工业机器人的五个坐标系
- 格式:pptx
- 大小:520.71 KB
- 文档页数:7
工业机器人常用坐标系介绍坐标系:为确定机器人的位置和姿态而在机器人或空间上进行的位置指标系统。
坐标系包含:1、基坐标系(Base Coordinate System)2、大地坐标系(World Coordinate System)3、工具坐标系(Tool Coordinate System)4、工件坐标系(Work Object Coordinate System)1、工具坐标系机器人工具座标系是由工具中心点TCP与座标方位组成。
机器人联动运行时,TCP是必需的。
1)Reorient重定位运动(姿态运动)机器人TCP位置不变,机器人工具沿座标轴转动,改变姿态。
2) Linear 线性运动机器人工具姿态不变,机器人TCP沿座标轴线性移动。
机器人程序支持多个TCP,可以根据当前工作状态进行变换。
机器人工具被更换,重新定义TCP后,可以不更改程序,直接运行。
1.1.定义工具坐标系的方法:1、N(N=4)点法/TCP法-机器人TCP通过N种不同姿态同某定点相碰,得出多组解,通过计算得出当前TCP与机器人手腕中心点( tool0 ) 相应位置,座标系方向与tool0一致。
2、TCPZ法-在N点法基础上,Z点与定点连线为座标系Z方向。
3、TCPX,Z法-在N点法基础上,X点与定点连线为座标系X方向,Z点与定点连线为座标系Z方向。
2.工件坐标系机器人工件座标系是由工件原点与座标方位组成。
机器人程序支持多个Wobj,可以根据当前工作状态进行变换。
外部夹具被更换,重新定义Wobj后,可以不更改程序,直接运行。
通过重新定义Wobj,可以简便的完成一个程序适合多台机器人。
2.1.定义工件坐标系的方法:三点法-点X1与点X2连线组成X轴,通过点Y1向X。
简述工业机器人的坐标系类型工业机器人是一种可以替代人工完成一系列重复性、高难度、高危险度的工作的机器人。
工业机器人的坐标系是机器人控制的基础,而坐标系的类型又决定了机器人的运动方式和精度。
因此,本文将简述工业机器人的坐标系类型。
一、笛卡尔坐标系笛卡尔坐标系是工业机器人应用最广泛的坐标系类型之一,它是一种三维坐标系,其中每个点都可以用三个数字(x,y,z)来表示,分别代表点在X轴、Y轴和Z轴上的坐标。
笛卡尔坐标系的特点是可以精确地控制机器人的位置和方向,适用于需要精确定位和定向的工作任务,如点焊、喷涂、切割等。
二、极坐标系极坐标系是一种基于极坐标的坐标系,它由极轴和极角两个参数组成。
其中,极轴代表点到原点的距离,极角代表点与极轴正方向的夹角。
极坐标系适用于需要进行圆弧运动的工作任务,如搬运、装配等。
三、关节坐标系关节坐标系是一种基于机器人关节的坐标系,它由每个关节的角度组成。
机器人的每个关节都有一个角度值,通过控制关节的转动角度,可以实现工具的位置和方向的控制。
关节坐标系适用于需要进行灵活、多变的工作任务,如装配、搬运等。
四、工具坐标系工具坐标系是一种基于机器人末端工具的坐标系,它由末端工具的位置和方向组成。
通过控制末端工具的位置和方向,可以实现机器人的控制。
工具坐标系适用于需要进行精细、复杂的工作任务,如零件加工、组装等。
五、基座坐标系基座坐标系是一种基于机器人底座的坐标系,它由底座的位置和方向组成。
通过控制底座的位置和方向,可以实现机器人的控制。
基座坐标系适用于需要进行大范围、高精度的工作任务,如搬运、装配等。
综上所述,工业机器人的坐标系类型有很多种,每种坐标系都有其适用范围和优缺点。
在实际应用中,需要根据工作任务的性质和要求选择适合的坐标系,以达到最佳的工作效果和控制精度。
工业的五个坐标系工业的五个坐标系工业是用于自动化生产的设备,在工厂生产线中扮演着重要的角色。
为了精确地控制和定位的动作,需要使用五个坐标系来描述的位置和姿态。
本文将详细介绍这五个坐标系的定义和使用方法。
一.基坐标系基坐标系是工业运动的参考坐标系,也称为世界坐标系或基座标系。
它通常固定在所处的环境中的一个固定点上,例如工作台或地面。
基坐标系的原点通常被定义为的起始位置。
二.关节坐标系关节坐标系是相对于的关节运动而定义的坐标系。
它描述了各个关节的位置和姿态。
每个关节都有一个对应的关节坐标系,关节坐标系的原点位于关节的旋转中心。
三.工具坐标系工具坐标系是末端执行器所处的坐标系。
它通常是通过在末端装置一个工具或夹具来定义的。
工具坐标系的原点通常位于工具的中心或夹具的夹持点。
四.工件坐标系工件坐标系是工作时相对于工件而定义的坐标系。
它可以通过在工件上选择一个固定点来定义。
工件坐标系的原点通常位于工件的某个确定位置上。
五.外部坐标系外部坐标系是相对于工作环境的坐标系。
它通常是由一个传感器来提供的,如视觉传感器或激光扫描仪。
外部坐标系能够提供相对于周围环境的位置和姿态信息。
附件:本文档未涉及附件。
法律名词及注释:1. 工业:指用于工业生产领域的可编程自动操作。
2. 自动化生产:指利用机器或计算机控制系统自动完成工业生产过程。
3. 坐标系:指描述一个点在空间中位置的系统。
4. 关节:指中可以实现柔性运动的部件。
5. 姿态:指在空间中的方向或朝向。
6. 末端执行器:指末端的工具或夹具。
7. 工具:指末端用于执行特定任务的装置。
8. 夹具:指用于夹持工件的固定装置。
9. 外部坐标系:指相对于工作环境的参考坐标系。
一、工业机器人简介工业机器人是一种多功能的自动化设备,它可以根据预先设定的程序完成各种生产任务,如组装产品、搬运材料等。
工业机器人通常由机械臂、控制器、传感器等部件组成,能够在工业生产中发挥重要作用。
二、工业机器人的坐标系1. 机器人的坐标系是指用来描述机器人工作空间和姿态的一种坐标系统。
常见的工业机器人坐标系包括笛卡尔坐标系、关节坐标系等。
2. 笛卡尔坐标系是以机器人基座为原点建立的,通常采用三维直角坐标系描述机器人末端执行器的位置和姿态,对于需要精确控制位置和方向的任务非常适用。
3. 关节坐标系是以机器人的关节为原点建立的坐标系,通过描述每个关节的角度来确定机器人末端执行器的位置和姿态,适用于需要精确控制关节角度的任务。
三、工业机器人的运动命名原则1. 工业机器人的运动命名原则是指描述机器人运动状态和轨迹的命名规范。
根据国际标准和通用约定,常见的工业机器人运动命名原则包括PPT、PPP、PTP等。
2. PPT是指“点到点”运动,即机器人从一个位置移动到另一个位置,并在目标位置停止。
PPT运动适用于需要精确定位的任务,如焊接、喷涂等。
3. PPP是指“点到点到点”运动,即机器人从一个位置开始,经过一个中间点,最终到达目标位置。
PPP运动适用于需要避障或柔性轨迹控制的任务,如装配、搬运等。
4. PTP是指“点到点”运动,即机器人根据指定的关节角度从一个姿态移动到另一个姿态,并在目标姿态停止。
PTP运动适用于需要精确控制关节角度的任务,如加工、抓取等。
四、结论工业机器人的坐标系和运动命名原则是工业机器人控制和编程中的重要概念,对于工业机器人的精确控制和应用具有重要意义。
正确理解和掌握工业机器人的坐标系和运动命名原则,能够有效提高工业机器人的工作效率和生产质量,推动工业自动化的发展。
五、工业机器人的坐标系和运动命名原则在工业生产中的应用工业机器人的坐标系和运动命名原则在工业生产中起着至关重要的作用。
工业机器人坐标系的分类及应用
在现代工业生产中,工业机器人已经成为了不可或缺的一部分。
主要关于工业机器人的坐标系,一般可以分为直角坐标系、联机坐标系、圆柱坐标系、极坐标
系和人手坐标系等五种。
它们的应用也各有侧重,满足了不同类型的工业生产需求。
首先,直角坐标系型机器人,其结构简单,控制方便,这也是现在应用最广泛的一种类型。
由于其运动轨迹容易设定,因此在汽车、电子产品装配线等需要精
细作业的领域应用广泛。
其次,联机坐标系机器人。
它的前后臂可以自由度的配合配合,实现复杂的空间运动,因此适用于搬运、装配、喷涂、焊接等操作。
在一些需要较高运动精度的领域,如汽车装配等,也有很好的应用前景。
再次,圆柱坐标系机器人,其工作距离比较大,适合于机械加工、装配、搬运等操作。
尤其是在一些有限空间中进行长距离搬运作业,它的优势就体现出来了。
接下来,极坐标系机器人。
它的结构复杂,运动灵活,常用于工件搬运、装配、喷涂等多变的生产环境。
同时,由于其具有较长的工作距离,因此在港口吊装、机械加工等领域也有着广泛的应用。
最后,人手坐标系机器人,这种机器人的结构最接近人手,具有较高的灵活性和适应性,能适应复杂的作业环境。
一般应用于精细装配、卸载等操作。
同时,
在外科手术、矿山探险等特殊应用环境中,也占据了独特的地位。
总的来说,五种坐标系的工业机器人都有自己的特色和应用场景。
在实际工作中,根据需要选择合适的机器人类型,能够极大地提高工作效率,降低人力成本。
《工业机器人》复习题一、填空题1、机器人具有三大特征:拟人功能、可编程、通用性。
2、1980年工业机器人在日本普及,随后工业机器人在日本得到巨大发展,日本因此赢得“机器人王国”美称。
3、工业机器人的五种基本坐标式机器人直角坐标系、圆柱坐标系、球坐标系、关节坐标系、 E-平面关节式坐标系。
4、按几何结构分划分机器人分为:串联机器人、并联机器人。
5、工业机器人系统由四大部分组成:机械系统、驱动系统、控制系统和感知系统。
6、工业机器人的主要技术参数是自由度、精度、重复定位精度、工作范围、承载能力及最大速度。
7、机器人常用驱动方式主要是液压驱动、气压驱动和电气驱动三种基本类型。
8、目前常用的传动件的定位方法有:电气开关定位、机械挡块定位和伺服定位系统。
二、单选题9、下面哪个国家被称为“机器人王国”?CA 中国B 英国C 日本D 美国10、手部的位姿是由哪两部分变量构成的?BA位置与速度B姿态与位置C位置与运行状态D姿态与速度11、动力学的研究内容是将机器人的______________联系起来。
AA运动与控制B传感器与控制C结构与运动D传感系统与运动12、机器人轨迹控制过程需要通过求解__________获得各个关节角的位置控制系统的设定值。
BA运动学正问题B运动学逆问题C动力学正问题D动力学逆问题13、用于检测物体接触面之间相对运动大小和方向的传感器是:CA接近觉传感器B接触觉传感器C滑动觉传感器D压觉传感器14、传感器的输出信号达到稳定时,输出信号变化与输入信号变化的比值代表传感器的_______参数。
DA抗干扰能力B精度C线性度D灵敏度15、传感器的基本转换电路是将敏感元件产生的易测量小信号进行变换,使传感器的信号输出符合具体工业系统的要求。
一般为:AA.. 4~20mA、–5~5VB.0~20mA、0~5VC.-20mA~20mA、–5~5VD.-20mA~20mA、0~5V16、GPS全球定位系统,只有同时接收到___颗卫星发射的信号,才可以解算出接收器的位置。
工业机器人的五个坐标系在工业机器人领域,坐标系是用来描述机器人末端执行器(或工具)在空间中的位置和姿态的框架。
为了确保机器人的准确性和一致性,通常会使用一系列标准的坐标系。
以下是工业机器人领域中最常用的五个坐标系:1、笛卡尔坐标系:在三维空间中,笛卡尔坐标系使用三个相互垂直的坐标轴(X、Y、Z),以及三个相互垂直的旋转轴(Rx、Ry、Rz)。
这种坐标系常用于描述机器人在空间中的位置和姿态,以及机器人末端执行器的位置和姿态。
2、极坐标系:极坐标系是一种以机器人末端执行器为中心的坐标系,它使用径向距离(r)、方位角(θ)和高度(z)来描述机器人在空间中的位置和姿态。
这种坐标系常用于路径规划、路径插补和机器人运动学分析。
3、圆柱坐标系:圆柱坐标系是一种以机器人末端执行器为中心的坐标系,它使用径向距离(r)、方位角(θ)和垂直距离(z)来描述机器人在空间中的位置和姿态。
这种坐标系常用于描述机器人在圆柱体或球体等形状上的路径和姿态。
4、球坐标系:球坐标系是一种以机器人末端执行器为中心的坐标系,它使用径向距离(r)、方位角(θ)和极角(φ)来描述机器人在空间中的位置和姿态。
这种坐标系常用于描述机器人在球体或类似形状上的路径和姿态。
5、工具坐标系:工具坐标系是一种以机器人末端执行器(或工具)为中心的坐标系,它使用工具的几何中心作为原点,并使用三个旋转轴(Rx、Ry、Rz)来描述工具的空间姿态。
这种坐标系常用于机器人运动学建模、路径规划和机器人控制等方面。
这些坐标系在工业机器人领域中具有广泛的应用,它们为机器人控制、路径规划和运动学建模提供了方便的框架。
根据实际应用场景的不同,选择合适的坐标系可以有效地提高机器人的精度和效率。
ABB工业机器人操作和坐标系一、引言在现代化的制造和自动化流程中,工业机器人扮演着关键的角色。
它们被广泛应用于各种复杂任务,从装配到质量检测,从搬运到喷漆,无所不能。
ABB集团作为全球领先的机器人技术提供商,其产品广泛应用于全球的各个行业。
工业机器人常用的四种坐标系1 机器人坐标系工业机器人的坐标系是指用于控制机器人运动的坐标系,常用的有四种坐标系,即机器人基座坐标系、世界坐标系、末端坐标系和用户定义的坐标系。
2 机器人基座坐标系机器人基座坐标系(Base Coordinate System,BCS)一般是机器人的起点,也就是位于机器人的基座上,可以理解为机器人“抓取”东西时的测量和控制参考系,以及机器人坐标到世界坐标转换的参考系。
起始点可以通过编程人员在机器人程序上定义或使用具有软件的机器人控制器交互进行定位。
3 世界坐标系世界坐标系(World Coordinate System,WCS)是在机器人程序执行时定义的机器人环境中一个参考系,任何在机器人程序中定义的位置总是以世界坐标系为参照系定义的,以这个坐标系来表示机器人完成动作的最终目标点。
4 末端坐标系末端坐标系(TCP,Tool Centre Point)位于机器人末端,是坐标系统上机器人末端位置的参考系。
末端坐标系位于关节空间的终点,跟踪机器人的最终位置,用于控制器知道完成多个任务时,机器人头部位置的正确性。
此外,末端坐标系还可以用于关节运动时的夹持物体的位置定义及控制。
5 用户定义的坐标系用户定义的坐标系(User defined Coordinate System,UCS)由程序员在机器人程序中定义,有时也称为临时坐标系,以满足特定程序规划及定位运动任务的需要。
程序员可以自定义各种用户坐标系,通过建立坐标系与世界坐标系之间的关系,来完成更复杂的任务定位与控制,例如在组装任务中检查某一样件的位置相对与主体的关系等。
在控制机器人运动时,机器人的正确性定位及动作的精确性取决于机器人坐标系的准确性,上文介绍了四种机器人常用的机器人坐标系,他们非常适用于机器人程序规划定位及控制任务,能够将复杂的机器人运动任务优化,以及正确定位指令。
⼯业机器⼈的⼯具坐标系、⼯件坐标系、世界坐标系标定第3章机器⼈的坐标系及标定机器⼈的坐标系是机器⼈操作和编程的基础。
⽆论是操作机器⼈运动,还是对机器⼈进⾏编程,都需要⾸先选定合适的坐标系。
机器⼈的坐标系分为关节坐标系、机器⼈坐标系、⼯具坐标系、世界坐标系和⼯件坐标系。
通过本章的内容,掌握这⼏种坐标系的含义其标定⽅法。
3.1 实验设备六⾃由度机器⼈3.2 机器⼈的坐标系对机器⼈进⾏轴操作时,可以使⽤以下⼏种坐标系:(1)关节坐标系—ACS(Axis Coordinate System)关节坐标系是以各轴机械零点为原点所建⽴的纯旋转的坐标系。
机器⼈的各个关节可以独⽴的旋转,也可以⼀起联动。
(2)机器⼈(运动学)坐标系—KCS(Kinematic Coordinate System)机器⼈(运动学)坐标系是⽤来对机器⼈进⾏正逆运动学建模的坐标系,它是机器⼈的基础笛卡尔坐标系,也可以称为机器⼈基础坐标系或运动学坐标系,机器⼈⼯具末端(TCP)在该坐标系下可以进⾏沿坐标系X轴、Y轴、Z轴的移动运动,以及绕坐标系轴X轴、Y轴、Z轴的旋转运动。
(3)⼯具坐标系—TCS(Tool Coordinate System)将机器⼈腕部法兰盘所持⼯具的有效⽅向作为⼯具坐标系Z轴,并把⼯具坐标系的原点定义在⼯具的尖端点(或中⼼点)TCP(TOOL CENTER POINT)。
但当机器⼈末端未安装⼯具时,⼯具坐标系建⽴在机器⼈的法兰盘端⾯中⼼点上,Z轴⽅向垂直于法兰盘端⾯指向法兰⾯的前⽅。
当机器⼈运动时,随着⼯具尖端点(TCP)的运动,⼯具坐标系也随之运动。
⽤户可以选择在⼯具坐标系下进⾏⽰教运动。
TCS坐标系下的⽰教运动包括沿⼯具坐标系的X轴、Y轴、Z轴的移动运动,以及绕⼯具坐标系轴X轴、Y轴、Z轴的旋转运动。
(4)世界坐标系—WCS(World Coordinate System)世界坐标系是空间笛卡尔坐标系。
运动学坐标系和⼯件坐标系的建⽴都是参照世界坐标系建⽴的。
工业机器人是一种能够自动执行各种工业生产任务的智能化设备,它能够完成重复性高、精度要求高的工作,极大地提高了生产效率和产品质量。
在工业机器人的运动控制中,坐标系是一个非常重要的概念,它决定了机器人在空间中的运动轨迹和位置。
常见的工业机器人坐标系包括基坐标系、工具坐标系、世界坐标系和用户坐标系。
下面将对这四种常用坐标系进行简要介绍。
一、基坐标系基坐标系是工业机器人控制中最基本的坐标系,也是机器人的运动参考系。
它通常是由机器人末端执行器的位置和姿态决定的,其坐标原点通常位于机器人的基座中心,x轴指向机器人末端执行器的前进方向,y轴指向机器人的左侧,z轴指向机器人的上方。
通过基坐标系,机器人可以准确定位和控制自身的运动轨迹。
二、工具坐标系工具坐标系是相对于机器人末端执行器的一个坐标系,它描述了机器人末端执行器上安装的工具或夹具在运动过程中的位置和姿态。
工具坐标系的建立需要考虑到工具的重心位置、姿态等因素,通过工具坐标系,机器人可以准确地控制工具在工作空间中的位置和姿态。
三、世界坐标系世界坐标系是指在工业机器人操作的整个工作空间中建立的一个固定的坐标系,它通常是由工作空间的边界和环境参考物所确定的。
世界坐标系的建立可以帮助机器人在工作空间中进行定位和路径规划,保证其移动和操作的准确性和稳定性。
四、用户坐标系用户坐标系是根据用户的需要和工作要求,由用户自行建立的一个坐标系。
用户可以根据实际工作需要,将世界坐标系中的某个点或者某个工件的某个特定位置定义为一个新的坐标系原点,并设置新的坐标轴方向。
通过用户坐标系,用户可以方便的对工作空间进行定位、操作和控制。
总结:在工业机器人的运动控制中,坐标系是一个非常重要的概念,不同的坐标系具有不同的运动特性和控制方式。
了解和掌握工业机器人常用的四类坐标系的定义和使用方法,对于提高机器人的运动控制精度和灵活性,实现高效的生产操作具有重要的意义。
希望本文能够对读者有所帮助,谢谢!很高兴看到您对工业机器人坐标系有着浓厚的兴趣,下面将继续为您介绍工业机器人常用坐标系的一些细节和应用。
工业机器人运动轴与坐标系的确定工业机器人是一种高精度、高速度、高可靠性的自动化设备,广泛应用于制造业、物流业、医疗业等领域。
工业机器人的运动轴和坐标系的确定是机器人运动控制的基础,对于机器人的精度、速度、稳定性等方面都有着重要的影响。
一、工业机器人的运动轴工业机器人的运动轴是指机器人在运动过程中的各个方向,通常包括六个方向:X、Y、Z、A、B、C轴。
其中,X、Y、Z轴是直线运动轴,A、B、C轴是旋转运动轴。
1. X、Y、Z轴X、Y、Z轴是机器人的直线运动轴,它们分别对应机器人的前后、左右、上下运动方向。
在机器人的运动控制中,X、Y、Z轴通常被称为基本轴,它们的运动是机器人运动的基础。
2. A、B、C轴A、B、C轴是机器人的旋转运动轴,它们分别对应机器人绕X、Y、Z轴的旋转运动。
在机器人的运动控制中,A、B、C轴通常被称为姿态轴,它们的运动可以改变机器人的姿态,从而实现更加复杂的运动控制。
二、工业机器人的坐标系工业机器人的坐标系是指机器人运动控制中的坐标系,它是机器人运动控制的基础。
通常情况下,工业机器人的坐标系有两种:基座坐标系和工具坐标系。
1. 基座坐标系基座坐标系是机器人运动控制中的基本坐标系,它是机器人运动的参考坐标系。
基座坐标系通常以机器人的基座为原点,X、Y、Z轴分别对应机器人的前后、左右、上下运动方向。
2. 工具坐标系工具坐标系是机器人运动控制中的相对坐标系,它是机器人在执行任务时所使用的坐标系。
工具坐标系通常以机器人的工具为原点,X、Y、Z轴分别对应机器人工具的前后、左右、上下运动方向。
三、工业机器人运动轴和坐标系的确定工业机器人的运动轴和坐标系的确定是机器人运动控制的基础,它对机器人的运动精度、速度、稳定性等方面都有着重要的影响。
通常情况下,工业机器人的运动轴和坐标系的确定需要经过以下步骤:1. 确定基座坐标系首先需要确定机器人的基座坐标系,通常以机器人的基座为原点,X、Y、Z轴分别对应机器人的前后、左右、上下运动方向。