动运输3.下列有关人体内激素的叙述,正确的是A.运动时,肾上腺素水平升高,可使心率加快,说明激素是高能化合物B.饥饿时,胰高血糖素水平升高,促进糖原分解,说明激素具有酶的催化活性C.进食后,胰岛素水平升高,其既可加速糖原合成,也可作为细胞的结构组分D.青春期,性激素水平升高,随体液到达靶细胞,与受体结合可促进机体发育4.有些作物的种子入库前需要经过风干处理,与风干前相比,下列说法错误的是A.风干种子中有机物的消耗减慢B.风干种子上微生物不易生长繁殖C.风干种子中细胞呼吸作用的强度高D.风干种子中结合水与自由水的比值大5.下列关于病毒的叙述,错误的是A.从烟草花叶病毒中可以提取到RNAB.T2噬菌体可感染肺炎双球菌导致其裂解C.HIV可引起人的获得性免疫缺陷综合征D.阻断病毒的传播可降低其所致疾病的发病率6.在致癌因子的作用下,正常动物细胞可转变为癌细胞。
word 格式整理版2018 年普通高等学校招生全国统一考试理科数学本试卷共23 题,共 150 分,共 5 页。
一、选择题:本题共12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A.B.C.D.2.已知集合 A={( x, y)| x 2 +y 2 ≤ 3, x∈ Z, y∈Z},则 A 中元素的个数为A.9B.8C.5D.43. 函数 f ( x) =e 2 -e-x/x 2 的图像大致为A.B.C.word 格式整理版D.4.已知向量a,b 满足∣ a∣ =1, a· b=-1, 则 a·( 2a-b ) =A.4B.3C.2D.05.双曲线 x 2 /a 2 -y 2 /b 2 =1( a﹥ 0, b﹥0)的离心率为,则其渐进线方程为A.y= ±xB.y=±xC.y= ±D.y=±6.在中, cos=, BC=1,AC=5,则 AB=A.4B.C.D.27.为计算 s=1- + - +⋯ +-,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2 的偶数可以表示为两个素数的和”,如30=7+23,在不超过30 的素数中,随机选取两个不同的数,其和等于30 的概率是A.B.C.D.9. 在长方体ABCD-A1B1 C1D1中, AB=BC=1,AA1=则异面直线AD1与 DB1所成角的余弦值为word 格式整理版A. B.10. 若 f ( x) =cosx-sinx在[-a,a]是减函数,则a 的最大值是A.B.C.D.π11. 已知 f (x)是定义域为( - ∞, +∞)的奇函数,满足 f ( 1-x ) =f ( 1+x)。
若 f (1) =2,则 f ( 1)+ f ( 2) + f ( 3) +⋯ +f ( 50) =A.-50B.0C.2D.5012. 已知 F1,F2是椭圆 C:=1 ( a>b>0)的左、右焦点, A 是 C 的左顶点,点 P 在过 A 且斜率为的直线上,△ PF1F2为等腰三角形,∠F1F2P=120°,则 C 的离心率为A..B.C.D.二、填空题:本题共4 小题,每小题5 分,共 20 分。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页,考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1212ii+=- 43. 55A i -- 43. 55B i -+ 34. 55C i -- 34. 55D i -+2.已知集合(){}22,3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为. 9A. 8B . 5C . 4D3.函数2()x xe ef x x--=的图象大致为4.已知向量,a b 满足1,1a a b =⋅=-,则()2a a b ⋅-=. 4A . 3B . 2C . 0D5.双曲线()222210,0x y a b a b-=>>的离心率为3,则其渐近线方程为. 2A y x =± . 3B y x =± 2. 2C y x =± 3. 2D y x =±6.在ABC ∆中,5cos ,1,5,25C BC AC ===则AB = . 42A . 30B . 29C. 25D 7.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入. 1A i i =+ . 2B i i =+ . 3C i i =+ . 4D i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23. 在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是1.12A 1. 14B 1. 15C 1. 18D 9.在长方体1111ABCD A B C D -中,11,3,AB BC AA ===则异面直线1AD 与1DB 所成角的余弦值为1. 5A5. 6B 5. 5C 2.2D 10.若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是.4A π.2B π3.4C π .D π-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________11.已知()f x 是定义域为(),-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=. 50A -. 0B . 2C . 50D12.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为6的直线上,12PF F ∆为等腰三角形,12120F F P ∠=,则C 的离心率为2. 3A 1. 2B 1. 3C 1. 4D二、填空题(本题共4小题,每小题5分,共20分)13.曲线2ln(1)y x =+在点()0,0处的切线方程为_____________.14.若,x y 满足约束条件250,230,50,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则z x y =+的最大值为________.15.已知sin cos 1,cos sin 0αβαβ+=+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA 、SB 所成角的余弦值为78,SA 与圆锥底面所成角为45.若SAB ∆的面积为则该圆锥的侧面积为__________.三、解答题(共70分。
2018年普通高等学校招生全国统一考试理科(四川卷)参考答案第I 卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-【答案】A2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .10【答案】C3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度【答案】A4.若0a b >>,0c d <<,则一定有A .a b c d > B .a b c d < C .a b d c > D .a b d c< 【答案】D5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为A .0B .1C .2D .3【答案】C6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A .192种B .216种C .240种D .288种【答案】B7.平面向量a=(1,2), b=(4,2), c=ma+b (m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =A .2-B .1-C .1D .2【答案】D8.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。
设点P 在线段。
2018年普通高等学校招生全国统一考试理科综合能力测试本试卷共38题,共100分,共16页,考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂:非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带刮纸刀。
可能用到的相对原子质量:H1 C12 N14 O16 Na23 P31 S32 Fe56一、选择题:本题共13小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列关于人体中蛋白质功能的叙述,错误的是A.浆细胞产生的抗体可结合相应的病毒抗原B.肌细胞中的某些蛋白质参与肌肉收缩的过程C.蛋白质结合Mg2+形成的血红蛋白参与O2运输,D.细胞核中某些蛋白质是染色体的重要组成成分2.下列有关物质跨膜运输的叙述,正确的是A.巨噬细胞摄入病原体的过程属于协助扩散B.固醇类激素进入靶细胞的过程属于主动运输C.神经细胞受到刺激时产生的Na+内流属于被动运输D.护肤品中的甘油进入皮肤细胞的过程属于主动运输3.下列有关人体内激素的叙述,正确的是A.运动时,肾上腺素水平升高,可使心率加快,说明激素是高能化合物B.饥饿时,胰高血糖素水平升高,促进糖原分解,说明激素具有酶的催化活性C.进食后,胰岛素水平升高,其既可加速糖原合成,也可作为细胞的结构组分D.青春期,性激素水平升高,随体液到达靶细胞,与受体结合可促进机体发育4.有些作物的种子入库前需要经过风干处理,与风干前相比,下列说法错误的是A.风干种子中有机物的消耗减慢B.风干种子上微生物不易生长繁殖C.风干种子中细胞呼吸作用的强度高D.风干种子中结合水与自由水的比值大5.下列关于病毒的叙述,错误的是A.从烟草花叶病毒中可以提取到RNAB.T2噬菌体可感染肺炎双球菌导致其裂解C.HIV可引起人的获得性免疫缺陷综合征D.阻断病毒的传播可降低其所致疾病的发病率6.在致癌因子的作用下,正常动物细胞可转变为癌细胞。
2018年全国各地高考数学(理科试卷及答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年全国各地高考数学(理科试卷及答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年全国各地高考数学(理科试卷及答案)(word版可编辑修改)的全部内容。
2018年高考数学理科试卷(江苏卷)数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{}8,2,1,0B,那么==A,{}8,6,1,1-=A.⋂B2.若复数z满足i1+⋅,其中i是虚数单位,则z的实部为.=zi23.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为.4.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为.5.函数()1log 2-=x x f 的定义域为 .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .7.已知函数()⎪⎭⎫ ⎝⎛<<-+=222sin ππϕx x y 的图象关于直线3π=x 对称,则ϕ的值是 .8.在平面直角坐标系xOy 中,若双曲线()0,012222>>=-b a by a x 的右焦点()0,c F 到一条渐近线的距离为c 23,则其离心率的值是 . 9.函数()x f 满足()()()R x x f x f ∈=+4,且在区间]2,2(-上,()⎪⎪⎩⎪⎪⎨⎧≤<-+≤<=02,2120,2cos x x x xx f π, 则()()15f f 的值为 .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .11.若函数()()R a ax x x f ∈+-=1223在()+∞,0内有且只有一个零点,则()x f 在[]1,1-上的最大值与最小值的和为 .12.在平面直角坐标系xOy 中,A 为直线x y l 2:=上在第一象限内的点,()0,5B ,以AB 为直径的圆C 与直线l 交于另一点D .若0=⋅,则点A 的横坐标为 .13.在ABC ∆中,角C B A 、、所对的边分别为c b a 、、, 120=∠ABC ,ABC ∠的平分线交AC 于点D ,且1=BD ,则c a +4的最小值为 .14.已知集合{}*∈-==N n n x x A ,12|,{}*∈==N n x x B n ,2|.将B A ⋃的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112+>n n a S 成立的n 的最小值为 .二、解答题:本大题共6小题,共计90分.请在答题卡...指.定区域...内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,cos()αβ+=. (1)求cos2α的值; (2)求tan()αβ-的值.17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为CDP△,要求,A B均在线段MN上,,C D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和CDP△的面积,并确定sinθ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示).数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作....................答..若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =,求 BC 的长.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标. C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.D .[选修4-5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.学科#网22.(本小题满分10分)如图,在正三棱柱ABC—A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s 〈t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n 的表达式(用n 表示).数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.1.{1,8}2.2 3.90 4.85.[2,+∞)6.3107.π6-8.29.210.4311.–3 12.313.9 14.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD—A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD—A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分.解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=. 因为22sin cos 1αα+=,所以29cos 25α=, 因此,27cos22cos 125αα=-=-. (2)因为,αβ为锐角,所以(0,π)αβ+∈. 又因为5cos()αβ+=-,所以225sin()1cos ()αβαβ+=-+=, 因此tan()2αβ+=-. 因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+.17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分. 解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=14,θ0∈(0,π6).当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[14,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[14,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,π2).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,π2),则222()cos sin sin(2sin sin1)(2sin1)(sin1)fθθθθθθθθ=--=-+-=--+′.令()=0fθ′,得θ=π6,当θ∈(θ0,π6)时,()>0fθ′,所以f(θ)为增函数;当θ∈(π6,π2)时,()<0fθ′,所以f(θ)为减函数,因此,当θ=π6时,f(θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以001x y =. 因此,点P的坐标为.②因为三角形OAB 的面积为26,所以2126AB OP ⋅=,从而42AB =. 设1122,,()(),A x y B x y ,由(*)得22000001,22448(2)x y x x ±-=,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+. 因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=,解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,). 综上,直线l 的方程为532y x =-+.19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),().设x 0为f (x )与g (x )的“S "点,由f (x 0)与g (x 0)且f ′(x 0)与g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*)得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e 2.(3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =,令03002e (1)x x b x =-,则b 〉0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x-=-=′,′. 由f (x )与g (x )且f ′(x )与g ′(x ),得22e e (1)2xx b x a xb x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a 〉0,存在b 〉0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)由条件知:112(,)n n n a n d b -=-=. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即1 12|()1|n n d ---≤对n =1,2,3,4均成立,即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.(2)由条件知:111(1),n n n a b n d b b q -=+-=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即1111|1|2,3,,(1())n b n d b q b n m -+--≤=+, 即当2,3,,1n m =+时,d 满足1111211n n q q b d b n n ---≤≤--.因为q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+均成立.因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>.因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当x 〉0时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()f x 〈f (0)=1.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mq m. 因此,d 的取值范围为11(2)[,]m mb q b q m m-.数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分. 证明:连结OC .因为PC 与圆O 相切,所以OC ⊥PC . 又因为PC =OC =2,所以OP .又因为OB =2,从而B 为Rt△OCP 斜边的中点,所以BC =2. B .[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分.解:(1)因为2312⎡⎤=⎢⎥⎣⎦A ,det()221310=⨯-⨯=≠A ,所以A 可逆, 从而1-A 2312-⎡⎤=⎢⎥-⎣⎦.(2)设P (x ,y ),则233121x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311x y -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A , 因此,点P 的坐标为(3,–1). C .[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分. 解:因为曲线C 的极坐标方程为=4cos ρθ,所以曲线C 的圆心为(2,0),直径为4的圆. 因为直线l 的极坐标方程为πsin()26ρθ-=, 则直线l 过A (4,0),倾斜角为π6, 所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =π6.连结OB ,因为OA 为直径,从而∠OBA =π2, 所以π4cos 6AB ==.因此,直线l 被曲线C 截得的弦长为 D .[选修4—5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分. 证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++. 因为22=6x y z ++,所以2224x y z ++≥,当且仅当122xy z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.学科%网解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以31(,2)2P -,从而131(,,2)(0,2,22),BP AC ==--,故111||310|cos ,|||||522BP AC BP AC BP AC ⋅==⋅⨯.因此,异面直线BP 与AC 1所成角的余弦值为310.(2)因为Q 为BC 的中点,所以31(,0)2Q ,因此33(,0)2AQ =,11(0,2,2),(0,0,2)AC CC ==.设n =(x ,y ,z )为平面AQC 1的一个法向量,则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即330,2220.y y z ⎧+=⎪⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ,则111||sin |cos |,|||CCCC CC |θ==⋅⋅==n n n ,所以直线CC 1与平面AQC 1所成角的正弦值为.23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.解:(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置. 因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以(0)1n f =. 逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n =-.为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置. 因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+.当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, 因此,n ≥5时,(2)n f =222n n --.绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
2018年高考全国卷2理科数学试题与答案2018年高考全国卷2理科数学试题与答案本试卷共分为选择题和非选择题两部分,满分150分,考试时间为120分钟。
选择题:1.已知$\frac{1+2i}{1-2i}=\frac{43}{55}$,则其值为(A)$-\frac{1}{2}+\frac{43}{55}i$;(B)$-\frac{1}{2}-\frac{43}{55}i$;(C)$-\frac{34}{55}+\frac{34}{55}i$;(D)$-\frac{34}{55}-\frac{34}{55}i$。
2.已知集合 $A=\{(x,y)|x+y^2\leq3,x\in Z,y\in Z\}$,则$A$ 中元素的个数为(A)9;(B)8;(C)5;(D)4.3.函数 $f(x)=\frac{e^x-e^{-x}}{x^2}$ 的图像大致为(无选项)。
4.已知向量 $\vec{a}$,$\vec{b}$ 满足 $|\vec{a}|=1$,$\vec{a}\cdot\vec{b}=-1$,则 $\vec{a}\cdot(2\vec{a}-\vec{b})=$(A)4;(B)3;(C)2;(D)$\frac{x^2}{y^2}$。
5.双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为3,则其渐近线方程为(A)$y=\pm2x$;(B)$y=\pm3x$;(C)$y=\pm\frac{3}{2}x$;(D)$y=\pm\frac{2}{3}x$。
6.在 $\triangle ABC$ 中,$\cos C=\frac{4}{5}$,$\cosB=\frac{3}{5}$,则 $\frac{a}{b+c}=$(A)$\frac{4}{9}$;(B)$\frac{5}{9}$;(C)$\frac{6}{11}$;(D)$\frac{7}{11}$。
绝密 ★启用前2018 年普通高等学校招生全国统一考试理科数学本试卷共 23 题,共 150 分,共 4 页。
考试结束后,将本试卷和答题卡一并交回。
注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用 2B 铅笔填涂; 非选择题必须使用0.5 毫米黑色字迹的签字笔书写,笔迹清楚。
字体工整、3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.12i 1 2iA .4 3B .4 3 C .3 4 D .3 4 5i5 i5 i5 i55552.已知集合 A {( x, y) | x 2y 23, x Z , y Z} ,则 A 中元素的个数为A .9B . 8C . 5D . 43.函数 f (x)e x e x2的图象大致为x4.已知向量 a , b 满足 |a | 1 , a b 1 ,则 a (2 a b)A .4 x 2y 2 B . 3C . 2D . 05.双曲线1( a 0, b 0) 的离心率为3 ,则其渐近线方程为22ab23 开始A . y2xB . y3x C . yD . yxxC 5, BC2 2N0,T 0 .在 △ABC 中,1 , AC5 ,则AB6cos5i12A . 4 2B . 30C . 29D . 25是否i1007.为计算 S111 1 L11,设计了右侧的123 499 100NS N TN程序框图,则在空白框中应填入iA . i i 1T1输出 STB . i i 2i 1C . i i 3 结束8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2 的偶数可以表示为两个素数的和”,如 30 7 23 .在不超过 30 的素数中,随机选取两个不同的数,其和等于30 的概率是1B .1 1 1A .C.D.12 14 15 189.在长方体 ABCD A1B1C1D1中, AB BC 1 , AA1 3 ,则异面直线AD1与 DB1所成角的余弦值为A .1B .5 5 26C.D.5 5 210.若 f ( x) cosx sin x在 [ a, a] 是减函数,则a的最大值是A .πB .πC.3πD.π4 2 411.已知 f ( x) 是定义域为 ( , ) 的奇函数,满足 f (1 x) f (1 x) .若 f (1) 2 ,则 f (1) f (2) f (3) L f (50)A . 50B . 0 C. 2 D. 50x2 y21( a b 0) 的左,右焦点, A 是C 3 的12.已知 F1, F2是椭圆C:2 2 的左顶点,点 P 在过 A 且斜率为a b 6直线上,△ PF1 F2 为等腰三角形,F1 F2P 120 ,则 C 的离心率为A .2B .1C.1D.1 323 4二、填空题:本题共 4 小题,每小题 5 分,共20 分。
13.曲线 y 2ln( x 1) 在点 (0, 0) 处的切线方程为 __________ .x 2 y 5 ≥ 0,14.若x, y满足约束条件x 2y 3 ≥ 0, 则 z x y 的最大值为 __________ .x 5 ≤ 0,15.已知 sin α cos β 1, cosα sin β0 ,则 sin( α β) __________.16.已知圆锥的顶点为S ,母线,SB所成角的余弦值为7, SA与圆锥底面所成角为 45°,若△SAB的面SA 8积为 5 15 ,则该圆锥的侧面积为__________.三、解答题:共70 分。
解答应写出文字说明、证明过程或演算步骤。
第17~21 题为必考题,每个试题考生都必须作答。
第22、 23 为选考题。
考生根据要求作答。
(一)必考题:共60 分。
17.( 12 分)记 S n为等差数列 { a n } 的前n项和,已知 a1 7 , S3 15 .(1)求 { a n } 的通项公式;(2)求 S n,并求 S n的最小值.18.( 12 分)下图是某地区2000 年至 2016 年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018 年的环境基础设施投资额,建立了y 与时间变量t的两个线性回归模型.根据2000年至 2016 年的数据(时间变量t ?13.5t ;根据 2010 年至 2016的值依次为 1,2,L ,17 )建立模型①: y 30.4年的数据(时间变量t 的值依次为 1, 2,L , 7 )建立模型②:y? 99 17.5t .(1)分别利用这两个模型,求该地区2018 年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.19.( 12 分)设抛物线 C:y2 4x 的焦点为F,过F且斜率为 k (k 0) 的直线 l 与 C 交于A,B两点, | AB | 8 .( 1 )求 l 的方程;P ( 2)求过点A,B且与 C 的准线相切的圆的方程.20.( 12 分)如图,在三棱锥P ABC 中, AB BC 2 2 ,OCAPA PB PC AC 4 , O 为 AC 的中点.M ( 1)证明: PO 平面 ABC ;B ( 2)若点M在棱 BC 上,且二面角 M PA C 为 30 ,求 PC 与平面PAM所成角的正弦值.21.( 12 分)已知函数 f (x) e x ax 2 .( 1)若 a 1 ,证明:当 x≥ 0 时, f (x) ≥ 1 ;( 2)若 f ( x) 在 (0, ) 只有一个零点,求 a .(二)选考题:共10 分。
请考生在第22、 23 题中任选一题作答。
如果多做,则按所做的第一题计分。
22. [选修 4- 4:坐标系与参数方程]( 10 分)在直角坐标系x 2cos θ, x 1 t cosα, xOy 中,曲线 C 的参数方程为(θ为参数),直线 l 的参数方程为y 2 t sin α,y 4sin θ,( t 为参数).( 2)若曲线 C 截直线 l 所得线段的中点坐标为(1, 2) ,求 l 的斜率.23. [选修 4- 5:不等式选讲 ] ( 10 分)设函数 f (x) 5 | x a | | x2| .( 1)当 a 1 时,求不等式 f ( x) ≥ 0 的解集;( 2)若 f (x) ≤ 1,求a的取值范围.绝密★启用前2018 年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题1.D 2. A 3. B 4. B 5. A 6. A 7. B 8. C 9. C 10. A 11. C 12. D 二、填空题13.y 2x 14. 9 15.116.40 2π2三、解答题17.解:( 1)设{ a n}的公差为 d,由题意得3a1 3d 15 .由 a1 7 得d=2.所以 { a n } 的通项公式为 a n 2n 9 .( 2)由( 1)得S n n2 8n (n 4) 2 16 .所以当 n=4 时,S n取得最小值,最小值为- 16.18.解:( 1)利用模型①,该地区2018 年的环境基础设施投资额的预测值为y?30.4 13.5 19226.1 (亿元).利用模型②,该地区2018 年的环境基础设施投资额的预测值为y? 99 17.5 9256.5 (亿元 ).( 2)利用模型②得到的预测值更可靠.理由如下:(ⅰ)从折线图可以看出, 2000 年至 2016 年的数据对应的点没有随机散布在直线y30.4 13.5t 上下.这说明利用 2000 年至 2016 年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋 势. 2010 年相对 2009 年的环境基础设施投资额有明显增加,2010 年至 2016 年的数据对应的点位于一条直线的附近,这说明从 2010 年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010 年至 2016 年的数据建立的线性模型 y 99 17.5t 可以较好地描述 2010年以后的环境基础设施投资额的变化趋势, 因此利用模?型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于 2016 年的环境基础设施投资额 220 亿元,由模型①得到的预测值226. 1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.以上给出了 2 种理由,考生答出其中任意一种或其他合理理由均可得分. 19.解:( 1)由题意得 F (1,0) , l 的方程为 y k (x1)(k 0) .设 A( x 1 , y 1), B( x 2 , y 2 ) ,y k( x 1),(2 k24) x k20 .由4x得 k2x 2 y 216k 216 0,故 x 1 x 2 2k 2 4 .k 2所以 | AB | | AF | | BF | ( x 11) ( x 21) 4k 2 4k2.由题设知4k 2 4 8 ,解得 k1 (舍去), k 1 .k 2因此 l 的方程为 yx 1.( 2)由( 1)得 AB 的中点坐标为 (3, 2) ,所以 AB 的垂直平分线方程为 y 2 ( x 3) ,即 yx 5 .设所求圆的圆心坐标为 ( x 0 , y 0 ) ,则y 0x 0 5,x 0 3,x 011,2( y 0 x 0 1)解得或( x 0 1)216. y 0 2y 06.因此所求圆的方程为(x 3)2 ( y 2) 2 16 或 (x 11)2 ( y 6) 2 144 .20.解:( 1)因为AP CP AC 4 , O 为 AC 的中点,所以 OP AC ,且OP 2 3 .连结 OB .因为AB BC2AC ,所以△ABC为等腰直角三角形,2且 OB AC ,OB 1AC 2 .2由 OP 2 OB2 PB 2 知 PO OB .由 OP OB, OP AC 知PO 平面 ABC .uuurO xyz .( 2)如图,以O为坐标原点,OB的方向为x轴正方向,建立空间直角坐标系由已知得 O(0,0,0), B(2,0,0), A(0, 2,0), C(0,2,0), P(0,0,2uuur(0,2,2 3), 取平面 PAC 的法向3), APuuur量 OB (2,0,0) .设 M (a,2 a,0)(0 auuur(a,4 a,0) .2) ,则AM设平面 PAM 的法向量为 n (x, y, z) .uur uuur2y 2 3z 0 由 AP n 0, AM n 0 得,可取ax (4 a) y 0n ( 3( a 4), 3a, a) ,uuur2 3( a 4)所以cos OB, n .由已知得2 3( a 4) 2 3a2 a2uuur 3|cos OB, n |2.所以 2 3 | a 4|a2 =3.解得 a 4 (舍去),a 4 .2 3(a 4) 2 3a2 2 3所以 n ( 8 3 , 4 3 , uuur(0,2,uuur33 4) .又PC 2 3) ,所以cos PC, n .3 34 所以 PC 与平面PAM所成角的正弦值为 3 .421.解:( 1)当a 1 时, f ( x) 1 等价于 ( x2 1)e x 1 0 .设函数 g (x) ( x2 1)e x 1 ,则 g' ( x) (x2 2x 1)e x (x 1)2 e x .当 x 1 时,g' (x) 0 ,所以 g(x) 在 (0, ) 单调递减.而 g(0) 0 ,故当x 0 时,g( x) 0 ,即 f ( x) 1.( 2)设函数h( x) 1 ax2e x.f ( x) 在 (0, ) 只有一个零点当且仅当h( x) 在 (0, ) 只有一个零点.( i )当a 0 时, h(x) 0 , h(x) 没有零点;( ii )当a 0 时,h' ( x) ax( x 2)e x .当 x (0,2) 时, h' ( x) 0 ;当 x (2, ) 时, h' ( x) 0 .所以 h( x) 在 (0, 2) 单调递减,在 (2, ) 单调递增.故 h(2) 1 4a) 的最小值.2是 h( x) 在 [0,e①若h(2) 0 ,即a e2, h(x) 在 (0, ) 没有零点;4②若h(2) 0 ,即a e2 , h(x) 在 (0, ) 只有一个零点;4③若h(2) 0 ,即a e2 ,由于 h(0) 1 ,所以 h(x) 在 (0, 2) 有一个零点,4由( 1)知,当x 0 时,x 2,所以 h(4 a) 16 a3116a3 16a311e x 1(e2a )21 0 .e4 a (2 a)4 a故 h( x) 在(2,4 a) 有一个零点,因此h(x) 在 (0, ) 有两个零点.综上, f (x) 在 (0, ) 只有一个零点时, a e2 .422..解:( 1)曲线C的直角坐标方程为x2 y21 .4 16cos 0 l当 cos 0 时, l 的直角坐标方程为x 1.( 2)将l的参数方程代入 C 的直角坐标方程,整理得关于t 的方程(1 3cos 2 )t 2 4(2cos sin )t 8 0 .①因为曲线 C 截直线 l 所得线段的中点(1,2) 在C内,所以①有两个解,设为t1, t2 ,则 t1 t2 0 .又由①得 t1 t2 4(2cos sin ),故 2cos sin 0 ,于是直线 l 的斜率 k tan 2 .1 3cos 223.解:2x 4, x 1,( 1)当a 1 时, f ( x) 2, 1 x 2,2x 6, x 2.可得 f ( x) 0的解集为 { x | 2 x 3} .( 2)f ( x) 1等价于 | x a | | x 2 | 4 .而 | x a | | x 2 | | a 2|,且当x 2 时等号成立.故 f ( x) 1等价于 | a 2 | 4 .由 | a 2 | 4 可得a 6 或 a 2 ,所以a的取值范围是( , 6] U [2, ) .21( 12 分)已知函数 f ( x)x 2 e ax .( 1)若a 1 ,证明:当 x 0 时, f ( x) 1 ;( 2)若f ( x)在(0, ) 只有一个零点,求 a .解:( 1)f ( x) e x 2 x ,f ( x) e x 2 .当 x ln2 时, f ( x) 0 ,当x ln2 时, f ( x) 0 ,所以 f ( x) 在 ( ,ln 2) 单调递减,在 (ln 2, ) 单调递增,故 f ( x ) f (ln 2) 2 2ln 2 0 , f ( x) 在 ( , ) 单调递增.因为 x 0 ,所以 f ( x) f (0) 1 .( 2)当x 0 时,设 g( x) e x a ,则 f ( x) x2g ( x),f ( x)在(0, ) 只有一个零点等价于 g ( x) 在x2(0,) 只有一个零点.g ( x) e x ( x 2),当0 x 2时,g ( x) 0,当x x3(2, ) 单调递增,故g(x) g(2) e2a .4e2若 a ,则 g ( x) 0 , g ( x) 在 (0, ) 没有零点.4若 a e2,则 g ( x) 0 , g ( x) 在 (0, ) 有唯一零点4若 a e2 ,因为 g (2) 0 ,由(1)知当x 0 时,e x 42 时,g ( x)0 ,所以 g ( x) 在 (0,2) 单调递减,在x 2 .x2 1 ,g( x) e x a 1 1 a ,故存在x2 x2x1 (0,1(0,2) ,使 g ( x1 ) 0 .a)1e4a e4 ag(4a) 16a2 a 16a2a e x x2,。