浙江专版高考数学二轮专题复习选择填空提速专练四
- 格式:doc
- 大小:156.00 KB
- 文档页数:6
浙江省杭州市(新版)2024高考数学人教版质量检测(培优卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题设,是的前项和.若是递增数列,且对任意,存在,使得.则的取值范围是A.B.C.D.第(2)题设向量均为单位向量,则“”是“”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件第(3)题设向量,,当数与满足下列哪种关系时,向量与轴垂直()A.B.C.D.第(4)题已知正三棱柱的底面边长为,高为3,截去该三棱柱的三个角(如图1所示,D,E,F分别是三边的中点),得到几何体如图2所示,则所得几何体外接球的表面积是()A.B.C.D.第(5)题五一小长假前夕,甲、乙、丙三人从四个旅游景点中任选一个前去游玩,其中甲到过景点,所以甲不选景点,则不同的选法有()A.64种B.48种C.36种D.24种第(6)题设等比数列的公比为,前项和为,则“”是“为等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第(7)题在中,分别为的内角的对边,为边上一点,满足,若,,,则()A.B.C.D.第(8)题设集合,,则集合中元素的个数为()A.0B.1C.2D.3二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知长方体,,,则下列结论正确的是()A.平面平面B.直线平面C.直线与直线所成的锐角为D.四面体外接球的半径为第(2)题折扇在我国已有三四千年的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它以字画的形式集中体现了我国文化的方方面面,是运筹帷幄,决胜千里,大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若扇形的两个圆弧所在圆的半径分别是1和3,且,则该圆台()A.高为B.表面积为C.体积为D.上底面积、下底面积和侧面积之比为第(3)题在一个有限样本空间中,事件发生的概率满足,,A与互斥,则下列说法正确的是()A.B.A与相互独立C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数,则不等式的解集是___________.第(2)题设函数,若将图像向左平移个单位后,所得函数图像的对称轴与原函数图像的对称轴重合,则_______.第(3)题已知点是抛物线上的一个动点,则点到点的距离与到轴的距离之和的最小值为___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)讨论的单调性;(2)若,求的取值范围.第(2)题为提高高三学生身体素质,鼓励积极参加体育锻炼,某校在高三学生中随机抽取了100名男生和100名女生,利用一周时间对他们的身体各项运动指标(高中年龄段指标)进行考察,得到综合素质指标评分,评分结果分为两类:80分以上为达标,80分以下为不达标,统计结果如下表:达标不达标合计男生40601003070100女生合计70130200(1)能否有的把握认为“运动达不达标与性别有关”?(2)按分层抽样的方法抽取7位达标学生,再从中选出3人为其他同学介绍经验,记这3人中男生个数记为,求的分布列及数学期望.附:,0.0500.0100.0013.841 6.63510.828第(3)题如图,直角梯形中,,,,,将沿翻折至的位置,使得.(1)求证:平面平面;(2)若,分别为,的中点,求三棱锥的体积.第(4)题如图,正方形ABCD对角线的交点为O,四边形OBEF为矩形,平面平面ABCD,G为AB的中点,M为AD的中点.(1)证明:平面ECG.(2)若,求点M到平面ECG的距离.第(5)题记为等比数列的前项和,,.(1)求的通项公式;(2)若,求的前项和.。
浙江省中考数学二轮复习拔高训练卷专题4 函数与几何图形及变换姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2020·西安模拟) 若直线l1经过点A(0,﹣6),直线l2经过点(3,2)且l1与l2关于y轴对称,则l1、l2与x轴交点之间的距离为()A . 1B .C . 3D .2. (2分) (2020八下·咸安期末) 如图,正方形的边长为,点P是正方形的对角线上的一个动点(不与B、D重合),作于点E,作于点F,设的长为x,四边形的周长为y,能大致表示y与x之间的函数图象的是()A .B .C .D .3. (2分)如图,点A(3,m)在双曲线y=上,过点A作AC⊥x轴于点C,线段OA的垂直平分线交OC于点B,则△ABO的面积为()A .B .C .D .4. (2分) (2019九上·鱼台期末) 如图,已知点P为反比例函数y=- 上一点,过点P向坐标轴引垂线,垂足分别为M,N,那么四边形MONP的面积为()A . -6B . 6C . 3D . 125. (2分) (2020九上·秀洲月考) 坐标平面上,若移动二次函数 y= -( x - 2018)( x - 2020) - 2 的图象,使其与x轴交于两点,且此两点的距离为2个单位,则移动方式可为()A . 向上平移2个单位B . 向下平移2个单位C . 向上平移1个单位D . 向下平移1个单位6. (2分) (2018九上·彝良期末) 把抛物线y=-2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得抛物线的函数关系式是()A . y=-2(x-1)2+6B . y=-2(x-1)2—6C . y=-2(x+1)2+6D . y=-2(x+1)2—67. (2分)(2019·花都模拟) 已知函数y=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数y=ax+b 的图象大致是()A .B .C .D .8. (2分)(2016·荆门) 如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C 的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A .B .C .D .9. (2分)(2018·南开模拟) 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是()A . 60 m2B . 63 m2C . 64 m2D . 66 m210. (2分)(2017·新泰模拟) 如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A .B .C .D .11. (2分)如图,矩形的长和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿矩形两条宽的中点所在的直线自右向左匀速运动至等腰三角形的底与另一宽重合.设矩形与等腰三角形重叠部分(阴影部分)的面积为y,重叠部分图形的高为x,那么y关于x的函数图象大致应为A .B .C .D .12. (2分)(2017·嘉兴模拟) 如图,在平面直角坐标系中,点A(,0)是轴上一点,以OA为对角线作菱形OBAC,使得60°,现将抛物线沿直线OC平移到,则当抛物线与菱形的AB边有公共点时,则m的取值范围是()A .B .C .D .二、填空题 (共5题;共12分)13. (4分) (2016九上·宁江期中) 在平面直角坐标系中,若抛物线y=(x﹣1)2+2不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为________.14. (2分) (2020九上·北海期末) 如图,已知点A、B分别在反比例函数y=(x>0),y=﹣(x >0)的图象上,且OA⊥OB,则的值为________.15. (2分)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,点D的坐标为(0,﹣3)AB为半圆直径,半圆圆心M(1,0),半径为2,则经过点D的“蛋圆”的切线的解析式为________ .16. (2分) (2017九下·台州期中) 如图,△AOB和△ACD均为正三角形,顶点B,D在双曲线y= (x>0)上,则 =________.17. (2分)(2018·正阳模拟) 如图1,则等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC 的面积为________.三、解答题 (共9题;共64分)18. (5分) (2016九上·三亚期中) 用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边l的变化而变化,当l是多少时,场地的面积S最大?19. (8分) (2020八下·长岭期末) 一次函数的图象与正比例函数(是常数,且)的图象都经过点 .(1)求正比例函数的表达式;(2)利用函数图象直接写出当时,的取值范围.20. (5分)抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求此抛物线的解析式;(2)抛物线上是否存在点P,使S△ABP=S△ABC,若存在,求出P点坐标;若不存在,请说明理由.21. (8分)(2020·新都模拟) 如图,△ABC 为等腰直角三角形,∠ACB=90°,点 M 为 AB 边的中点,点 N 为射线 AC 上一点,连接 BN,过点 C 作 C D⊥BN 于点 D,连接 MD,作∠BNE=∠BNA,边 EN 交射线 MD 于点 E,若 AB=20 ,MD=14 ,求则 NE 的长22. (9分)已知|a﹣2|+(b﹣3)2=0,且A(a,0),B(b,0),C(0,ab)是平面直角坐标系内的三点,求△ABC的面积.23. (5分) (2017九上·东莞月考) 如图,已知二次函数y=a(x﹣h)2+ 的图象经过原点O(0,0),A (2,0).写出该函数图象的对称轴;24. (5分)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,3)和点B,与x 轴相交于点C(8,0).(1)求这两个函数的解析式;(2)当x取何值时,y1>y2.25. (9分) (2017九上·松北期末) 如图,抛物线y=ax2﹣2ax﹣3a交x轴于点A、B(A左B右),交y轴于点C,S△ABC=6,点P为第一象限内抛物线上的一点.(1)求抛物线的解析式;(2)若∠PCB=45°,求点P的坐标;(3)点Q为第四象限内抛物线上一点,点Q的横坐标比点P的横坐标大1,连接PC、AQ,当PC= AQ时,求点P的坐标以及△PCQ的面积.26. (10分) (2019九上·天津期中) 已知二次函数y=-2x2+8x-6,完成下列各题:(1)写出它的顶点坐标C;(2)它的图象与x轴交于A,B两点(点A在点B的左侧),顶点为C,求S△ABC .参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共5题;共12分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:三、解答题 (共9题;共64分)答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:考点:解析:答案:22-1、考点:解析:答案:23-1、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、考点:解析:。
题型强化练1 客观题8+4+4标准练(A )一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020天津滨海新区联考,1)设集合U={x|x ≥-1},A={1,3,5,7},B={x|x>5},则A ∩∁U B=( ) A.{1,3,5} B.{3,5}C.{1,3}D.{1,3,5,7}2.(2020山东日照二模,2)在复平面内,已知复数z 对应的点与复数1+i 对应的点关于实轴对称,则z i=( )A.1+iB.-1+iC.-1-iD.1-i 3.(2020北京西城二模,6)设a=30.2,b=log 32,c=log 0.23,则 ( )A.a>c>bB.a>b>cC.b>c>aD.b>a>c4.(2020山东日照一模,3)南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为V 1,V 2,被平行于这两个平面的任意平面截得的两个截面的面积分别为S 1,S 2,则“S 1,S 2总相等”是“V 1,V 2相等”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件5.(2019广东深圳适应性考试,文8)已知△ABC 是边长为1的等边三角形,D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE=2EF ,则AF ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的值为 ( ) A.-58 B.118C.14D.186.(2020广东东莞一模,8)函数y=cos x ·2x +12x -1的部分图象大致为( )7.(2020河北石家庄5月检测,8)若双曲线C:x 2a2−y2b2=1(a>0,b>0)的一条渐近线被圆x2+y2-4y+2=0所截得的弦长为2,则双曲线C的离心率为()A.√3B.2√33C.2D.√28.(2020山东聊城一模,8)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,为了纪念数学家高斯,人们把函数y=[x],x∈R称为高斯函数,其中[x]表示不超过x的最大整数.设{x}=x-[x],则函数f(x)=2x{x}-x-1的所有零点之和为()A.-1B.0C.1D.2二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.(2020海南线上诊断测试,9)如图所示的曲线图是2020年1月25日至2020年2月12日陕西省及西安市新冠肺炎累计确诊病例的曲线图,则下列判断正确的是()A.1月31日陕西省新冠肺炎累计确诊病例中西安市占比超过了13B.1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势C.2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了97例D.2月8日到2月10日西安市新冠肺炎累计确诊病例的增长率大于2月6日到2月8日的增长率10.(2020山东德州一模,10)1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开始了人造卫星的新篇章.人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a ,2c ,下列结论正确的是( )A.卫星向径的取值范围是[a-c ,a+c ]B.卫星在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间C.卫星向径的最小值与最大值的比值越大,椭圆轨道越扁平D.卫星运行速度在近地点时最大,在远地点时最小11.(2020山东淄博一模,10)在正方体ABCD-A 1B 1C 1D 1中,P ,Q 分别为棱BC 和棱CC 1的中点,则下列说法正确的是( ) A.BC 1∥平面AQPB.平面APQ 截正方体所得截面为等腰梯形C.A 1D ⊥平面AQPD.异面直线QP 与A 1C 1所成的角为60°12.(2020海南海南中学月考,12)已知函数f (x )=A sin(ωx+φ)(A>0,ω>0)在x=1处取得最大值,且最小正周期为2,则下列说法正确的有( ) A.函数f (x-1)是奇函数B.函数f (x+1)是偶函数C.函数f (x+2)在[0,1]上单调递增D.函数f (x+3)是周期函数三、填空题:本题共4小题,每小题5分,共20分.13.(2020山东泰安考前模拟,14)(x -1x )(1-x )4的展开式中x 3的系数为 .14.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为 升. 15.(2019四川攀枝花统考,文16)已知函数f (x )=(x -b )2-lnx x (b ∈R ).若存在x ∈[1,2],使得f (x )+xf'(x )>0,则实数b 的取值范围是 .16.已知正三棱柱ABC-A 1B 1C 1的六个顶点都在球O 的表面上,AB=3,异面直线AC 1与BC 所成角的余弦值为310,则球O 的表面积为 .题型强化练题型强化练1 客观题8+4+4标准练(A )1.A 解析 由题意∁U B={x|-1≤x ≤5},∴A ∩∁U B={1,3,5}. 2.C 解析 由题意得z=1-i,所以zi =1-ii =i+1-1=-1-i .3.B 解析 指数函数y=3x 为R 上的增函数,则a=30.2>30=1;对数函数y=log 3x 为(0,+∞)内的增函数,则log 31<log 32<log 33,即0<b<1;对数函数y=log 0.2x 为(0,+∞)内的减函数,则c=log 0.23<log 0.21=0.故a>b>c.4.A 解析 根据祖暅原理,当S 1,S 2总相等时,V 1,V 2相等,所以充分性成立;当两个完全相同的四棱台,一正一反的放在两个平面之间时,此时体积固然相等但截得的面积未必相等,所以必要性不成立.所以“S 1,S 2总相等”是“V 1,V 2相等”的充分不必要条件.5.D 解析 由DE=2EF ,可得DE ⃗⃗⃗⃗⃗ =2EF ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ =12DE ⃗⃗⃗⃗⃗ .如图所示,连接AE ,则AE ⊥BC ,所以BC ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =0,AF ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =(AE ⃗⃗⃗⃗⃗ +EF ⃗⃗⃗⃗⃗ )·BC ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ +12DE ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0+12·|DE ⃗⃗⃗⃗⃗ |·|BC ⃗⃗⃗⃗⃗ |·cos π3=0+12×12×1×12=18.故选D .6.A 解析 令f (x )=y=cos x ·2x+12x -1(x ≠0),则f (-x )=cos(-x )·2-x+12-x -1=cos x ·12x +112x -1=cos x ·2x +11-2x =-f (x ),所以函数f (x )为奇函数,可排除B,D; 当x ∈(0,π2)时,cos x>0,2x +12x -1>0,所以f (x )>0,故排除C.7.C 解析 双曲线C :x 2a 2−y 2b2=1(a>0,b>0)的渐近线方程为y=±ba x ,由对称性,不妨取y=ba x ,即bx-ay=0.圆x 2+y 2-4y+2=0可化为x 2+(y-2)2=2,其圆心的坐标为(0,2),半径为√2. 圆心(0,2)到渐近线的距离d=√(√2)2-12=1. 由点到直线的距离公式,可得√b +a 2=2a c =2e =d=1,所以e=2.8.A 解析 由题意知,当x=0时,f (x )=-1,所以0不是函数f (x )的零点.当x ≠0时,由f (x )=2x {x }-x-1=0可得,2{x }=1x +1,令y 1=2{x }=2x-2[x ],y 2=1x +1,作出函数y 1=2{x }=2x-2[x ],y 2=1x +1的图象如图所示, 由图象可知,除点(-1,0)外,函数y 1=2{x }=2x-2[x ],y 2=1x +1图象其余交点关于(0,1)中心对称,所以横坐标互为相反数.由函数零点的定义知,函数f (x )=2x {x }-x-1的所有零点之和为-1.9.ABC 解析 1月31日陕西省新冠肺炎累计确诊病例共有87例,其中西安32例,所以西安所占比例为3287>13,故A 正确;由曲线图可知,1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势,故B 正确;2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了213-116=97(例),故C 正确;2月8日到2月10日西安市新冠肺炎累计确诊病例的增长率为98-8888=544,2月6日到2月8日西安新冠肺炎累计确诊病例的增长率为88-7474=737,显然737>544,故D 错误.10.ABD解析根据椭圆定义知卫星向径的取值范围是[a-c,a+c],故A正确;当卫星在左半椭圆弧运行时,对应的面积更大,根据面积守恒规律,速度应更慢,故B 正确;a-c a+c =1-e1+e=21+e-1,比值越大,则e越小,椭圆轨道越接近于圆,故C错误.根据面积守恒规律,卫星在近地点时向径最小,故速度最大,在远地点时向径最大,故速度最小,故D正确.11.ABD解析如图,因为P,Q分别为棱BC和棱CC1的中点,所以PQ∥BC1, 又因为BC1⊄平面AQP,PQ⊂平面AQP,由线面平行的判定定理,知BC1∥平面AQP,故A正确;由AD1∥PQ,知平面APQ截正方体所得截面为四边形APQD1,又因为PQ≠AD1,所以四边形APQD1是等腰梯形,故B正确;若A1D⊥平面AQP,则A1D⊥AP,又因为AA1⊥AP,AA1∩A1D=A1,所以AP⊥平面A1AD,而AB⊥平面A1AD,这与垂直于同一平面的两条直线平行矛盾,故C不正确;异面直线QP与A1C1所成的角为∠A1C1B,而△A1C1B为等边三角形,故D正确. 12.BCD解析因为f(x)=A sin(ωx+φ)的最小正周期为2,所以2=2πω,所以ω=π.又因为f(x)=A sin(ωx+φ)在x=1处取得最大值,所以ω+φ=2kπ+π2(k∈Z).所以φ=2kπ-π2(k∈Z).所以f(x)=A sin(ωx+φ)=-A cos πx.设g(x)=f(x-1)=-A cos [π(x-1)]=A cos πx,因为g(-x)=A cos [π(-x)]=A cos πx=g(x),所以g(x)=f(x-1)是偶函数,故A不正确;设h (x )=f (x+1)=-A cos [π(x+1)]=A cos πx ,因为h (-x )=A cos [π(-x )]=A cos πx=h (x ),所以h (x )=f (x+1)是偶函数,故B 正确; 设m (x )=f (x+2)=-A cos [π(x+2)]=-A cos πx ,因为x ∈[0,1],所以πx ∈[0,π],又因为A>0,所以函数m (x )=f (x+2)在[0,1]上单调递增,故C 正确; 设n (x )=f (x+3)=-A cos [π(x+3)]=A cos πx ,函数n (x )最小正周期为2ππ=2,故D 正确.13.5 解析 (1-x )4的通项为T r+1=C 4r 14-r (-x )r =(-1)r C 4r x r ,令r=2,此时x 3的系数为(-1)2C 42=6,令r=4,此时x 3的系数为-(-1)4C 44=-1,则x 3的系数为6-1=5.14.1322 解析 设竹子自上而下各节的容积分别为a 1,a 2,…,a 9,且为等差数列,根据题意得{a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即{4a 1+6d =3,3a 1+21d =4,解得a 1=1322,故最上面一节的容积为1322升.15.-∞,74解析 ∵f (x )=(x -b )2-lnx x ,x>0,∴f'(x )=2x (x -b )-1-(x -b )2+lnxx 2,∴f (x )+xf'(x )=(x -b )2-lnx x +2x (x -b )-1-(x -b )2+lnxx=2x (x -b )-1x. 存在x ∈[1,2],使得f (x )+xf'(x )>0,即2x (x-b )-1>0,∴b<x-12x 在[1,2]上有解. 设g (x )=x-12x (1≤x ≤2),∴b<g (x )max .g (x )=x-12x 在[1,2]上为增函数, 故g (x )max =g (2)=74,∴b<74. 故实数b 的取值范围是-∞,74. 16.28π 解析 由题意BC ∥B 1C 1,所以∠AC 1B 1或其补角为异面直线AC 1与BC 所成的角.设AA 1=b ,在△AC 1B 1中,AB 1=AC 1,则cos ∠AC 1B 1=12B 1C 1AC 1=12·√32+b =310,所以AA 1=b=4.设外接球的半径为R ,底面外接圆的半径为r ,则R 2=r 2+(b 2)2.因为底面为等边三角形,所以2r=3sin π3,即r=√3,所以R 2=3+4=7,所以球O 的表面积为4π×7=28π.。
高三二轮复习选填满分“8+4+4”小题强化训练(5)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设R U =,已知两个非空集合M ,N 满足∅=⋂N C M U ,则()A.RM N ⋂=B.M N⊆C.N M⊆D.RM N ⋃=2.已知,,R a b c ∈,那么下列命题中正确的是()A.若a b >,则22ac bc >B.若a bc c>,则a b >C.若a b >且0ab <,则11a b>D.若22a b >,则11a b<3.函数2()()log xxf x e e x -=+的图象大致是()A. B.C. D.4.欧拉公式i e cos isin (i x x x =+为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,已知i a e 为纯虚数,则复数sin211ia ++在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.良渚遗址位于浙江省杭州市余杭区瓶窑镇、良渚街道境内.1936年浙江省立西湖博物馆的施昕更先生首先在浙江省杭州市良渚镇一带发现.这里的巨型城址,面积近630万平方米,包括古城、水坝和多处高等级建筑.国际学术界曾长期认为中华文明只始于距今3500年前后的殷商时期,2019年7月6日,中国良渚古城遗址被列入世界遗产名录,这意味着中国文明起源形成于距今五千年前,终于得到了国际承认!2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料(草裏泥)上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%.已知经过x 年后,碳14的残余量(1)(,0,01;0)x y k p k k p x =-∈><<R ,碳14的半衰期为5730年,则以此推断此水坝大概的建成年代是().(参考数据:2log 0.5520.8573≈-)A.公元前2893年B.公元前2903年C.公元前2913年D.公元前2923年6.已知12,F F 为椭圆1C :2222111x y a b +=(110>>a b )与双曲线2C :2222221x y a b -=(220,0a b >>)的公共焦点,点M 是它们的一个公共点,且123F MF π∠=,12,e e 分别为1C ,2C 的离心率,则12e e 的最小值为()A.2C.2D.37.三棱锥P ABC-的所有顶点都在球O 的球面上.棱锥P ABC-的各棱长为:2PA =,3,4,5,PB PC AB BC AC =====,则球O 的表面积为()A.28πB.29πC.30πD.31π8.已知0.40.7e ,eln1.4,0.98ab c ===,则,,a b c 的大小关系是()A.a c b >>B.b a c>>C.b c a>>D.c a b>>二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证“日落云里走,雨在半夜后”,随机观察了他所在地区的100天中的“日落云里走”的情况和后半夜天气情况,得到如下数据,后半夜天气情况“日落云里走”的情况下雨未下雨总计出现25530未出现254570总计5050100并计算得到219.05χ≈,则小波对该地区天气的判断正确的是()A.后半夜下雨的概率约为12B.未出现“日落云里走”时,后半夜下雨的概率约为59C.有99%的把握认为“‘日落云里走’是否出现”与“后半夜是否下雨”有关D.若出现“日落云里走”,则后半夜有99%的可能会下雨10.如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….设第n 层有n a 个球,从上往下n 层球的总数为n S ,则()A.535S =B.1n n na a +-=C.1(1)2n n n n S S -+-=,2n ≥ D.1231001111200101a a a a ++++= 11.已知函数()()()sin 0,f x x ωϕωϕ=+>∈R 在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭有下列结论正确的有()A.203f π⎛⎫=⎪⎝⎭B.若()56f x f x π⎛⎫-=⎪⎝⎭,则函数()f x 的最小正周期为π;C.关于x 的方程()1f x =在区间[0,2)π上最多有4个不相等的实数解D.若函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为8,33⎛⎤ ⎥⎝⎦12.已知正方体1111ABCD A B C D -的棱长为2,动点F 在正方形11CDD C 内,则()A.若1C F ⊥平面1A CF ,则点F 的位置唯一B.若1//B F 平面1A BD ,则1B F 不可能垂直1CD C.若()112BF BC BD =+,则三棱锥11-F B CC 的外接球表面积为4πD.若点E 为BC 中点,则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.若随机变量1~,3X B n ⎛⎫ ⎪⎝⎭,且()*N E X ∈,写出一个符合条件的n =___________.14.九龙壁是中国古代建筑的特色,是帝王贵族出入的宫殿或者王府的正门对面,是权力的象征,做工十分精美,艺术和历史价值很高.九龙壁中九条蟠龙各居神态,正中间即第五条为正居之龙,两侧分别是降沉之龙和升腾之龙间隔排开,其中升腾之龙位居阳位,即第1,3,7,9位,沉降之龙位居2,4,6,8位.某工匠自己雕刻一九龙壁模型,为了增加模型的种类但又不改变升腾之龙居阳位和沉降之龙的位置,只能调换四条升腾之龙的相对位置和四条沉降之龙的相对位置,则不同的雕刻模型有______种(用数字作答).15.定义在()0,∞+上的函数()f x 满足:对()12,0,x x ∀∈+∞,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,且()24f =,则不等式()2f x x>的解集为__________.16.已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,ADE V 的周长是13,则DE =_____.高三二轮复习选填满分“8+4+4”小题强化训练(5)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设R U =,已知两个非空集合M ,N 满足∅=⋂N C M U ,则()A.R M N ⋂=B.M N⊆C.N M ⊆D.RM N ⋃=【答案】B【解析】根据题意,作出如下图韦恩图:满足∅=⋂N C M U ,即M N ⊆.故选:B.2.已知,,R a b c ∈,那么下列命题中正确的是()A.若a b >,则22ac bc >B.若a bc c>,则a b >C.若a b >且0ab <,则11a b>D.若22a b >,则11a b<【答案】C【解析】A .若a b >,当0c =时,22ac bc =,所以选项A 不成立;B .若a bc c>,当0c <时,则a b <,所以选项B 不成立;C .因为0ab <,将a b >两边同除以ab ,则11a b>,所以选项C 成立;D .如果2,1,a b ==-满足22a b >,但是11a b>,所以选项D 不成立.故选:C.3.函数2()()log xxf x e e x -=+的图象大致是()A. B.C. D.【答案】C【解析】22()()log ()log ()xx x x f x ee x e e xf x ---=+-=+=,()f x 为偶函数,排除AD ,又01x <<时,()0f x <,排除B .故选:C .4.欧拉公式i e cos isin (i x x x =+为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,已知i a e 为纯虚数,则复数sin211ia ++在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为i e cos isin x x x =+,所以i e cos isin a a a =+,因为i a e 为纯虚数,所以cos 0a =,sin 0a ≠,故sin 22sin cos 0a a a ==,所以()()sin2111i 1i 11i 1i 1i 1i 1i 222a +--====-+++-,则复数sin211i a ++在复平面内对应的点为11,22⎛⎫- ⎪⎝⎭,则其在第四象限,故选:D.5.良渚遗址位于浙江省杭州市余杭区瓶窑镇、良渚街道境内.1936年浙江省立西湖博物馆的施昕更先生首先在浙江省杭州市良渚镇一带发现.这里的巨型城址,面积近630万平方米,包括古城、水坝和多处高等级建筑.国际学术界曾长期认为中华文明只始于距今3500年前后的殷商时期,2019年7月6日,中国良渚古城遗址被列入世界遗产名录,这意味着中国文明起源形成于距今五千年前,终于得到了国际承认!2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料(草裏泥)上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%.已知经过x 年后,碳14的残余量(1)(,0,01;0)x y k p k k p x =-∈><<R ,碳14的半衰期为5730年,则以此推断此水坝大概的建成年代是().(参考数据:2log 0.5520.8573≈-)A.公元前2893年B.公元前2903年C.公元前2913年D.公元前2923年【答案】B【解析】 碳14的半衰期为5730年,∴1573057305730111(1)(1)222x k k p p y k ⎛⎫⎛⎫=-⇒-=⇒= ⎪⎪⎝⎭⎝⎭,当55.2%y k =时,5730155.2%2x k k ⎛⎫= ⎪⎝⎭,1222log 0.552log 0.552,5730log 0.55249125730xx ∴==-=-≈, 2010年之前的4912年是公元前2902年,∴以此推断此水坝大概的建成年代是公元前2903年.故选:B.6.已知12,F F 为椭圆1C :2222111x y a b +=(110>>a b )与双曲线2C :2222221x y a b -=(220,0a b >>)的公共焦点,点M 是它们的一个公共点,且123F MF π∠=,12,e e 分别为1C ,2C 的离心率,则12e e 的最小值为()A.2C.2D.3【答案】A【解析】设椭圆1C 、双曲线2C 的共同半焦距为c ,由椭圆、双曲线对称性不妨令点M 在第一象限,由椭圆、双曲线定义知:1212||||MF MF a +=,且212||||2MF MF a -=,则有112||MF a a =+,212||MF a a =-,在12F MF △中,由余弦定理得:22212121212||||||2||||cos F F MF MF MF MF F MF =+-∠,即222121212124()()2()()cos3c a a a a a a a a π=++--+-,整理得:2221243c a a =+,于是得2212222212123134a a c c e e e e =+=+≥=,当且仅当221213e e =,即21e =时取“=”,从而有12≥e e ,所以12e e.故选:A7.三棱锥P ABC -的所有顶点都在球O 的球面上.棱锥P ABC -的各棱长为:2PA =,3,4,5,PB PC AB BC AC =====O 的表面积为()A.28πB.29πC.30πD.31π【答案】B【解析】由题意知:222PB PC BC +=,222PA PC AC +=,222PA PB AB +=,∴,,PA PB PC 两两垂直,即P ABC -为直三棱锥,∴若Rt PBC △的外接圆半径为r ,则522BC r ==,又PA ⊥面PBC ,∴外接球心O 到PA 的距离为52r =,故外接球半径2R ==,∴外接球表面积2429S R ππ==.故选:B.8.已知0.40.7e ,eln1.4,0.98a b c ===,则,,a b c 的大小关系是()A.a c b >>B.b a c >>C.b c a>>D.c a b>>【答案】A【解析】构造()1=ln e f x x x -,0x >,则()11=ef x x '-,当0e x <<时,()0f x '>,当e x >时,()0f x '<,所以()1=ln ef x x x -在0e x <<上单调递增,在e x >上单调递减,所以()()e =lne 10f x f ≤-=,故ln 1ex x ≤,当且仅当e x =时等号成立,因为20x >,所以222222(2)2ln 2ln ln ln2e e 2e 2e ex x x x x x x x x ≤⇒≤⇒≤⇒≤=,当2x =时,等号成立,当0.7x =时,220.98ln1.4(0.7)eln1.40.98e e<⨯=⇒<,所以b c <构造()1=e x g x x --,则()1e 1=x g x -'-,当1x >时,()0g x '>,当1x <时,()0g x '<,所以()1=ex g x x --在1x >单调递增,在1x <上单调递减,故()()10g x g ≥=,所以1e x x -≥,当且仅当1x =时,等号成立,故121e e 2x x x x --≥⇒≥,当且仅当0.5x =时,等号成立,令0.7x =,则0.40.4e 1.40.7e 0.98>⇒>,所以a c >,综上:a c b >>,故选:A二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证“日落云里走,雨在半夜后”,随机观察了他所在地区的100天中的“日落云里走”的情况和后半夜天气情况,得到如下数据,后半夜天气情况“日落云里走”的情况下雨未下雨总计出现25530未出现254570总计5050100并计算得到219.05χ≈,则小波对该地区天气的判断正确的是()A.后半夜下雨的概率约为1 2B.未出现“日落云里走”时,后半夜下雨的概率约为5 9C.有99%的把握认为“‘日落云里走’是否出现”与“后半夜是否下雨”有关D.若出现“日落云里走”,则后半夜有99%的可能会下雨【答案】AC【解析】对A,把频率看作概率,可得后半夜下雨的概率约为5011002=,故A判断正确:对B,未出现“日落云里走”时,后半夜下雨的概率约为255254514=+,故B判断错误;对C,由219.05 6.635χ≈>,知有99%的把握认为“‘日落云里走’是否出现”与“后半夜是否下雨”有关,故C判断正确;易知D判断错误.故选:AC10.如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….设第n层有n a个球,从上往下n层球的总数为n S,则()A.535S =B.1n n na a +-=C.1(1)2n n n n S S -+-=,2n ≥ D.1231001111200101a a a a ++++= 【答案】ACD【解析】因为11a =,212a a -=,323a a -=,……,1n n a a n --=,以上n 个式子累加可得:(1)1232n n n a n +=++++=,所以512345136101535S a a a a a =++++=++++=,故选项A 正确;由递推关系可知:11n n a a n +-=+,故选项B 不正确;当2n ≥,1(1)2n n n n n S S a -+-==,故选项C 正确;因为12112(1)1n a n n n n ⎛⎫==- ⎪++⎝⎭,所以12100111111112122223100101a a a ⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭120021101101⎛⎫=-= ⎪⎝⎭,故选项D 正确;故选:ACD.11.已知函数()()()sin 0,f x x ωϕωϕ=+>∈R 在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭有下列结论正确的有()A.203f π⎛⎫=⎪⎝⎭B.若()56f x f x π⎛⎫-= ⎪⎝⎭,则函数()f x 的最小正周期为π;C.关于x 的方程()1f x =在区间[0,2)π上最多有4个不相等的实数解D.若函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为8,33⎛⎤⎥⎝⎦【答案】ABD【解析】A,∵7375,124126ππππ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭,∴()f x 在73,124ππ⎛⎫⎪⎝⎭上单调,又73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,73212423πππ+=,∴203f π⎛⎫=⎪⎝⎭,故A 正确;B,区间75,126ππ⎛⎫⎪⎝⎭右端点56x π=关于23x π=的对称点为2x π=,∵203f π⎛⎫= ⎪⎝⎭,f (x )在75,126ππ⎛⎫ ⎪⎝⎭上单调,∴根据正弦函数图像特征可知()f x 在5,26ππ⎛⎫⎪⎝⎭上单调,∴512(62322T T ππππω-==⋅ 为()f x 的最小正周期),即ω 3,又0ω>,∴03ω< .若()56f x f x π⎛⎫-= ⎪⎝⎭,则()f x 的图象关于直线512x π=对称,结合203f π⎛⎫=⎪⎝⎭,得()252121312442k k T k ππππω++-===⋅∈Z ,即()42k k ω=+∈Z ,故k =0,2,T ωπ==,故B 正确.C,由03ω< ,得23T π,∴()f x 在区间[)0,2π上最多有3个完整的周期,而()1f x =在1个完整周期内只有1个解,故关于x 的方程()1f x =在区间[)0,2π上最多有3个不相等的实数解,故C 错误.D,由203f π⎛⎫=⎪⎝⎭知,23π是函数()f x 在区间23π⎡⎢⎣,136π⎫⎪⎭上的第1个零点,而()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则13252632T T ππ<- ,结合2T πω=,得81033ω< ,又03ω< ,∴ω的取值范围为8,33⎛⎤⎥⎝⎦,故D 正确.故选:ABD.12.已知正方体1111ABCD A B C D -的棱长为2,动点F 在正方形11CDD C 内,则()A.若1C F ⊥平面1A CF ,则点F 的位置唯一B.若1//B F 平面1A BD ,则1B F 不可能垂直1CD C.若()112BF BC BD =+,则三棱锥11-F B CC 的外接球表面积为4πD.若点E 为BC 中点,则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半【答案】AD【解析】如图,以D 为原点分别以DA 、DC 、1DD 为x 轴、y 轴、z 轴建立空间直角坐标系:则()2,0,0A ,()2,2,0B ,()0,2,0C ,()0,0,0D ,()12,0,2A ,()12,2,2B ,()10,2,2C ,()10,0,2D ,由于动点F 在正方形11CDD C 内,可设()0,,F m n ,其中02m <<,02n <<,选项A:若1C F ⊥平面1A CF ,则11C F A C ⊥ ,1C F CF ⊥.由于()10,2,2C F m n =-- ,()12,2,2A C =-- ,()0,2,CF m n =-,则()()()()222220220m n m n n ⎧⨯---=⎪⎨-+-=⎪⎩,解得:11m n =⎧⎨=⎩或22m n =⎧⎨=⎩(舍去),此时()0,1,1F ,即点F 的位置唯一,故选项A 正确;选项B:()10,2,2A B =- ,()2,2,0BD =--,设平面1A BD 的一个法向量为(),,n x y z =r.则220220y z x y -=⎧⎨--=⎩,令1y =,得1x =-,1z =,故()1,1,1n =-,而()12,2,2B F m n =--- ,若1B F ∥平面1A BD ,则10B F n ⋅=,则2220m n +-+-=,即2m n +=,所以()0,,2F m m -,此时()12,2,B F m m =---,而()10,2,2CD =- ,所以()112022244B F CD m m m ⋅=-⨯-⨯--⨯=-+,当1m =时,440m -+=,此时110B F CD ⋅= ,则11B F CD ⊥.故选项B 不正确;选项C:由于()112BF BC BD =+,则F 为1CD 的中点,此时()0,1,1F ,设三棱锥的11-F B CC 的外接球的球心为(),,O x y z ,则11OC OB OC OF OC OC⎧=⎪=⎨⎪=⎩,即()()()()()()()()()()2222222222222222222222211222x y z x y z x y z x y z x y z x y z ⎧+-+=-+-+-⎪⎪+-+=+-+-⎨⎪+-+=+-+-⎪⎩,解得:121x y z =⎧⎪=⎨⎪=⎩,所以()1,2,1O ,则三棱锥的11-F B CC的外接球的半径为R OC ==,所以三棱锥的11-F B CC 的外接球表面积为22448R πππ=⨯=,故选项C 不正确;选项D:点E 为BC 中点,由正方体可知BC ⊥平面11A ABB ,则11111111111222132323A AB E E AA B V V AA A B BE --==⨯⋅⋅=⨯⨯⨯=111111111422232323A FAB F AA B V V AA A B BC --⋅==⨯⨯⋅=⨯⨯⨯⨯=则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半.故选项D 正确.故选:AD三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.若随机变量1~,3X B n ⎛⎫ ⎪⎝⎭,且()*N E X ∈,写出一个符合条件的n =___________.【答案】3(答案不唯一)【解析】因为随机变量1~,3X B n ⎛⎫ ⎪⎝⎭,所以()*1N 3E X n =∈,所以一个符合条件的3n =,故答案为:3(答案不唯一)14.九龙壁是中国古代建筑的特色,是帝王贵族出入的宫殿或者王府的正门对面,是权力的象征,做工十分精美,艺术和历史价值很高.九龙壁中九条蟠龙各居神态,正中间即第五条为正居之龙,两侧分别是降沉之龙和升腾之龙间隔排开,其中升腾之龙位居阳位,即第1,3,7,9位,沉降之龙位居2,4,6,8位.某工匠自己雕刻一九龙壁模型,为了增加模型的种类但又不改变升腾之龙居阳位和沉降之龙的位置,只能调换四条升腾之龙的相对位置和四条沉降之龙的相对位置,则不同的雕刻模型有______种(用数字作答).【答案】576【解析】分步完成:第一步调换四条升腾之龙的相对位置,第二步调换四条沉降之龙的相对位置,方法数为4444576A A =.故答案为:576.15.定义在()0,∞+上的函数()f x 满足:对()12,0,x x ∀∈+∞,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,且()24f =,则不等式()2f x x>的解集为__________.【答案】()2,+∞【解析】令()()f xg x x=,因为对()120,x x ∀∈+∞、,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,不妨设120x x <<,则120x x -<,故()()21120x f x x f x -<,则()()1212f x f x x x <,即()()12g x g x <,所以()g x 在()0,∞+上单调递增,又因为()24f =,所以()()2222f g ==,故()2f x x>可化为()()2g x g >,所以由()g x 的单调性可得2x >,即不等式()2f x x>的解集为()2,+∞.故答案为:()2,+∞16.已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,ADE V 的周长是13,则DE =_____.【答案】6【解析】如图,连接122,,AF DF EF ,因为C 的离心率为12,所以12c a =,即2a c =,所以22223b a c c =-=,因为12122AF AF a c F F ====,所以12AF F △为等边三角形,又2DE AF ⊥,所以直线DE 为线段2AF 的垂直平分线,所以2AD DF =,2AE EF =,则ADE V 的周长为22||||||||AD AE DE DF EF DE ++=++2211DF EF DF EF =+++134134a a ==⇒=,138c ∴=,而1230EF F ︒∠=,所以直线DE 的方程为3)3y x c =+,代入椭圆C 的方程2222143x y c c +=,得22138320x cx c +-=,设()11,D x y ,()22,E x y ,则21212832,1313c c x x x x +=-=-,所以48613cDE==,故答案为:6.。
高三二轮复习选填满分“8+4+4”小题强化训练(7)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知M ,N 为R 的两个不相等的非空子集,若M N M ⋂=,则()A.M N =R B.RN C M R =⋃C.RM C N R=⋃D.RM C N C RR =⋃2.已知202120221i i 1i z +⎛⎫=+ ⎪-⎝⎭,则在复平面内,复数z 所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.()622x x x ⎛⎫-+ ⎪⎝⎭的展开式中的常数项为()A.640-B.320- C.640D.3204.已知函数()sin(3)22f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭图象关于直线518x π=对称,则函数()f x 在区间[0,]π上零点的个数为()A.1B.2C.3D.45.已知函数()f x 为R 上的偶函数,对任意不相等的12,(,0)x x ∞∈-,均有()()1212f x f x x x -<-成立,若ln 2ln 3ln5,,235a f b f c f ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则a ,b ,c 的大小关系是()A.c b a<<B.a c b<<C.a b c <<D.c a b<<6.已知拋物线21:2(0)C y px p =>的焦点F 为椭圆22222:1(0)x y C a b a b+=>>的右焦点,且1C 与2C 的公共弦经过F ,则椭圆的离心率为()1-B.512-C.312-D.227.当02,x a <<不等式()221112x a x +≥-恒成立,则实数a 的取值范围是()A.)+∞B.(0C.(]0,2D.[)2,+∞8.已知02πα<<,02βπ<<,且32sin 9αββα-=-,则()A.2αβ< B.2αβ> C.2a b> D.2a b<二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.一袋中有大小相同的3个红球和2个白球,下列结论正确的是()A.从中任取3个球,恰有1个白球的概率是35B.从中有放回地取球3次,每次任取1个球,恰好有2个白球的概率为36125C.从中有放回地取球3次,每次任取1个球,则至少有1次取到红球的概率为98125D.从中不放回地取球2次,每次任取1个球,则在第1次取到红球的条件下,第2次再次取到红球的概率为1210.已知向量()()()1,3,2,1,3,5c a b ==-=-,则()A .()2//a b c+B .()2a b c+⊥C .a c +=D .2a c b+=的正方体的展开图如图所示.已知H 为线段BF 的中点,动点P 在正方体的表面上运动.则关于该正方体,下列说法正确的有()A.BM 与AN 是异面直线B.AF 与BM 所成角为60C.平面CDEF ⊥平面ABMND.若AM HP ⊥,则点P 的运动轨迹长度为612.已知00e ln 10,,a a b ab b >>+-=,则()A.1ln b a >B.1eab>C.ln 1a b +<D.1ab <三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,若点(3,4)P -在角α的终边上,则sin 2α=_________.14.已知数列{}n a 的前n 项和n S ,满足2*2(N )n S n n n =+∈,设11n n n b a a +=⋅,则数列{}n b 的前2021项和2021T =________.15.已知0x >,0y >,若()2211412x y y x +++=,则22log log x y ⋅的最大值为_________.16.将正方形ABCD 沿对角线BD 折成直二面角A ′-BD -C ,设三棱锥A ′-BDC 的外接球和内切球的半径分别为r 1,r 2,球心分别为O 1,O 2.若正方形ABCD 的边长为1,则21r r =________;O 1O 2=__________.高三二轮复习选填满分“8+4+4”小题强化训练(7)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知M ,N 为R 的两个不相等的非空子集,若M N M ⋂=,则()A.M N =R B.RN C M R =⋃C.RM C N R =⋃D.RM C N C RR =⋃【答案】C【解析】依题意M N M ⋂=,所以M N ,则集合M ,N 与R 的关系如下图所示:所以R M C N R =⋃;故选:C2.已知202120221i i 1i z +⎛⎫=+ ⎪-⎝⎭,则在复平面内,复数z 所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】21i 12i i i 1i 2+++==-Q ,且i 的乘方运算是以4为周期的运算所以202120222021202221i i 1i 1i i i i i z +⎛⎫=+++ ===-⎝-⎪+⎭,所以复数z 所对应的点()1,1-,在第二象限.故选:B3.()622x x x ⎛⎫-+ ⎪⎝⎭的展开式中的常数项为()A.640-B.320- C.640D.320【答案】B【解析】62x x ⎛⎫+ ⎪⎝⎭展开式的通项公式为:66216622rr r r r r r T C x C x x --+⎛⎫== ⎪⎝⎭;令620r -=,解得:3r =,∴展开式中的常数项为336221620320C -⨯=-⨯=-.故选:B.4.已知函数()sin(3)22f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭图象关于直线518x π=对称,则函数()f x 在区间[0,]π上零点的个数为()A.1B.2C.3D.4【答案】C【解析】函数()sin(3)22f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭图象关于直线518x π=对称,所以53()182k k Z ππϕπ⨯+=+∈,解得()3k k Z πϕπ=-∈,又因为22ππϕ-<<,所以3πϕ=-,所以()sin 33f x x π⎛⎫=-⎪⎝⎭,令()sin 303f x x π⎛⎫=-= ⎪⎝⎭,则3()3x k k Z ππ-=∈,得39k x ππ=+,因为[0,]x π∈,所以47,,999x πππ=.即函数()f x 在区间[0,]π上零点的个数为3.故选:C5.已知函数()f x 为R 上的偶函数,对任意不相等的12,(,0)x x ∞∈-,均有()()12120f x f x x x -<-成立,若ln 2ln 3ln5,,235a f b f c f ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则a ,b ,c 的大小关系是()A.c b a <<B.a c b <<C.a b c <<D.c a b<<【答案】D【解析】∵对任意不等1x ,()2,0x ∞∈-,均有1212()()0f x f x x x -<-成立,∴此时函数在区间(),0∞-上为减函数,又∵()f x 是偶函数,∴当()0,x ∞∈+时,()f x 为增函数.由25ln 5ln 2ln 5ln 22ln 55ln 252<⇔<⇔<,23ln 3ln 2ln 3ln 22ln 33ln 232>⇔>⇔>,所以ln 5ln 2ln 3523<<,所以ln 3ln 2ln 5325f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即c a b <<.故选:D6.已知拋物线21:2(0)C y px p =>的焦点F 为椭圆22222:1(0)x y C a b a b+=>>的右焦点,且1C 与2C 的公共弦经过F ,则椭圆的离心率为()1-【答案】A【解析】依题意,椭圆2C 的右焦点(,0)2pF ,则其左焦点(,0)2p F '-,设过F 的1C 与2C 的公共弦在第一象限的端点为点P ,由抛物线与椭圆对称性知,PF x ⊥轴,如图,直线PF方程为:2px =,由222p x y px⎧=⎪⎨⎪=⎩得点(,)2p P p ,于是得||PF p =,在PF F '中,90PFF '∠= ,||FF p '=,则||2PF '=,因此,椭圆2C 的长轴长2||||(21)a PF PF p '=+=,所以椭圆的离心率||212(21)FF pe a p'==-+.故选:A7.当02,x a <<不等式()221112x a x +≥-恒成立,则实数a 的取值范围是()A.)2,+∞B.(02,C.(]0,2D.[)2,+∞【答案】B【解析】()221112x a x +≥-恒成立,即()22min 1112x a x ⎡⎤+≥⎢⎥-⎢⎥⎣⎦02,20x a a x <<∴-> ,又2222221112222(2)(2)(2)(22)x a x x a x x a x x a x a +≥=≥=+----,上述两个不等式中,等号均在2x a x =-时取到,()m 222in1122x a a x ⎡⎤∴+=⎢-⎢⎥⎣⎦,212a ∴≥,解得a ≤且0a ≠,又0a >,实数a 的取值范围是(0.故选:B.8.已知02πα<<,02βπ<<,且32sin 9αββα-=-,则()A.2αβ< B.2αβ> C.2a b> D.2a b<【答案】D【解析】设()sin f x x x -=,0,2x π⎛⎫∈ ⎪⎝⎭,则()1cos 0f x x '-=>即f (x )在(0,2π)上单调递增,所以f (x )>f (0)=0,故x >sin x ,因为32sin 9αββα﹣=﹣,所以2232sin 92sin 323αβββαβββ++++==<,所以g (α)<g (2β),令g (x )=3x+x ,显然g (x )单调递增,所以α<2β.故选:D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.一袋中有大小相同的3个红球和2个白球,下列结论正确的是()A.从中任取3个球,恰有1个白球的概率是35B.从中有放回地取球3次,每次任取1个球,恰好有2个白球的概率为36125C.从中有放回地取球3次,每次任取1个球,则至少有1次取到红球的概率为98125D.从中不放回地取球2次,每次任取1个球,则在第1次取到红球的条件下,第2次再次取到红球的概率为12【答案】ABD【解析】对于A 中,从中任取3个球,恰有1个白球的概率为21323563105C C P C ===,所以A 正确;对于B 中,从中有放回地取球3次,每次任取1个球,其中每次取到白球的概率为25,所以恰好有2个白球的概率为2232236()(155125P C =-=,所以B 正确;对于C 中,从中有放回地取球3次,每次任取1个球,其中每次取到白球的概率为25,所以至少有1次取到红球的概率为333281171(15125125P C =-=-=,所以C 不正确;对于D 中,设第1次取到红球为事件A ,第2次再次取到红球为事件B ,所以第1次取到红球的条件下,第2次取到红球的概率为32()154(|)3()25P AB P B A P A ⨯===,所以D 正确.故选:ABD.10.已知向量()()()1,3,2,1,3,5c a b ==-=-,则()A .()2//a b c+B .()2a b c+⊥C.a c +=D .2a c b+=【答案】AD 【解析】因为()()()1,3,2,1,3,5c a b ==-=- ,所以()325a b +=- ,,所以2a b c +=- ,所以()2//a b c +,故A 正确,B 不正确;又()42a c +=- ,,c a +== ,b == 2a c b +=,故D 正确,C 不正确,故选:AD.的正方体的展开图如图所示.已知H 为线段BF 的中点,动点P 在正方体的表面上运动.则关于该正方体,下列说法正确的有()A.BM 与AN 是异面直线B.AF 与BM 所成角为60C.平面CDEF ⊥平面ABMND.若AM HP ⊥,则点P 的运动轨迹长度为6【答案】BCD【解析】由展开图还原正方体如下图所示,对于A ,//MN ,∴四边形MNAB 为平行四边形,//AN BM ∴,BM ∴与AN 是共面直线,A 错误;对于B ,//BM AN ,AF ∴与BM 所成角即为NAF ∠,AN NF AF == ,ANF ∴为等边三角形,60NAF ∴∠= ,即AF 与BM 所成角为60 ,B 正确;对于C ,AB ⊥Q 平面BCMF ,CF ⊂平面BCMF ,AB CF ∴⊥;又CF BM ⊥,= AB BM B ,,AB BM ⊂平面ABMN ,CF ∴⊥平面ABMN ,又CF ⊂平面CDEF ,∴平面CDEF ⊥平面ABMN ,C 正确;对于D ,由正方体性质可知AM ⊥平面CFN ,取,,,,BC CD DN NS EF 中点,,,,G Q T S R ,连接,,,,,HG GQ QT ST SR RH ,则平面//SRHGQT 平面CFN ,∴点P 的轨迹为正六边形SRHGQT 的边,∴点P 的轨迹长度为6=,D 正确.故选:BCD.12.已知00e ln 10,,a a b ab b >>+-=,则()A.1ln b a >B.1e a b>C.ln 1a b +<D.1ab <【答案】BCD 【解析】对于A 选项,当1a =时,1010e ln e ln a ab b b b +-=⇔+-=.设()1e ln f x x x =+-,其中0x >.则()10e f x x'=+>,故()f x 在()0,∞+上单调递增.又()110e -f =>,110e f ⎛⎫=-< ⎪⎝⎭,则11,e b ⎛⎫∃∈ ⎪⎝⎭,使()0f b =.即存在1a =,11,e b ⎛⎫∈ ⎪⎝⎭,使10e ln a ab b +-=.但此时,1101ln ln b a<=<=.故A 错误.对于B 选项,1111110e ln e ln e ln a a a ab b a b a b b b b b+-=⇔+=⇔-=111ln e ln e ab a b b ⇔-=.设()e x g x x =,其中0x >.则()()1e 0x g x x '=+>.得()g x 在在()0,∞+上单调递增.注意到()11111ln e ln e ln ab a g a g b b b b ⎛⎫-=⇔-= ⎪⎝⎭.则()1110ln ln g a g a b b b ⎛⎫-=>⇒> ⎪⎝⎭.又e x y =在R 上递增,则有11ln e e e a a b b>⇒>.故B 正确.对于C 选项,由B 选项可知1e a b >,则由10e ln a ab b +-=,有10111e ln ln ln a ab b ab b a b b=+->⋅+-⇒+<.故C 正确.对于D 选项,因00a b >>,,10e ln a ab b +-=,则101e ln ln e a ab b b b =->⇒<⇒<.设e m b =,其中1m <.则1010e ln e a a m ab b a m ++-=⇔+-=.设()1e x m h x x m +=+-,其中()0,x ∈+∞.则()()10e x m h x x +'=+>,得()h x 在()0,∞+上单调递增.(1)若01m <<,注意到()()()11e 10h m m -=-->,()010h m =-<,则()01,x m ∃∈-,使()0h x =.即()01,a m ∈-,则()1e m ab m <-,设()()1e x p x x =-,则()e x p x x '=-,得()p x 在()0,1上单调递减,则()()()101e m ab m p m p =-=<=.(2)当0m =,()e 1x h x x =-,注意到()()010110,e h h =-<=->.则()0,1a ∈,此时1ab a =<.(3)当0m <,注意到()()()()1011e 10h m h m m -=--=--,则()1,a m m ∈--,又由(1)分析可知()p x 在(),0∞-上单调递增.则()()()101e m ab m p m p =-=<=.综上,有1ab <.故D 正确.故选:BCD三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,若点(3,4)P -在角α的终边上,则sin 2α=_________.【答案】2425-【解析】三角函数的定义可知43sin ,cos 55αα====-,所以4324sin 225525α⎛⎫=⨯⨯-=- ⎪⎝⎭.故答案为:2425-14.已知数列{}n a 的前n 项和n S ,满足2*2(N )n S n n n =+∈,设11n n n b a a +=⋅,则数列{}n b 的前2021项和2021T =________.【答案】20212022【解析】22n S n n =+ ,22n n n S +∴=,2n 时,1(1)(1)22n n n n n n n a S S n -+-=-=-=,111112a S +===也适合上式,n a n ∴=,111(1)1nb n n n n ==-++,20211111120211223202120222022T ∴=-+-++-= .故答案为:2021202215.已知0x >,0y >,若()12y x +=,则22log log x y ⋅的最大值为_________.【答案】14【解析】因为()12y x +=,所以12y x +.设()f t t =0t >,则()12f f y x ⎛⎫= ⎪⎝⎭,易知()f t t =()0,∞+上单调递增,从而12=y x ,即12xy =,所以22222log log 1log log 24x y x y +⎛⎫⋅≤= ⎪⎝⎭,当且仅当22x y ==时取等号,即22log log x y 的最大值为14.故答案为:1416.将正方形ABCD 沿对角线BD 折成直二面角A ′-BD -C ,设三棱锥A ′-BDC 的外接球和内切球的半径分别为r 1,r 2,球心分别为O 1,O 2.若正方形ABCD 的边长为1,则21r r =________;O 1O 2=__________.【答案】2【解析】设AC BD M =,则12MA MB MC MD BD =====∴三棱锥A ′-BDC 的外接球122r =,点M 即为1O ,∵将正方形ABCD 沿对角线BD 折成直二面角A ′-BD -C ,又A M BD '⊥,∴A M '⊥平面BCD ,MC ⊂平面BCD ,∴A M '⊥MC ,1A C '=,∴12A BD CBD S S '==,3A BC A CDS S ''==∴211133112322322r ⎛++=⨯⨯ ⎝⎭,解得22262r =,∴2122622322r r -=设球2O 与平面A BD ',平面BCD 分别切于P ,Q ,则2O PMQ 为正方形,∴2212223O M O O r ==故答案为:23,23.。
2024届浙江省单独考试温州市模拟测试《数学》试卷(2024.3)本试卷共三大题.全卷共4页.满分150分,考试时间120分钟.注意事项:1.所有试题均需在答题卷上作答,未在规定区域内答题,每错一个区域扣卷面总分1分,在试卷上、草稿纸上作答无效.2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题卷上.3.选择题每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用黑色字迹的签字笔或钢笔将答案写在答题卷上.4.在答题卷上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑. 一、单项选择题(本大题共20小题,1-10小题每题2分,11-20小题每题3分,共50分).(在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂,多涂或未涂均不得分)1. 设x ∈R ,“2x >”是“24x >”的( )A. 充分不必要条件B. 必要不充分条件C. 充分且必要条件D. 既不充分也不必要条件 2. 下列函数在其定义域内单调递增的是( ) A. ()2f x x=B.()21f x x =+ C. ()e xf x = D.()sin f x x = 3. 已知角α的终边经过点()3,4P ,则cos α=( )A. 35- B. 35 C. 45- D. 454. 函数()513f x x =+-的定义域为( )A. {2x x ≠且}4x ≠-B. {}2x x ≠ C. {}4x x ≠- D.{}3x x ≠ 5. 已知集合{}2,N S x x k k ==∈,{}21,N T x x k k ==+∈,则S T ⋃=( )A. SB. TC. ND. ∅ 6. 从5名女同学和4名男同学中,选两名同学分别担任班长与学习委员,要求男女同学各一名,不同选法共有( )A. 9种B. 20种C. 40种D.72种 7. 已知扇形半径为9,圆心角为60︒,则该扇形的弧长为( )A. 3πB. 2πC. 10D. 9 8. 圆C :()()22132x y -+-=关于x 轴对称的圆的方程为( ) A. ()()22132x y -+-=()()22132x y -+-= C. ()()22132x y -++=()()22132x y -++=9. 已知数列{}n a 为等差数列,若238a a +=,4510a a +=,则67a a +=( )A. 8B. 10C. 12D. 14 10. 已知点()1,1A 、(3B ,过原点的直线l 与线段AB 有公共点,则直线l 倾斜角的取值范围为( )A. π0,4⎛⎤⎥⎝⎦B. ππ,43⎛⎫ ⎪⎝⎭C. ππ,43⎡⎤⎢⎥⎣⎦ D. ππ,32⎛⎫⎪⎝⎭11. 直线210ax y +-=与直线2310x y --=互相垂直,则常数a 的值为( )A. 3-B. 43- C. 2 D.3 12. 如图所示,在边长为1的正方形ABCD 中,点E 为折线段BCD 上动点,则BE BA -的最大值为( )A. 1B. 2C. 2D. 3 13. 从甲、乙、丙、丁、戊五名同学中随机选2人参加普法知识竞赛,则甲被选中的概率为( ) A.25 B. 15 C. 34D. 12 14. 如图所示,在正方体1111ABCD A B C D -中,点O 为侧面11ADD A 的中心,点E 为线段11C D 上的动点,则直线BE 与AO 的位置关系为( )A 平行 B. 相交 C. 异面 D. 平行或相交 15. 已知1x >-,则121x x ++的最小值为( )A. B. )221- C. 2 D. 2- 16. 已知函数23,04,0x x x y x +≤⎧=⎨>⎩的图像与直线y a =有两个交点,则a 的取值范围为( )A. 13a <£B. 13a <<C. 14a <≤D. 14a << 17. 已知一次函数()y f x =的图像如图所示,令()()g x xf x =,则()0g x >的解集为( )A. ()0,1B. ()1,+∞C. (),0∞-D. ()(),01,-∞⋃+∞18. 若221169x y -=,则下列各式为常数的是( )A.()225x y -+ B.()225x y ++C()224x y -+D.()224x y ++19. 如图所示,在由3个相同正方形拼接而成的矩形中,βα-=( )A.π2 B. π3 C.π4 D. π6..20. 如图所示,过抛物线22y px =(0p >)的焦点F 的直线交抛物线于点A 、B ,交其准线l 于点C ,若点F 是AC 的中点,且4AF =,则线段AB 的长为( )A. 5B. 6C.163 D. 203二、填空题(本大题共7小题,每小题4分,共28分) 21. 已知函数()21,01,0x x f x x x +≤⎧=⎨->⎩,则()3f =______.22. 在正项等比数列{}n a 中,若11a =,39a =,则公比q =______. 23. 已知1cos 3α=,且α为第四象限角,则sin α=______. 24. 已知双曲线221x y m -=的渐近线方程为33y x =±,则m =______.25. 有如下式子:①lg5lg 202+=;②0!0=;③02024C 0=;④202420232024202322322+=-;⑤13182-=-.其中正确的有______.(写出所有正确式子的序号)26. 如图所示,在矩形ABCD 中,1AB =,2BC =,点M 为边BC 的中点,将矩形ABCD 沿DM 剪去DCM △,将剩余部分绕直线AD 旋转一周,则所得到几何体的表面积为______.27. 过点()2,1P -且与原点距离为2的直线方程为______.三、解答题(本大题共8小题,共72分,解答应写出必要的文字说明、演算步骤.)28. 已知1nx x ⎛⎫+ ⎪⎝⎭的二项式系数之和为256,求:(1)n 的值;(2)二项式展开式中的常数项.29. 已知圆C 的圆心坐标为()1,1-2. (1)写出圆C 的标准方程;(2)若直线10x y +-=与圆C 相交于A ,B 两点,求弦长AB .30. 如图所示,在梯形ABCD 中,AD BC ∥,4AC BC ==,ACB ∠为锐角,且sin 8ACB ∠=.(1)求ABC 的面积与AB 的长. (2)若6CD =sin D .31. 已知函数()223cos 2sin 222x x x f x =-. (1)求()πf 值以及函数()f x 的最小正周期. (2)当[]π,0x ∈-时,求()f x 的最小值.32. 如图所示,在ABC 中,90ACB ︒∠=,CD AB ⊥,且3AC ==BC ,ACD 绕CD 旋转至A CD ',使得面A DC '⊥面BDC .求:(1)三棱锥C A BD '-的体积. (2)二面角C A B D -'-的正切值.33. 已知数列{}n a 满足21320n n n a a a ++-+=,11a =,24a =. (1)求3a ,4a 值.(2)判断数列{}1n n a a +-是否为等比数列. (3)求数列{}n a 的通项公式.的的34. 已知椭圆E :()222210y x a b a b+=>>的焦距为2,1F ,2F 分别是其上、下焦点,点P 在椭圆E 上,且123PF PF +=(1)求椭圆E 的标准方程;(2)已知直线l :y x m =+,当直线l 与椭圆E 相交时,求m 的取值范围;(3)若直线1y x =+与椭圆E 交于A ,B 两点,直线1y x =-与椭圆E 交于C ,D 两点,求四边形ABCD 面积.35. 如图所示,已知一堵“L ”形的现成墙面ABC ,AB BC ⊥,9AB =米,3BC =米,现利用这堵墙和总长为42米的篱笆围建一个“日”字形的小型农场DBEF (虚线表示篱笆,小型农场中间GH 也是用篱笆隔开),点D 可能在线段AB 上(如图①),也可能在线段BA 的延长线上(如图②,点E 在线段BC 的延长线上.设DF 为x 米,EF 为y 米.(1)当13x =时,小型农场DBEF 的面积为多少?(2)当“点D 在线段AB 上”和“点D 在线段BA 的延长线上”时,试分别写出y 关于x 的函数关系式; (3)当x 等于多少时,小型农场DBEF 的面积最大?最大面积为多少平方米?的参考答案:ACBAC CADCC DBADB ADBCC 8 33-3①④(3π2x =或34100x y --=28. (1)8 (2)7029. (1)()()22112x y ++-= (230. (12. (2)4.31. (1)()π2,2πf T =-=. (2)3-.32. (1)3. (2)2.33. (1)3410,22a a ==.34.(1)22132y x += (2)( (3)535.(1)()278m(2)()()327,3122453,1215x x y x x ⎧-<<⎪=⎨⎪-≤<⎩(3)当9x =时,小型农场面积最大,最大面积为2243m 2。
高三二轮复习选填满分“8+4+4”小题强化训练(4)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|320}A x x x =-+-≤,3{|log (2)1}B x x =+<,则A B = ()A.∅B.{1x x ≤或}2x ≥C.{}1x x <D.{}21x x -<<【答案】D【解析】()()22320,32120x x x x x x -+-≤-+=--≥,解得1x ≤或2x ≥,所以{|1A x x =≤或}2x ≥.由3log y x =在()0,∞+上递增,且()33log 21log 3x +<=,所以023,21x x <+<-<<,所以{}|21B x x =-<<,所以{}21A B x x ⋂=-<<,故选:D 2.若复数312iz =-(i 为虚数单位),则复数z 在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】由题意可知:()()3112i 2i 21i 2i 2i 2i 2i 555z --=====--++-,所以复数z 在复平面上对应的点为21,55⎛⎫- ⎪⎝⎭.位于第四象限.故选:D.3.下列函数中,最小值为4的是()A.4y x x =+B.()4sin 0πsin y x x x=+<<C.e 4e x x y -=+D.y =【答案】C【解析】A 项,4y x x=+没有最值,故A 项错误;B 项,令sin t x =,则01t <≤,4y t t=+,由于函数在(]0,1上是减函数,所以min ()(1)5f x f ==,故B 项错误;C 项,4e 4e e 4e x x x x y -=+=+≥=,当且仅当4e e x x =,即e 2x =时,等号成立,所以函数e 4e x x y -=+的最小值为4,故C 项正确;D 项,y =≥,当且仅当==时,等号成立,所以函数y =+的最小值为,故D 项错误.故选:C.4.若函数()2f x +为偶函数,对任意的[12,2,+)x x ∈∞,且12x x ≠,都有()()()12120x x f x f x ⎡⎤--<⎣⎦,则()A.()()212log 60log 0.2f f f ⎛⎫<< ⎪⎝⎭B.()()122log 0.20log 6f f f ⎛⎫<< ⎪⎝⎭C.()()122log 0.2log 60f f f ⎛⎫<< ⎪⎝⎭D.()()2120log 6log 0.2f f f ⎛⎫<< ⎪⎝⎭【答案】D【解析】由题意知函数()2f x +为偶函数,故函数()f x 关于直线=2x 对称,由对任意的[12,2,+)x x ∈∞,且12x x ≠,都有()()()12120x x f x f x ⎡⎤--<⎣⎦,可知函数()f x 在[2,+)x ∈∞时单调递减,而()()1220(4),log 0.52log f f f f ⎛⎫== ⎪⎝⎭,因为2252<log log 64<<,故()()2120(4)log 6log 0.2f f f f ⎛⎫=<< ⎪⎝⎭,故选:D5.已知某电子产品电池充满时的电量为3000毫安时,且在待机状态下有两种不同的耗电模式可供选择.模式A :电量呈线性衰减,每小时耗电300毫安时;模式B :电量呈指数衰减,即:从当前时刻算起,t 小时后的电量为当前电量的12t 倍.现使该电子产品处于满电量待机状态时开启A 模式,并在m 小时后切换为B 模式,若使其在待机10小时后有超过5%的电量,则m 的取值范围是()A.(5,6)B.(6,7)C.(7,8)D.(8,9)【答案】D【解析】由题意可设,模式A 的函数关系为:y =-300t +3000,模式B 的函数关系为:y =p ⋅12t ,其中p 为初始电量,在模式A 下使用m 小时,其电量为3000-300m ,在模式B 下使用10-m 小时,则可得到(3000-300m )⋅1210-m >3000⋅5%,可化为2m -10(10-m )>12,令x =10-m ,可得2-x ⋅x >12,即2x -1<x ,可结合图形得到1<x <2,即1<10-m <2,解得8<m <9,即m ∈(8,9),故答案选D.6.已知正项等比数列{}n a 满足2022202120202a a a =+,若215log a +是2log m a 和2log n a 的等差中项,则9n mmn+的最小值为()A.43B.138C.85D.3421【答案】A【解析】正项等比数列{}n a 满足2022202120202a a a =+,所以22q q =+,且0q >,解得2q =,又因为215log a +是2log m a 和2log n a 的等差中项,所以()212225log log log m n a a a +=+,得102222121log (2)log (2)m n a a +-=,即12m n +=,()9119191410101212123n m m n m n mn m n n m ⎛+⎛⎫⎛⎫=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当39n m ==时,等号成立.故选:A.7.《九章算术》中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵111ABC A B C -中,AC BC ⊥,12AA =,当阳马11B ACC A -体积的最大值为43时,堑堵111ABC A B C -的外接球的体积为()A.4π3B.π3C.32π3【答案】B【解析】由题意易得BC ⊥平面11ACC A ,所以()11222112113333B ACC A V BC AC AA BC AC BC AC AB -=⋅⋅=⋅≤+=,当且仅当AC BC =时等号成立,又阳马11B ACC A -体积的最大值为43,所以2AB =,所以堑堵111ABC A B C -的外接球的半径R =所以外接球的体积343V r π==,故选:B8.已知ln 22ln a a =,ln 33ln b b =,ln 55ln c c =,且(),,0,e ∈a b c 则()A.c <a <b B.a <c <b C.b <a <c D.b <c <a【答案】A 【解析】由已知得ln 2ln 2a a =,ln 3ln 3b b=,ln ln 55c c =,令()()()ln 0e ,=∈x f x x x ,()21ln xf x x -'=,可得()f x 在()0e ,∈x 上单调递增,在()e ,+∈∞x 上单调递减,()()25lnln 5ln 23205210-=-=<f c f a ,且(),0,e ∈a c ,所以c a <,()()8lnln 2ln 390236-=-=<f a f b ,且(),0,e ∈a b ,所以a b <,所以c a b <<.故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知()831f x x x ⎛⎫=- ⎪⎝⎭,则()A.()f x 的展开式中的常数项是56B.()f x 的展开式中的各项系数之和为0C.()f x 的展开式中的二项式系数最大值是70D.()f x 的展开式中不含4x 的项【答案】BC【解析】二项展开式通项公式为382441881()(1)rr rr r rr T C x C x x --+⎛⎫=-=- ⎪⎝⎭,2440r -=,6r =,常数项为6678(1)28T C =-=,A 错;2444r -=,=5r ,第6项是含4x 的项,D 错;令1x =得(1)0f =所有项系数和,B 正确;8n =,因此二项式系数的最大值为4870C =,C 正确.故选:BC.10.已知某物体作简谐运动,位移函数为()2sin()(0,)2f t t t πϕϕ=+><,且4()23f π=-,则下列说法正确的是()A.该简谐运动的初相为6πB.函数()f t 在区间0,2π⎛⎫⎪⎝⎭上单调递增C.若[0,]2t π∈,则(),2[]1f t ∈D.若对于任意12,0t t >,12t t ≠,都有12()()f t f t =,则12()2f t t +=【答案】ACD【解析】因为()2sin()(0,)2f t t t πϕϕ=+><,且4()23f π=-,所以422sin 3πϕ⎛⎫-=+⎪⎝⎭,即432,32k k Z ππϕπ+=+∈,所以2,6k k Z πϕπ=+∈,因为2πϕ<,所以6π=ϕ所以()2sin 6f t t π⎛⎫=+⎪⎝⎭,所以对于A 选项,简谐运动的初相为6π,故正确;对于B 选项,函数()f t 在区间0,3π⎛⎫ ⎪⎝⎭上单调递增,,32ππ⎛⎫⎪⎝⎭上单调递减,故错误;对于C 选项,当0,2t π⎡⎤∈⎢⎥⎣⎦时,2,663t πππ⎡⎤+∈⎢⎥⎣⎦,所以sin sin sin 662t πππ⎛⎫≤+≤ ⎪⎝⎭,即1sin 126t π⎛⎫≤+≤ ⎪⎝⎭,所以(),2[]1f t ∈,故正确;对于D 选项,对于任意12,0t t >,12t t ≠,都有12()()f t f t =,则12,2t t k k Z ππ+=+∈,所以12()2f t t +=,故正确.故选:ACD11.已知正三棱锥S ABC -的底面边长为6,侧棱长为则下列说法中正确的有()A.侧棱SA 与底面ABC 所成的角为4πB.侧面SAB 与底面ABC 所成角的正切值为C.正三棱锥S ABC -外接球的表面积为64πD.正三棱锥S ABC -1【答案】BC【解析】若,E F 分别是,BC AB 的中点,连接,AE SE ,易知AES ∠为侧棱SA 与底面ABC 所成角,由题设,SE =,AE =,SA =,则1cos2AES ∠==,∴3AES π∠=,故A 错误;若O 是底面中心,易知:SO ⊥面ABC ,连接OF 、SF ,则侧面SAB 与底面ABC 所成角为SFO ∠,又6SO =,OF =,则tan SFO ∠=B 正确.若外接球的半径为R ,则R ==,解得4R =,∴正三棱锥S ABC -外接球的表面积为2464R ππ=,故C 正确.由题设易知:S ABC V -=,若内切球的半径为r ,则()3SABSACSBCABCr SSS S+++=,又SABSAC SBCSSS===ABCS=,则93)2r ==,故D 错误.故选:BC12.关于函数()sin xf x e x =+,(),x ππ∈-.下列说法正确的是()A.()f x 在()()0,0f 处的切线方程为210x y -+=B.()f x 有两个零点C.()f x 有两个极值点D.()f x 存在唯一极小值点0x ,且()010f x -<<【答案】ABD【解析】()sin xf x e x =+,()00sin 01f e =+=,()cos xf x e x '=+,()00cos02f e '=+=,切线方程为()120y x -=-,即210x y -+=,故A 正确;()sin x f x e x ''=-⎡⎤⎣⎦,当0x >时,()0sin 110x x f x e x e e ''=≥-->-=⎡⎤⎣⎦,当π0x -<≤时,sin 0x ≤,0x e >,∴()sin 0x f x e x ''=>⎡⎤⎣⎦-,∴(),x ππ∈-时,()0f x ''>⎡⎤⎣⎦,∴()cos xf x e x '=+单调递增,32430422f e e --⎛⎫'-=-<-< ⎪⎝⎭ππ,2002f e -⎛⎫'-=-> ⎪⎝⎭ππ,在(),ππ-内,()cos xf x e x '=+存在唯一的零点0x ,且03,42x ππ⎛⎫∈-- ⎪⎝⎭,且在()0,x x π∈-内,()0f x '<,()f x 单调递减;()0,x x π∈,()0f x '>,()f x 单调递增,∴0x 为极值点,且为极小值点.由()000cos 0x f x e x '=+=,∴()00000sin sin cos xf x e x x x =+=-,∵03,42x ππ⎛⎫∈-- ⎪⎝⎭,∴00001sin 0,1cos 0,sin cos x x x x -<<-<<<,∴001sin cos 0x x -<-<,∴()f x 有唯一的极值点,且为极小值点0x ,且()010f x -<<,故C 错误,D 正确;又∵()()ππ0,sin 0f ef e e ππππ--=>=+=>,结合函数()f x 的单调性可知∴()f x 有两个零点,故B 正确;故选:ABD.三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.已知随机变量ξ服从正态分布()2,N μσ,若函数()()1f x P x x ξ=≤≤+为偶函数,则μ=_______.【答案】C【解析】因为函数()f x 为偶函数,则()()f x f x -=,即()()11P x x P x x ξξ-≤≤-+=≤≤+,所以,1122x x μ-++==.故答案为:1214.为调查新冠疫苗的接种情况,需从5名志愿者中选取3人到3个社区进行走访调查,每个社区一人.若甲乙两人至少有一人入选,则不同的选派方法有_____________.【答案】54【解析】①若甲乙两人恰有一人入选,志愿者有12236C C =种选法,再分配到3个社区,有336A =种方案,故由分步乘法计数原理知,共有6636⨯=种选派方法;②若甲乙两人都入选,志愿者有21233C C =种选法,再分配到3个社区,有336A =种方案,故由分步乘法计数原理知,共有1863=⨯种选派方法综上,由分类加法计数原理知,共有361854+=种选派方法.故答案为:54.15.数列{}n a 的各项均为正数,其前n 项和n S 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭.则n a =__________.【答案】【解析】由1111112a S a a ⎛⎫==+ ⎪⎝⎭,得111a S ==.当n>1时,由112n n n S a a ⎛⎫=+ ⎪⎝⎭①1112n n n n S a a a -⎛⎫⇒+=+ ⎪⎝⎭1112n n nS a a -⎛⎫⇒=-+ ⎪⎝⎭.②①+②得11n n n S S a -+=.③又1n n n S S a --=,④③⨯④得2211n n S S --=.则{}2n S 成等差数列,2n S n =,n S =.于是,1n n n a S S -=-=当1n =时,也满足上式.综上,n a =.故答案为16.椭圆的光学性质,从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另一个焦点上.已知椭圆C :()2221024x y b b+=<<,1F ,2F 为其左、右焦点.M 是C 上的动点,点(N ,若1MN MF +的最大值为6.动直线l 为此椭圆C 的切线,右焦点2F 关于直线l 的对称点()11,P x y ,113424S x y =+-,则:(1)椭圆C 的离心率为___________;(2)S 的取值范围为___________.【答案】12[]7,47【解析】根据椭圆定义得:122MF MF a +=,所以12222MN MF MN MF a NF a +=-+≤+,因为1MN MF +的最大值为6,因为2a =,所以22NF =2=,解得1c =,所以离心率为12c a =.右焦点()21,0F 关于直线的对称点()11,P x y ,设切点为A ,由椭圆的光学性质可得:P ,A ,1F 三点共线,所以111224FP F A AP F A AF a =+=+==,即点()11,P x y 的轨迹是以()1,0-为圆心,半径为4的圆,圆心()1,0-到直线34240x y +-=275=,则圆上的点到直线34240x y +-=的距离最小值277455-=,最大值2747455+=,所以点()11,P x y 到直线34240x y +-=的距离为:1134245x y +-,所以113424S x y =+-表示点()11,P x y 到直线34240x y +-=的距离的5倍,则1174734245,555S x y ⎡⎤=+-∈⨯⨯⎢⎥⎣⎦,即[]7,47S ∈.故答案为:12,[]7,47.。
浙江省衢州市(新版)2024高考数学部编版质量检测(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知三棱锥中,分别为棱的中点,则直线与所成角的正切值为()A.B.C.D.第(2)题定义在上的函数满足,则的图象不可能为()A.B.C.D.第(3)题已知函数,函数有四个不同的的零点,,,,且,则()A .a的取值范围是(0,)B.的取值范围是(0,1)C.D.第(4)题已知函数在上有最小值没有最大值,则的取值范围是()A.B.C.D.第(5)题在中内角的对边分别为,若,则的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形第(6)题已知函数,若关于x的不等式对任意恒成立,则实数k的取值范围( )A.B.C.D.第(7)题已知集合,,则().A.B.C.D.第(8)题已知复数,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知复数是关于x的方程的两根,则下列说法中正确的是()A.B.C.D.若,则第(2)题已知向量,函数,则()A.在上有4个零点B.在单调递增C.D.直线是曲线的一条切线第(3)题下列命题中正确的是()A.中位数就是第50百分位数B .已知随机变量X~,若,则C.已知随机变量~,且函数为偶函数,则D.已知采用分层抽样得到的高三年级男生、女生各100名学生的身高情况为:男生样本平均数172,方差为120,女生样本平均数165,方差为120,则总体样本方差为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数,若,则当取得最小值时,________.第(2)题如图,某园林单位准备绿化一块直径为的半圆形空地,外的地方种草,的内接正方形为一水池,其余的地方种花,若,,设的面积为,正方形的面积为,当固定,变化时,则的最小值是__________.第(3)题已知圆柱底面圆的周长为,母线长为4,则该圆柱的体积为________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题选修4-5:不等式选讲设函数,(Ⅰ)求不等式的解集;(Ⅱ)若,恒成立,求实数的取值范围.第(2)题已知函数.(1)若在处的切线与y轴垂直,求a的值;(2)若恒成立,求a的取值范围.第(3)题某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元,在机器使用期间,如果备件不足再购买,则每个500元,现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得到其频数分布图(如图所示).若将这100台机器在三年内更换的易损零件数的频率视为1台机器在三年内更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.(1)求的分布;(2)以购买易损零件所需费用的期望值为决策依据,在与18之中选其一,应选用哪个?并说明理由.第(4)题盲盒里面通常装的是动漫、影视作品的周边,或者设计师单独设计出来的玩偶.由于盒子上没有标注,购买者只有打开后才会知道自己买到了什么,因此这种惊喜吸引了众多年轻人,形成了“盲盒经济”.某款盲盒内装有正版海贼王手办,且每个盲盒只装一个.某销售网点为调查该款盲盒的受欢迎程度,随机抽取了400人进行问卷调查,并全部收回.经统计,有的人购买了该款盲盒,在这些购买者当中,男生占;而在未购买者当中,男生、女生各占.(1)完成下面的列联表,并判断是否有的把握认为是否购买该款盲盒与性别有关?女生男生总计购买未购买总计(2)从购买该款盲盒的人中按性别用分层抽样的方法随机抽取6人,再从这6人中随机抽取3人发放优惠券,求抽到的3人中恰有1位男生的概率.参考公式:,其中.参考数据:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828第(5)题“九子游戏”是一种传统的儿童游戏,它包括打弹子、滚圈子、踢毽子、顶核子、造房子、拉扯铃子、刮片子、掼结子、抽陀子九种不同的游戏项目,某小学为丰富同学们的课外活动,举办了“九子游戏”比赛,所有的比赛项目均采用局胜的单败淘汰制,即先赢下局比赛者获胜.造房子游戏是同学们喜爱的项目之一,经过多轮淘汰后,甲、乙二人进入造房子游戏的决赛,已知每局比赛甲获胜的概率为,乙获胜的概率为.(1)若,设比赛结束时比赛的局数为,求的分布列与数学期望;(2)现有两种赛制:赛制一:采用3局2胜制,赛制二:采用5局3胜制,乙选手要想获胜概率大,应选哪种赛制?并说明理由.。
浙江省杭州市2024年数学(高考)部编版第二次模拟(提分卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题下列所给4个图像中,与所给3件事吻合最好的顺序为( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.A.(1)(2)(4)B.(2)(3)(4)C.(1)(3)(4)D.(4)(1)(2)第(2)题复平面内复数满足,则的最小值为()A.1B.C.D.3第(3)题已知点P在棱长为2的正方体的表面上运动,则的最大值为()A.6B.7C.8D.9第(4)题已知偶函数的定义域为,其导函数为,当时,有成立,则关于x的不等式的解集为()A.B.C.D.第(5)题将函数的图象向右平移个单位后得到的图象,则()A.B.C.D.第(6)题已知平面向量满足,,且与的夹角为,则()A.B.C.D.第(7)题设集合.若,则()A.B.2C.3D.4第(8)题若和是定义在实数集上的函数,且方程有实数解,则不可能是()A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题若,,,则下列不等式中对一切满足条件的,恒成立的有()A.B.C.D.第(2)题已知平行六面体的所有棱长都相等,,,,,且点E,F满足,,平面α过点A,E,F,则()A.B.的面积是C.平面α与平面的交线长为D.点C到平面α的距离是点到平面α的距离的5倍第(3)题在“世界杯”足球赛闭幕后,某中学学生会对本校高三年级1000名学生收看比赛的情况用随机抽样方式进行调查,样本容量为50,将数据分组整理后,列表如下:观看场数01234567观看人数占调查人数的百分比8%10%20%26%m%12%6%2%从表中可以得出正确的结论为()A.表中m的数值为16B.估计全年级观看比赛低于4场的学生约为32人C.估计全年级观看比赛不低于4场的学生约为360D.估计全年级观看比赛场数的众数为2三、填空(本题包含3个小题,每小题5分,共15分。
高三二轮复习选填满分“8+4+4”小题强化训练(10)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合403x M x x +⎧⎫=≤⎨⎬-⎩⎭∣,133xN x ⎧⎫⎪⎪⎛⎫=⎨⎬ ⎪⎝⎭⎪≤⎪⎩⎭∣,则M N ⋂=()A.[]4,1--B.[)4,3-C.[)1,3-D.[]1,3-【答案】C 【解析】∵40433x x x +≤⇒-≤<-∴4{0}{|43}3x M xx x x +=≤=-≤<-∣由指数函数的单调性可知,1()33113x xx x -=≤⇒-≤⇒≥-,从而1{)3}{|1}3x N xx x ==≤≥-∣(,故{|13}M N x x =-≤< .故选:C.2.若复数z 满足()1i 1i z +=-,则z 的虚部为()A. B. C.2i -D.2-【答案】D【解析】因为()1i 1i z +=-,所以)()()1i i 1i 1i 1i 22z -===-++-.故z 的虚部为2-.故选:D3.下列命题中,真命题是()A.“1,1a b >>”是“1ab >”的必要条件B.R x ∀∈,e 0x >C.2R,2x x x ∀∈>D.0a b +=的充要条件是1ab=-【答案】B【解析】对于A,当2,1a b ==时,满足1ab >,但不满足1,1a b >>,故“1,1a b >>”不是“1ab >”的必要条件,故错误;对于B,根据指数函数的性质可得,对于R x ∀∈,e 0x >,故正确;对于C,当2x =时,22x x =,故错误;对于D,当0a b ==时,满足0a b +=,但1ab=-不成立,故错误;故选:B4.已知圆台的上下底面圆的半径分别为1与,则圆台的侧面积为()A.73π B. C.6πD.11π【答案】C【解析】因为圆台的上下底面圆的半径分别为1与,所以圆台的母线为:2AB ===,所以圆台的侧面积为:(12)26ππ⋅+⋅=,故选:C5.将函数()sin f x x ω=(其中ω>0)的图像向右平移4π个单位长度,所得图像经过点3,04π⎛⎫⎪⎝⎭,则ω的最小值是()A.13B.1C.53D.2【答案】D【解析】函数()sin (0)f x x ωω=>的图象向右平移4π个单位长度,所得函数的解析式为()sin (4f x x πω=-,因为它的图象经过点3(,0)4π,所以3(()442k k Z ππωπωπ-==∈,即2()k k Z ω=∈,又因为0ω>,所以ω的最小值是2,故选:D.6.已知()2cos f x x x =--,若34e a f -⎛⎫= ⎪⎝⎭,4ln 5b f ⎛⎫= ⎪⎝⎭,14c f ⎛⎫=- ⎪⎝⎭,则a ,b ,c 的大小关系为()A.c b a <<B.c a b<<C.b c a<<D.a c b<<【答案】D【解析】因为2()cos ,R f x x x x =--∈,定义域关于原点对称,()22()()cos()cos f x x x x x f x -=----=--=,所以()f x 为R 上的偶函数,当0x ≥时,()2sin ,f x x x '=-+,设()2sin g x x x =-+,则()2cos g x x '=-+,1cos 1x -≤≤ ,()0g x '∴<,所以()g x 即()f x '在[0,)+∞上单调递减,所以()(0)0f x f ''≤=,所以()f x 在[0,)+∞上单调递减,又因为()f x 为偶函数,所以()f x 在(,0]-∞上单调递增,又因为41ln0,054<-<,445ln ln ln 554b f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1144c f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭又因为31411ee e 4-->=>,因为141ln e 4=,41445e e, 2.4e 4⎛⎫⎛⎫=≈< ⎪ ⎪⎝⎭⎝⎭,所以145e 4>,所以145ln e ln 4>,即15ln 44>,所以3415e ln 44->>,所以3441e 5ln 4f f f -⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,即a c b <<.故选:D.7.已知a ,b 均为正数,且121122a b +=+-,则2a b +的最小值为()A.8B.16C.24D.32【答案】B【解析】当()0,2b ∈时,212b <--,111a <+,故12012a b +<+-,不符合题意,故2b >,()()()()1212221222128281221a b a b a b a b a b b a +-⎛⎫+=++-=++-+=++⎡⎤ ⎪⎣⎦+--+⎝⎭816≥=,当128221a b b a +-=-+,即3,10a b ==时等号成立.故选:B8.已知双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点分別是1F ,2F ,过点1F 的直线与C 交于A ,B 两点,且12AB F F ⊥,现将平面12AF F 沿12F F 所在直线折起,点A 到达点P 处,使平面12PF F ⊥平面12BF F .若25cos 9PF B =∠,则双曲线C 的离心率为()C.2【答案】D【解析】由题意,22b AB a=,所以211b PF BF a ==,122F F c =,因为12AB F F ⊥,所以112112,PF F F BF F F ⊥⊥,又平面12PF F ⊥平面12BF F ,平面12PF F 平面1212BF F F F =,所以1PF ⊥平面12BF F ,所以11PF F B ⊥,所以42221122b PB PF BF a=+=,()42222222b PF BF c a==+,因为25cos 9PF B =∠,所以由余弦定理有222222222cos PB PF BF PF BF PF B =+-∠,即444422222222544249b b b b c c c a a a a ⎛⎫⎛⎫⎛⎫=+++-+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()2224221655a c b c a ==-,即()()2222550a cac --=,所以225c a=或15,又离心率1c e a =>,所以ce a==故选:D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.若11i z =+,22i z =,则()A.212z z =B.121z z z -=C.21z z 在复平面内对应的点在第二象限D.122z z -+是实数【答案】ABD【解析】因为()22211i 12i i 2i z =+=++=,所以A 正确;因为121i z z -=-=11i z =+B 正确;因为()()()2212i 1i 2i 2i 2i 1i 1i 1i 1i 2z z --====+++-,它在复平面内对应的点为()1,1,所以21z z 在复平面内对应的点在第一象限,所以C 错误;因为()12221i 2i 2z z -+=-++=-,所以122z z -+是实数,所以D 正确.故选:ABD.10.下列四个命题中,正确的有()A.函数3sin(2)3y x π=+的图象可由y =3sin 2x 的图象向左平移3π个单位长度得到B.sin 2x y e =的最小正周期等于π,且在(0,)2π上是增函数(e 是自然对数的底数)C.直线x =8π是函数5sin(2)4y x π=+图象的一条对称轴D.函数y =的定义域是,2x k x k k Z πππ⎧⎫≤<+∈⎨⎬⎩⎭【答案】CD【解析】将y =3sin 2x 的图象向左平移3π个单位长度得到y =23sin[2()]3sin(2)33x x ππ+=+,故A 错误;令()sin 2xf x e =,∴()()sin 2sin 2x x f x ee ππ++==,故()sin 2xf x e =的周期为π,且在0,4π⎛⎫⎪⎝⎭上为增函数,故B 错误;由52,42x k k Z πππ+=+∈,得3,28k x k Z ππ=-∈,当1k =时,x =8π是其对称轴,故C 正确;由tan 0x ≥得,()2k x k k Z πππ≤<+∈,故D 正确.故选:CD.11.在棱长为1正方体1111ABCD A B C D -中,若点P 为棱11C D 上的一动点,则下列说法中正确的有()A.AP PC +B.当P 为棱11C D 的中点时,则四棱锥11P ABB A -的外接球的表面积为41π16C.平面1A PC 与平面11CBB C 所成夹角取最小值时,则线段112C P =D.若点,E F 分别为棱,AB AD 的中点,点Q 为线段1C D 上的动点,则直线1AQ 与平面1D EF 交点的轨迹长度为266【答案】BCD【解析】建立如图所示坐标系,点P 为棱11C D 上的一动点,设(0,,0)(01)P a a ≤≤,选项A:因为(1,0,1)A ,(0,1,1)C ,所以2222(01)(0)(01)2AP a a =-+-+-+222(1)(10)22PC a a a =-+--+,所以2222(0)(02)(1)(01)AP PC a a +=-+--+-即表示点P '(,0)a 到两定点A '2),B '(1,1)的距离之和,如图所示在坐标系中B '关于x 轴的对称点为(1,1)B ''-,因为P A P B P A P B '''''''''+=+,所以当P '在A B '''上时P A P B ''''+22(10)(12)422-+--=+AP PC +422+错误;选项B:当P 为棱11C D 的中点时,10,,02P ⎛⎫⎪⎝⎭,设球心为O ,正方形11ABB A 中心为O ',因为OO '⊥平面11ABB A ,所以设11,,22O b ⎛⎫⎪⎝⎭,又因为1(1,0,0)A ,由1OA OP =22222111(1)00(0)0222b b ⎛⎫⎛⎫⎛⎫-+-+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭解得58b =,所以四棱锥11P ABB A -的外接球的半径R OP ==,所以表面积为241π4π16R =,B 正确;选项C:由图可知平面1A PC 与平面11CBB C 所成夹角为锐角,因为1(1,,0)A P a =- ,1(1,1,1)A C =- ,设平面1A PC 的法向量(,,)n x y z =,则1100n A P x ay n A C x y z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩ ,当0a ≠时,解得111,,1n a a ⎛⎫=- ⎪⎝⎭ ,设平面11CBB C 的法向量(0,1,0)m =,所以平面1A PC 与平面11CBB C所成夹角的余弦值1cos cos ,n m an m n mθ⋅=<>=,对于二次函数2222y a a =-+,当12a =时,y 最小,此时cos θ当0a =时解得(0,1,1)n =-,此时cos ,23n m n m n m⋅<>===<,所以平面1A PC 与平面11CBB C 所成夹角取最小值时,112C P =,C 正确;选项D:连接11B D如图,因为,E F 分别是棱,AB AD 的中点,所以11B D EF ∥,则11,,,B D E F 四点共面,连接111,AC A D ,设111111,AC B D M A D D F N == ,连接MN ,则MN 为直线1AQ 与平面1D EF 交点的轨迹,易得1A D ==11A ND DNF 且112A D FD=,所以1122233A N A D ==,因为1111A C C D A D ===1160C A D ∠=︒,又122A M =,所以在1A MN 中,由余弦定理可得22211111132cos 18MN A N A M A N A M MA N =+-⋅∠=,所以MN =1AQ 与平面1D EF 正确;故选:BCD12.在平面直角坐标系xOy 中,已知F 为抛物线y 2=x 的焦点,点A (x 1,y 1),B (x 2,y 2)在该抛物线上且位于x 轴的两侧,→OA ·→OB =2,则()A.x 1x 2=6B.直线AB 过点(2,0)C.△ABO 的面积最小值是22D.△ABO 与△AFO 面积之和的最小值是3【答案】BCD【解析】由题意可设直线AB 的方程为:x =my +n =my +n 2=x联立消去x 可得,y 2-my -n =0,则y 1y 2=-n ,所以x 1x 2=y 12y 22=n 2,则→OA ·→OB =x 1x 2+y 1y 2=n 2-n =2,解得n =2或-1,因为y 1y 2<0,所以-n <0,即n >0,则n =2,即x 1x 2=22=4,故选项A 错误;因为n =2,所以直线AB 的方程为:x =my +2,即过定点(2,0),故选项B 正确;因为y 1+y 2=m ,所以|AB |=m 2+1(y 1+y 2)2-4y 1y 2=m 2+1⋅m 2+8,且原点O 到直线AB 的距离为d =2m 2+1,所以S △ABO =12⋅|AB |⋅d =12m 2+1⋅m 2+8⋅2m 2+1=m 2+8≥22,故选项C 正确;可假设A 在x 轴上方,则S △AFO =12×14|y 1|=m +m 2+816,则S △ABO +S △AFO =m +17m 2+816,可设f (m )=m +17m 2+816,求导得f′(m )=17m +m 2+816m 2+8,令f′(m )>0,解得m >-16,f ′(m )<0,解得m <-16,则f (m )在(-∞,-16)上单调递减,在(-16,+∞)上单调递增,所以f (m )min =f (-16)=3,故选项D 正确;故选:BCD.三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.已知()2cos221xx f x ax x =+++,若π23f ⎛⎫= ⎪⎝⎭,则π3f ⎛⎫- ⎪⎝⎭等于______.【答案】2-【解析】()2cos 221xx f x ax x =+++ ,2221()()2cos 22cos 212cos 221212112x x x x x x xf x f x x x x --∴+-=++=++=+++++,ππ2π()()12cos 0,333f f ∴+-=+=π23f ⎛⎫= ⎪⎝⎭Q ,π23f ⎛⎫∴-=- ⎪⎝⎭,故答案为:2-14.黎曼函数(Riemannfunction )是一个特殊函数,由德国数学家黎曼发现并提出,黎曼函数定义在[]0,1上,其定义为:()[]1,,0,0,10,1q q x p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩当都是正整数,是不可以再约分的真分数当或者上的无理数,若函数()f x是定义在R 上的奇函数,且()()20f x f x +-=,当[]0,1x ∈时,()()f x R x =,则103310f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭______.【答案】730-【解析】由()()20f x f x +-=知:()f x 关于()1,0对称,又()f x 为奇函数,图象关于原点对称()f x ∴为周期函数,周期4T =103212111731031031031030f f f f ⎛⎫⎛⎫⎛⎫⎛⎫∴+=-+=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故答案为:730-15.设7cos cos 5αβ+=,1sin sin 5αβ-=,则()()20222022sin cos αβαβ+++=________.【答案】1【解析】由22749cos cos cos cos 2cos cos (1)525αβαβαβ+=⇒++=,2211sin sin sin sin 2sin sin (2)525αβαβαβ-=⇒+-=,(1)(2)+,得()()22cos 2cos 0αβαβ++=⇒+=,所以()()22sin 1cos 1αβαβ+=-+=,故()()20222022sin cos 1αβαβ+++=.故答案为:116.已知数列{}n a 与{}n b 满足()*1122n n n n a b b a n +++=+∈N ,若19a =,()*3n n b n =∈N 且()33633n n a n λλ>+-+对一切*n ∈N 恒成立,则实数λ的取值范围是______.【答案】13,18⎛⎫+∞ ⎪⎝⎭【解析】3n n b = ,113n n b ++∴=,代入()*1122n n n n a b b a n +++=+∈N ,化简得112()43n n n n n a a b b ++-=-=⋅,()12112211()()()4(333)92332n n n n n n n n a a a a a a a a n -----∴=-+-+⋯+-+=++⋯++=⨯+≥,又19a =符合上式,故233n n a =⨯+,故336(3)3n n a n λλ>+-+可化为118(3)23nn λ->+.令118(3)23n n n c -=+,则1118(3)18(4)18(92)333n n n n n n n n c c ------=-=,∴当5n ≥,{}n c 单调递减,当14n <≤时,{}n c 单调递增,∴当4n =时n c 取得最大值412132918c =+=,1318λ∴>.实数λ的取值范围是13,18⎛⎫+∞⎪⎝⎭.故答案为:13,18⎛⎫+∞ ⎪⎝⎭.。
选择填空提速专练(四)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合P ={x ∈R|0<x <1},Q ={x ∈R|x 2+x -2≤0},则( ) A .P ∈Q B .P ∈∁R Q C .∁R P ⊆QD .∁R Q ⊆∁R P解析:选D 由题意得集合P ={x |0<x <1},Q ={x |-2≤x ≤1},所以∁R P ={x |x ≤0或x ≥1},∁R Q ={x |x <-2或x >1},所以∁R Q ⊆∁R P ,故选D.2.已知i 为虚数单位,复数z =1-3i2+i ,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C 由题意得复数z =1-3i 2+i =1-3i2-i 2+i 2-i =-15-75i ,则其在复平面内对应的点为⎝ ⎛⎭⎪⎫-15,-75,位于第三象限,故选C.3.在△ABC 中,“sin A >sin B ”是“cos A <cos B ”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选B 在△ABC 中,由正弦定理得sin A >sin B ⇔a >b ⇔A >B ,又因为在(0,π)内函数f (x )=cos x 单调递减,所以A >B ⇔cos A <cos B ,所以sin A >sin B ⇔A >B ⇔cos A <cos B ,故选B.4.直三棱柱ABC A 1B 1C 1中,所有棱长都相等,M 是A 1C 1的中点,N 是BB 1的中点,则AM 与NC 1所成角的余弦值为( )A.23 B.35C.53D.45解析:选B 设直三棱柱的棱长为2a ,AC 的中点为D ,连接C 1D ,DN ,则易得C 1D ∥AM ,则∠DC 1N 就是AM 与NC 1的夹角,又因为C 1D =CC 21+CD2=5a ,DN =AB 2-AD 2+BN 2=2a ,C 1N =C 1B 21+B 1N 2=5a ,所以AM 与NC 1的夹角的余弦值等于cos ∠DC 1N =C 1D 2+C 1N 2-DN 22C 1D ·C 1N =35,故选B.5.若(1+x )3+(1+x )4+(1+x )5+…+(1+x )2 017=a 0+a 1x +a 2x 2+…+a 2 017x2 017,则a 3的值为( )A .C 32 017 B .C 32 018 C .C 42 017D .C 42 018解析:选D 由题意得a 3=C 33+C 34+…+C 32 017=C 44+C 34+…+C 32 017=C 45+C 35+…+C 32 017=…=C 42 017+C 32 017=C 42 018,故选D.6.已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,则S 8S 16=( )A.310B.37C.13D.12解析:选A 设等差数列{a n }的公差为d ,则由S 4S 8=13得d ≠0,S 42S 4+16d =13,解得S 4=16d ,所以S 8S 16=S 82S 8+64d =3×16d 6×16d +64d =310,故选A. 7.从双曲线x 23-y 25=1的左焦点F 引圆x 2+y 2=3的切线FP 交双曲线右支于点P ,T 为切点,M 为线段FP 的中点,O 为坐标原点,则|MO |-|MT |等于( )A. 3B. 5C.5- 3D.5+ 3解析:选C 设双曲线的右焦点为F 1,连接PF 1.因为点M 为PF 的中点,点O 为F 1F 的中点,所以|OM |=12|PF 1|=12(|PF |-23)=|FM |-3,所以|OM |-|MT |=|FM |-|MT |-3=|FT |-3,又因为直线FP 与圆x 2+y 2=3相切于点T ,所以|FT |=8-3=5,则|OM |-|MT |=5-3,故选C.8.从{1,2,3,…,10}中选取三个不同的数,使得其中至少有两个相邻,则不同的选法种数是( )A .72B .70C .66D .64解析:选D 选取的三个数中有且只有两个相邻的选法有7×2+6×7=56种,选取的三个数都相邻的选法有8种,所以选取的三个数中至少有两个相邻的不同选法种数为56+8=64,故选D.9.已知f (x )=2x 2-4x -1,设有n 个不同的数x i (i =1,2,…,n )满足0≤x 1<x 2<…<x n ≤3,则满足|f (x 1)-f (x 2)|+|f (x 2)-f (x 3)|+…+|f (x n -1)-f (x n )|≤M 的M 的最小值是( )A .10B .8C .6D .2解析:选A 由二次函数的性质易得f (x )=2x 2-4x -1在(0,1)上单调递减,在(1,3)上单调递增,且f (0)=-1,f (1)=-3,f (3)=5,则当x 1=0,x n =3,且存在x i =1时,|f (x 1)-f (x 2)|+|f (x 2)-f (x 3)|+…+|f (x n -1)-f (x n )|取得最大值,最大值为|f (x 1)-f (x i )|+|f (x i )-f (x n )|=|-1-(-3)|+|-3-5|=10,所以M 的最小值为10,故选A.10.已知Rt △ABC 中,AB =3,AC =4,BC =5,I 是△ABC 的内心,P 是△IBC 内部(不含边界)的动点,若AP ―→=λAB ―→+μAC ―→(λ,μ∈R),则λ+μ的取值范围是( )A.⎝⎛⎭⎪⎫712,1B.⎝ ⎛⎭⎪⎫13,1C.⎝ ⎛⎭⎪⎫14,712 D.⎝ ⎛⎭⎪⎫14,1 解析:选A 以A 为坐标原点,AB 所在的直线为x 轴,AC 所在的直线为y 轴建立平面直角坐标系(图略),则易得A (0,0),B (3,0),C (0,4),I (1,1),设点P (x ,y ),则由AP ―→=λAB ―→+μAC―→得(x ,y )=λ(3,0)+μ(0,4),所以⎩⎪⎨⎪⎧λ=x3,μ=y4,则λ+μ=x 3+y4,又由题意得点P (x ,y )在以B (3,0),C (0,4),I (1,1)为顶点的三角形内部(不包含边界),所以当目标函数z =x 3+y4与直线BC 重合时,z =x 3+y 4取得最大值1,当目标函数z =x 3+y 4经过点I (1,1)时,z =x 3+y4取得最小值712,又因为点P (x ,y )的可行域不包含边界,所以z =x 3+y 4的取值范围为⎝ ⎛⎭⎪⎫712,1,即λ+μ的取值范围为⎝ ⎛⎭⎪⎫712,1,故选A.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分,把答案填在题中横线上)11.已知函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π4,则f (x )的最小正周期为________;f ⎝ ⎛⎭⎪⎫π3=________. 解析:函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π4的最小正周期为π2,f ⎝ ⎛⎭⎪⎫π3=tan ⎝ ⎛⎭⎪⎫2π3-π4=tan 2π3-tanπ41+tan 2π3·ta nπ4=-3-11+-3×1=2+ 3.答案:π22+ 312.某几何体的三视图如图所示(单位:cm),则该几何体的体积为________cm 3;该几何体的外接球的直径为________cm.解析:由三视图得该几何体为一个底面为边长为1的正方形,有一条长为1的侧棱垂直于底面的四棱锥,所以该几何体的体积为13×1×1×1=13(cm 3).由题意得该四棱锥可以补形为一个棱长为1的正方体,且正方体的外接球即为四棱锥的外接球,所以该几何体的外接球的直径为12+12+12=3(cm). 答案:13313.随机变量X 的分布列如下:X -2 0 1P1213p则p =________;若Y =2X +3,则E (Y )=________.解析:由分布列的概念易得12+13+p =1,解得p =16,则E (X )=(-2)×12+0×13+1×16=-56,所以E (Y )=2E (X )+3=2×⎝ ⎛⎭⎪⎫-56+3=43.答案:16 4314.已知函数y =x +a x 2+1(a ∈R)的值域是⎣⎢⎡⎦⎥⎤-14,m ,则常数a =________,m =________. 解析:由题意得f (x )=x +a x 2+1≥-14,即a ≥-14x 2-x -14对任意x ∈R 恒成立,且存在x ∈R 使得等号成立,所以a =⎝ ⎛⎭⎪⎫-14x 2-x -14max ,又因为-14x 2-x -14=-14(x +2)2+34,所以a =⎝⎛⎭⎪⎫-14x 2-x -14max=34,所以f (x )=x +34x 2+1=4x +34x 2+4,则f ′(x )=-2x 2-3x +22x 2+12=x +2-2x +12x 2+12,当x ∈⎝ ⎛⎭⎪⎫-2,12时,f ′(x )>0,x ∈(-∞,-2)∪⎝ ⎛⎭⎪⎫12,+∞时,f ′(x )<0,又x →-∞时f (x )→0,所以当x =12时,f (x )取得最大值f ⎝ ⎛⎭⎪⎫12=4×12+34×⎝ ⎛⎭⎪⎫122+4=1,即m =1.答案:34115.已知P(x,y)是抛物线y2=4x上的点,则x-32+y-22-x的最大值是________.解析:由题意得抛物线y2=4x的焦点为F(1,0),准线方程为x=-1,所以|PF|=x+1,则x=|PF|-1.设点A(3,2),则x-32+y-22-x=|PA|-(|PF|-1)=|PA|-|PF|+1,由图结合三角形的性质易得当P,F,A三点自下而上依次共线时,|PA|-|PF|取得最大值|AF|=3-12+2-02=22,所以x-32+y-22-x的最大值为22+1.答案:22+116.过P(-1,1)的光线经x轴上点A反射后,经过不等式组⎩⎪⎨⎪⎧x-2y+4≥0,x+y-2≥0,3x+y-9≤0所表示的平面区域内某点(记为B),则|PA|+|AB|的取值范围是________.解析:由题意得点P(-1,1)关于x轴的对称点为P1(-1,-1),则|PA|+|PB|的取值范围等价于点P1(-1,-1)与不等式组⎩⎪⎨⎪⎧x-2y+4≥0,x+y-2≥0,3x+y-9≤0,y≥0表示的平面区域内的点的连线的长度的范围,如图,在平面直角坐标系内画出不等式组表示的平面区域(阴影区域,含边界),由图易得点P1(-1,-1)到直线x+y-2=0的距离最小,最小值为|-1-1-2|12+12=22;点P1(-1,-1)与点C(2,3)的距离最大,最大值为2+12+3+12=5.所以|PA|+|PB|的取值范围为[22,5].答案:[22,5]17.已知非负实数x,y满足2x2+4xy+2y2+x2y2=9,则22(x+y)+xy的最大值为________.解析:由2x2+4xy+2y2+x2y2=9得2(x+y)2+x2y2=9,令⎩⎪⎨⎪⎧u=x+y,v=xy,则x,y为方程t2-ut +v =0(t 为自变量)的两个根,则Δ=u 2-4v ≥0,即有u 292+v 29=1,而22(x +y )+xy =22u +v ,以u 为横坐标,v 为纵坐标建立平面直角坐标系,设z =22u +v ,则u ,v 的可行域为⎩⎪⎨⎪⎧u 2-4v ≥0,u 292+v29=1,作出可行域,如图中椭圆的实线部分所示,由⎩⎪⎨⎪⎧u 2-4v =0,u 292+v29=1得⎩⎪⎨⎪⎧u =±2,v =1,且点在(2,1)处,椭圆u 292+v 29=1的切线斜率为-4<-22,所以当直线z =22u +v 经过点(2,1)时,z 取得最大值42+1,所以22(x +y )+xy 的最大值为42+1.答案:42+1。