二元一次方程组的解法导学案(代入法、加减消元法)
- 格式:doc
- 大小:199.50 KB
- 文档页数:12
《加减法解二元一次方程组》导学案甘南县平阳中学 刘山友学习目标:知识与技能:1、理解加减消元法含义;2、掌握用加减法解二元一次方程组方法。
过程与方法:理解加减法所体现的“化未知为已知”的化归思想方法。
情感态度与价值观:体验数学学习的乐趣,在探索过程中体验成功的喜悦,树立学好数学的信心。
学习重难点:会灵活运用加减法解二元一次方程组。
学习过程:一、 温故而知新:1、 解二元一次方程组的基本思路是什么?2、 用代入法解二元一次方程组的步骤是什么?3、 根据等式性质填空:(1)、若a=b,那么a ±c=(2)、若a=b,那么ac=思考:若a=b,c=d,那么a+c=b+d 吗?a-c=b-d 吗?二、自主学习教材99、100、102页,小组交流完成下列概念任务:1、两个二元一次方程中,同一个未知数的系数_______或______ 时,把这两个方程的两边分别 _______或________ ,就能________这个未知数,得到一个____________方程,这种方法叫做________________,简称_________。
2、加减消元法的步骤:①将原方程组的两个方程化为有一个未知数的系数_____________的两个方程。
②把这两个方程____________,消去一个未知数。
③解得到的___________方程。
④将求得的未知数的值代入原方程组中的任意一个方程,求另一个未知数的值。
⑤确定原方程组的解。
3、_______法和______法是二元一次方程组的两种解法,它们都是通过_____使方程组转化为________方程,只是_____的方法不同。
当方程组中的某一个未知数的系数______时,用代入法较简便;当两个方程中,同一个未知数系数_______或______,用加减法较简便。
应根据方程组的具体情况选择更适合它的解法。
三、成果展示,合作探究1、方程组⎩⎨⎧-=+=-252132y x y x 中,x 的系数特点是______;方程组⎩⎨⎧=-=+437835y x y x 中,y 的系数特点是________.这两个方程组用______法解比较方便。
8.2二元一次方程组的解法(2)——加减消元法(1)(第19课时)班级: 小组: 姓名: 评价:【学习目标】1.用加减法解二元一次方程组.2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.【知识储备】预习指要: 认真阅读课本99页——102页,然后完成下列问题:1.请用代入法...解方程组21325x y x y +=⎧⎨-=⎩.2.回忆:等式的性质是3.在二元一次方程组21325x y x y +=⎧⎨-=⎩ 中,①+②得一元一次方程 ,这样做的依据是 ,这样做就达到消去未知数 的目的.4.在341236x y x y +=⎧⎨-=⎩ 中,①×3得 ③;②×4得 ④,这种变形的目的是要消去未知数 . 5. 在方程组524,23 5.x y x y -=⎧⎨-=-⎩ 中,若要消去未知数x ,则①式乘以 得 ③;②式可乘以 得 ④;然后再③、④两式 即可消去未知数x .知识链接:归纳总结:把方程组的两个方程(或先作适当变形)相 或相 ,消去其中一个未知数,把解二元一次方程组转化为解 ,这种解方程组的方法叫做加减消元法,简称加减法.① ②① ②① ②【学习过程】例题分析:例3 解方程组(1)3822x y x y +=⎧⎨-=⎩ (2) ⎩⎨⎧-=+=+10418543y x y x(3) ⎩⎨⎧=-=+33651643y x y x (4)2343211x y x y +=⎧⎨-=⎩1、当二元一次方程组中未知数的系数满足什么条件时,用加减消元法?2、当二元一次方程组中未知数的系数满足什么条件时,用加法消元?当二元一次方程组中未知数的系数满足什么条件时,用减法消元?3、当二元一次方程组中没有同一个未知数的系数相反或相同时,如何用加减消元法?【课堂练习】必做题:课本P102页 练习第1题, 课本P103页 习题8.2 第3题选做题:已知方程组5112mx n x my n y +==⎧⎧⎨⎨-==⎩⎩的解是,则m =_____,n =_____. 挑战题:已知二元一次方程组⎩⎨⎧=+=+8272y x y x ,则=-y x ,=+y x .【当堂小结】谈收获:1、学到什么知识: 2、学到什么学习方法:。
中小学教师教学(学案)设计模板消去这个未数。
练习一:1.指出下列方程组求解过程中是否有错误步骤,并给予订正:7x -4y =45x -4y =-4解:①-②,得 解 ①-②,得2x =4-4 -2x=12 x=0, x=-62.用加减法解二元一次方程组:(1)(2)(四)例题分析用加减法解方程组(想一想:怎样用加减法解下面的方程组?)解:点悟:找最小公倍数,变成某未知数系数的绝对值相等的新的方程组,从而为加减消元法解方程组创造条件. 练习二:用加减法解下列方程组。
点悟: 先化简:去分母、去括号、约分等, 然后在用加减法进行消元,可以简便计算。
(五).应用与拓展1. 是关于x 、y 的二元一次方程,求a 、b 的值。
3414542x y x y -=+=7239219x y x y -=+=-653615m n m n -=+=-⎩⎨⎧=+=+17431232y x y x 23(1)4311x y x y +=⎧⎨-=⎩21(2)329x y x y =+⎧⎨-=⎩3(1)(2)3(3)1136x y x y --+=⎧⎪⎨-+=⎪⎩812781(4)3004001500x y x y +=⎧⎨+=⎩23231358a b a b x y ++-++=+=-x y23 1.⎩出问题,探索新知除了用代入法,还有别的方法吗?想一想应怎样解方程组①②由①+②得: 5x=10由②-①得:8y=-8消去x,得 5y=5”中隐含了那些步骤?(三).归纳总结,获得新知两个二元一次方程中同一未知数的系数相反或相等时,把两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
这种方法叫做加减消元法,简称加减法。
归纳:利用加减消元法解方程组时,若同一个未知数的系数互为相反数,则可以直接消去这个未知数。
若同一个未知数系数相等,则可以直接消去这个未数。
练习一:1.指出下列方程组求解过程中是否有错误步骤,并给予订正:7x-4y=45x-4y=-4解:①-②,得2x=4- 4-2x=12x=0,x=-6(四)例题分析用加减法解方程组(想一想:怎样用加减法解下面的方程组?)解:练习二:用加减法解下列方程组。
二元一次方程的解法(代入消元法+加减消元法)二元一次方程的解法有哪些1、代入消元法通过代入消去一个未知数,将方程组转化为一个一元一次方程来解,这种解法叫做代入消元法。
求解步骤:1) 从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来;2) 把1)中所得的新方程代入另一个方程,消去一个未知数;3) 解所得到的一元一次方程,求得一个未知数的值4) 把所求得的一个未知数的值代入1)中求得的方程,求出另一个未知数的值,从而确定方程组的解。
2、加减消元法两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加减,就能消去这个未知数,得到一个一元一次方程,这种求解方法叫做加减消元法。
求解步骤:1) 方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,就用适当的整数乘方程两边,使相乘后一个未知数的系数与另一方程中该未知数的系数互为相反数或相等;2) 把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3) 解这个一元一次方程;4) 将求出的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,从而得到方程组的解。
二元一次方程的定义是什么二元一次方程的定义为:如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。
二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。
如一次函数中的平行。
二元一次方程的一般形式:ax+by+c=0其中a、b 不为零。
这就是二元一次方程的定义。
二元一次方程求根公式:ax^2+bx+c=0。
含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。
所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式与ax+by=c(a、b≠0)的标准式,否则不为二元一次方程。
二元一次方程的实际应用二元一次方程组实际应用题中行程问题的种类较多,比如相遇问题、追及问题、流水行船问题、顺风逆风问题、火车过桥问题等,解这类问题抓住路程、时间、速度三者之间的关系:路程=速度×时间。
8.2《消元——用加减法解二元一次方程组》学案 班级 姓名学习目标1、会运用加减消元法解二元一次方程组;2、体会解二元一次方程组的基本思想----“消元”;3、领会“消元”法所体现的“化未知为已知”的化归思想。
学习重、难点1、学习重点:加减消元法解二元一次方程组。
2、学习难点:解两个未知数在两个方程中的系数的绝对值不相等且不成整数倍的方程组。
学习过程(一)回顾1、解二元一次方程组的基本思路是什么?2、用代入法解方程组的主要步骤是什么?3、怎样解下面的二元一次方程组呢?⎩⎨⎧=-=+11-52125y 3x y x(二)尝试发现、探究新知第一站—发现之旅1、解方程组 :(1)观察这个方程组的两个方程中,y 的系数有什么关系?利用这种关系你能发现新的消元方法吗?(2) 下面这个方程组能不能用两个方程相加消去x ?① ② ⎩⎨⎧=-=+11-52125y 3x y x ⎩⎨⎧-=+=-13275y 2x y x发现直接加减消元法:【归纳】 两个二元一次方程中同一未知数的系数________或________时,将两个方程的两边分别_______或_________,就能消去这个未知数,得到一个_________方程,这种方法叫做加减消元法,简称加减法.【比比谁更快】1. 已知方程组 ⎩⎨⎧=-=+632173y x y x两个方程只要两边分别_________,就可以消去未知数_________. 2.已知方程组两个方程只要两边分别__________,就可以消去未知数_________.3. 用加减法解方程组⎩⎨⎧=--=+17561976y x y x 应用( ) A.①-②消去y B.①-②消去x C. ②- ①消去常数 D. 以上都不对4.方程组⎩⎨⎧=-=+5341335y x y x 消去y 后所得的方程是( ) A.9x=8 B.9x=18 C.6x=5 D.x=185.指出下列方程组求解过程中的错误步骤,并写出正确的解题过程(1)解:①-②,得 2x =4-4, x =0 (2)⎩⎨⎧=+=-2451443y x y x 解:①-②,得-2x =12x =-66.已知a 、b 满足方程组 a+2b=8 2a+b=7则a+b= 。
第一篇:《代入法解二元一次方程组》教学设计消元——二元一次方程组的解法(代入消元法)学情分析: 因为学生已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
三维目标知识与技能1、会用代入法解二元一次方程组2、初步体会二元一次方程组的基本思想---“消元”过程与方法: 通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养学生观察能力,体会化归思想。
情感态度与价值观:通过研究解决问题的方法,培养学生合作交流意识和探究精神。
教学重点:用加减消元法解二元一次方程组。
教学难点:理解加减消元思想和选择适当的消元方法解二元一次方程组。
教学过程(一)创设情境,激趣导入在8.1中我们已经看到,直接设两个未知数(设胜x场,负y场),x y22可以列方程组2x y40 表示本章引言中问题的数量关系。
如果只设一个未知数(设胜x场),这个问题也可以用一元一次方程________________________[1]来解。
分析:[1]2x+(22-x)=40。
观察上面的二元一次方程组和一元一次方程有什么关系?[2] [2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。
这正是下面要讨论的内容。
(二)新课教学可以发现,二元一次方程组中第1个方程x+y=22说明y=22-x,将第2个方程2x+y=40的y换为22-x,这个方程就化为一元一次方程2x+(22-x)=40。
解这个方程,得x=18。
把x=18代入y=22-x,得y=4。
从而得到这个方程组的解。
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。
8.2 消元——加减消元法解二元一次方程组(教案)一、教材分析“用加减消元法解二元一次方程组”是在学习了“用代入消元法解二元一次方程组”的基础上的进一步学习,同时又是后续学习“解三元一次方程组”的重要基础。
代入法和加减法是解二元一次方程组的两种有效途径,而且是解二元一次方程组的通法,“用加减消元法解二元一次方程组”是对“用代入消元法解二元一次方程组”的有力补充和完善,两者相辅相成,各见长处。
二、教学目标1、知识技能:掌握用加减消元法解二元一次方程组。
2、过程与方法:经历探究加减消元法解二元一次方程组的过程,领会“消元”法所体现的“化未知为已知”的化归思想方法。
3、情感态度与价值观:在探索用加减法解二元一次方程组的过程中享受成功的快乐,感受数学知识的实际用价值,养成良好的学习习惯。
三、教学重点与难点(一)教学重点:用加减法解二元一次方程组。
(二)教学难点:如何运用加减法进行消元。
四、教学方法:本节课采用“探索---发现---比较”的教学法。
五、教学辅助手段教师采用多媒体PPT演示六、教学设计过程(一)温故而知新一〃1. 根据等式性质填空:<1>若a =b ,那么a ±c = . (等式性质1)<2>若a =b ,那么ac = . (等式性质2)<3>思考:若a =b ,c =d ,那么a ±c =b ±d 吗?2.用代入法解方程的关键是什么?3、解二元一次方程组的基本思路是什么?4.请你代入消元法解下面这个方程组:⎩⎨⎧=+=+40222y x y x具体步骤是:由①得 =y . ③,把③代入①得 .从而达到消元的目的。
(即把二元一次方程变成我们较熟悉的一元一次方程)(二)提出问题,阅读课本,得出加减法的定义。
1. 解这个方程组⎩⎨⎧=+=+40222y x y x 除了用代入法,还有别的方法吗? 2. 请大家认真阅读课本99面第二个思考前的内容。
《解二元一次方程组---代入法》导学案主备 王凤珍 审查 七年级数学备课组 时间2012、4学习目标1.会用代入法解二元一次方程组.2.从解方程的过程中体会转化的思想方法. 学习重点:用代入消元法解二元一次方程组.学习难点:用含有一个未知数的代数式表示另一个未知数. 学习过程: 一、自主预习:请认真阅读课本P89内容,解答下列问题: 1.已知,若用含y 的代数式表示x 得,x= ,若用含x 的代数式表示y 得,y= . 2.已知,若用含y 的代数式表示x 得,x= ,若用含x 的代数式表示y 得,y= .3. 解二元一次方程组解:由①得 y =12-x ,③(你知道是怎样得到的吗? )将③代入②得20122=-+x x 解这个一元一次方程得,x =8将x =8代入③得 y=4 ( 将x =8代入③中可得 y=4,是否可以将x =8代入①或②中得到y 的值呢?哪一个更好呢,为什么? ) 所以原方程组的解是4.试一试:将上述方程组中的①变形为x =12 – y ,代入②解方程组 解:5.归纳总结:将方程组中的一个方程中的某个 用含有 的代数式表示,并 另一个方程,从而消去 ,把解二元一次方程组转化为解 。
这种解方程组的方法称为代入消元法,简称代入法。
二、例题讲解用代入法解下列方程组(1)(2)三、课堂练习:1、解方程组: (2) (1)32539x y x y -=⎧⎨+=⎩ 2、 已知是方程组的解,求a b +的值四、当堂检测1、当a =3时,方程组的解是_________.2、用代入法解下列方程组: (1) (2) .收获与困惑: 教学反思:① ②⎩⎨⎧=+=+20221y x y x ⎩⎨⎧=+=-53y x y x ⎩⎨⎧=+=+.1223,113y x y x ⎩⎨⎧==4,8 y x ⎩⎨⎧==12y x ⎩⎨⎧-=+=+25ay bx by ax 122ax y x y +=⎧⎨+=⎩143=+yx 123=-xy ⎩⎨⎧-==-xy y x 571734⎩⎨⎧=-=+12853y x y x 12=+y x 623=-y x。