数理统计答案(汪荣鑫)(2)
- 格式:pdf
- 大小:1.26 MB
- 文档页数:95
P1682解:假设01234:H μμμμ=== 11234:H μμμμ不全为零1234454562024.52r n n n n n X =======经计算可得下列反差分析表:查表得0.05(3,16) 3.24F =0.0517.88370.4745(3,16)37.6887F F ==<故接受0H 即可认为四个干电池寿命无显着差异 3 解:假设0123:H μμμ==1123:H μμμ不全相等12336140.9278r n n n X =====经计算可得下列方差分析表:0.050.05(2,15) 3.684.373 3.68(2,15)F F F ==>=∴拒绝0H 故可认为该地区三所小学五年级男生平均身高有显着差异。
4 解: 假设01234:H μμμμ===11234:H μμμμ不全相等123445100.535r n n n n X ======0.05(3,16) 3.24F = 0.05(3,16) 3.24F F >=∴拒绝0H 故可认为这几支伏特计之间有显着差异。
5 解:假设012345:H μμμμμ====112345:H μμμμμ不全相等60 123455389.6r n n n n n X =======0.050.05(4,10) 3.4815.18(4,10)F F F ==>∴拒绝0H 故可认为温度对得率有显着影响215151511(,())X X N n n μμσ--+ 由T 检验法知:()T t n r =-给定的置信概率为10.95α-=0.025{()}0.95P T t n r <-=故15μμ-的置信概率为的置信区间为150.025150.025((,()E E X X t n r X X t n r ----+-2.236E S === 0.025(10) 2.2281t =由上面的数据代入计算可得:150.025150.0259084 2.2281 2.236 1.932210.0678E E X X t X X t --=--⨯=-+=故15μμ-的置信区间为( , )234343411(,())X X N n n μμσ--+ 由T 检验法知:()X X T t n r =-34μμ-的置信区间为:340.025340.025((,()E E X X t n r X X t n r ----+-代入数据计算得:340.025340.02510 2.2281 2.236 5.932714.0678E E X X t X X t --=-⨯=-+=故34μμ-的置信区间为( , ) 8 解:假设01123:0H ααα=== 假设021234:0H ββββ====r0.01(2,6)10.92F = 0.01(3,6)9.78F = 0.01(2,6)A F F < 0.01(3,6)B F F >故接受01H ,拒绝02H即可认为不同加压水平对纱支强度无显着差异;既可认为不同机器对纱支强度有显着差异。
第一章习题解答随机过程习题解答1. 设随机变量X 服从几何分布,即:P(X =k) = pq,k =0,1,2,山。
求X 的特征函数, EX 及 DX 其中0 ::: p <1,q 亠p 是已知参数。
E(e jtx ) 八 e jtk pqk -0QO二 p 'k - 0二 p' (qek =0jtk又 T E(X)二kpqk =0D(X) (其中 则 0 S(t)dt 二jt )k1 - qe jtk= p' kqk ±0= E(X 2)-[E(X)]-qp 2CO CO '、' nx n 八(n 1)xn -0 n ~0S(x)八(n 1)x nn =0cd八x n )n -0o Ozk =0.(n 1)t n dt□0zn =0S (x)-JS(t)dtn =0同理&k 2k =0dx 0(1 - x)21 (1 - x)2 1 - x (1 - X)2QOQOkx k 八(k 1)x k -2二 kx k - ' xk =0k -0k =0od令 S(x)八(k 1)2x kk =0.S(t)dt 二' (k - 1)2t k dt 二' (k - 1)x k 1k =0k =0k =12、(1)求参数为(p,b)的丨分布的特征函数,其概率密度函数为pb p J ±xx e , x 0P(x)=】(p)b 0, p 0I 0,xW0(「( p)「e —x x p ・dx)(2) • E(X)」f x'(0)=吕jb2、 1 f - p(p 1)E(X ) 2 f x (0)厂JbPD(X)二 E(X)二 E(X)二茯b(4)若人[「0力)i=1,2 贝Sf x 仔2(。
5呱(帖(1-¥)曲b(2) 其期望和方差;(3)证明对具有相同的参数的b 的丨分布,关于参数p 具有可加性。
数理统计习题答案第一章1.解: ()()()()()()()12252112222219294103105106100511100519210094100103100105100106100534n i i n i i i i X x n S x x x n ===++++====-=-⎡⎤=-+-+-+-+-⎣⎦=∑∑∑ 2. 解:子样平均数()118340610262604=⨯+⨯+⨯+⨯= 子样方差()()()()222218144034106422646018.67⎡⎤=⨯-+⨯-+⨯-+⨯-⎣⎦=子样标准差4.32S == 3. 解:因为 所以 i i x a cy =+所以 x a cy =+ 成立()()()22122111ni i ini i nii a cy a c y n cy c yn c y y n====+--=-=-∑∑∑因为 所以 222x ys c s = 成立()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====4. 解:变换 2000i i y x =-()61303103042420909185203109240.444=--++++-++=()()()()()()()()()222222222161240.444303240.4441030240.4449424240.44420240.444909240.444185240.44420240.444310240.444197032.247=--+--+-+⎡⎣-+-+-+⎤--+-+-⎦=利用3题的结果可知2220002240.444197032.247x y x y s s =+===5. 解:变换 ()10080i i y x =-[]12424334353202132.00=-++++++-+++++=()()()()()()22222212 2.0032 2.005 2.0034 2.001333 2.003 2.005.3077=--+⨯-+-+⨯-⎡⎣⎤+⨯-+--⎦= 利用3题的结果可知2248080.021005.30771010000yx yx s s -=+===⨯ 6. 解:变换()1027i i y x =-()13529312434101.5=-⨯-⨯+⨯+=- =26.85()()()()22221235 1.539 1.5412 1.534 1.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦=7解:154158162166178()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯=()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦= 8解:将子样值重新排列(由小到大)-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2,3.21()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====9解: 121211121211n n i ji j n x n x n n x n n ==+=+∑∑()12221121n n ii s x x n n +==-+∑()()()1212221122111122121222222111222112212122222211221122112212121222211211122121n n i i n n iji j x xn n x xn x n x n n n n n s x n sx n x n xn n n n n s n s n x n x n x n x n n n n n n n n n x n n s n sn n +====-++⎛⎫+=- ⎪++⎝⎭+++⎛⎫+=-⎪++⎝⎭⎛⎫+++=+- ⎪+++⎝⎭+++=++∑∑∑()()()()()()22212211222122222112212112212122121222212121122212122n n x n x n x n n n s n s n n x n n x n n x x n n n n n n x x n s n s n n n n +-++++-=+++-+=+++10.某射手进行20次独立、重复的射手,击中靶子的环数如下表所示:试写出子样的频数分布,再写出经验分布函数并作出其图形。
数理统计习题答案第一 章1.解: ()()()()()()()12252112222219294103105106100511100519210094100103100105100106100534n i i n i i i i X x n S x x x n ===++++====-=-⎡⎤=-+-+-+-+-⎣⎦=∑∑∑2. 解:子样平均数 *11li i i X m x n ==∑()118340610262604=⨯+⨯+⨯+⨯=子样方差 ()22*11li i i S m x x n ==-∑()()()()222218144034106422646018.67⎡⎤=⨯-+⨯-+⨯-+⨯-⎣⎦=子样标准差 4.32S == 3. 解:因为i i x ay c-=所以 i i x a cy =+11ni i x x n ==∑()1111ni i ni i a c y n n a c y n ===+⎛⎫=+ ⎪⎝⎭∑∑1ni i ca y n a c y==+=+∑所以 x a c y =+ 成立()2211nxi i s x x n ==-∑()()()22122111ni i ini i nii a cy a c y n cy c yn c y y n====+--=-=-∑∑∑因为 ()2211nyi i s y yn ==-∑ 所以222x y s c s = 成立()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====4. 解:变换 2000i i y x =-11n i i y y n ==∑()61303103042420909185203109240.444=--++++-++= ()2211n y i i s y y n ==-∑()()()()()()()()()222222222161240.444303240.4441030240.4449424240.44420240.444909240.444185240.44420240.444310240.444197032.247=--+--+-+⎡⎣-+-+-+⎤--+-+-⎦=利用3题的结果可知2220002240.444197032.247x y x y s s =+===5. 解:变换 ()10080i i y x =-13111113n i i i i y y y n ====∑∑[]12424334353202132.00=-++++++-+++++=()2211nyi i s y y n ==-∑()()()()()()22222212 2.0032 2.005 2.0034 2.001333 2.003 2.005.3077=--+⨯-+-+⨯-⎡⎣⎤+⨯-+--⎦=利用3题的结果可知2248080.021005.30771010000yx yx s s -=+===⨯6. 解:变换()1027i i y x =-11li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=-2710yx =+=26.85 ()2211lyi ii s m y y n ==-∑()()()()222212351.5391.54121.5341.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s ==162 *11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯= ()22*11li i i s m x x n ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦= 8解:将子样值重新排列(由小到大)-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2,3.21()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====9解: 121211121211n n i ji j n x n x n n x n n ==+=+∑∑112212n x n x n n +=+ ()12221121n n ii s x x n n +==-+∑()()()1212221122111122121222222111222112212122222211221122112212121222211211122121n n i i n n iji j x xn n x xn x n x n n n n n s x n s x n x n xn n n n n s n s n x n x n x n x n n n n n n n n n x n n s n sn n +====-++⎛⎫+=- ⎪++⎝⎭+++⎛⎫+=-⎪++⎝⎭⎛⎫+++=+- ⎪+++⎝⎭+++=++∑∑∑()()()()()()22212211222122222112212112212122121222212121122212122n n x n x n x n n n s n s n n x n n x n n x x n n n n n n x x n s n s n n n n +-++++-=+++-+=+++解:()200.1460.3670.75790.9910110x x F x x x x ⎧⎪≤<⎪⎪≤<=⎨≤<⎪⎪≤<⎪≥⎩158 162 166 170 174 178 18212. 解:()ix P λ i Ex λ= i Dx λ= 1,2,,i n =⋅⋅⋅1122111111n n i i i i nni i i i n E X E x Ex n n n n DX Dx Dx n n n nλλλλ============∑∑∑∑13.解:(),ix U a b 2i a bEx += ()212i b a Dx -= 1,2,,i n =⋅⋅⋅ 在此题中 ()1,1ix U - 0i Ex = 13i Dx = 1,2,,i n =⋅⋅⋅112111101113n ni i i i nni i i i E X E x Ex n n DX Dx Dx n n n==========∑∑∑∑14.解:因为 ()2,iX N μσ 0i X Eμσ-= 1i X Dμσ-=所以()0,1i X N μσ- 1,2,,i n =⋅⋅⋅ 由2χ分布定义可知 ()222111nni ii i X Y Xμμσσ==-⎛⎫=-= ⎪⎝⎭∑∑服从2χ分布所以 ()2Yn χ15. 解:因为 ()0,1i X N 1,2,,i n =⋅⋅⋅ ()1230,3X X X N ++0=1= 所以()0,1N()221χ同理()221χ由于2χ分布的可加性,故()222123Y χ=+可知 13C =16. 解:(1)因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以 ()22121ni i X Y n χσσ=⎛⎫= ⎪⎝⎭∑(){}11122Y Yy F y P Y y P σσ⎧⎫=≤=≤⎨⎬⎩⎭()220yf x d xσχ=⎰()()211'221Y Y y f y F y f χσσ⎛⎫==⨯ ⎪⎝⎭因为 ()2122202200n x n x e x n f x x χ--⎧⎪>⎪⎛⎫=⎨Γ ⎪⎪⎝⎭⎪≥⎩所以 ()21122202200n y n n Y y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ ⎪⎪⎝⎭⎪≤⎩(2) 因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以 ()22221ni i X nY n χσσ=⎛⎫= ⎪⎝⎭∑(){}()22222220nyY nYny F y P Y y P f x dx σχσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()222'22Y Y ny nf y F y f χσσ⎛⎫== ⎪⎝⎭故 ()221222202200n nny n n Y n y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ ⎪⎪⎝⎭⎪≤⎩(3)因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()10,1ni N =所以()22311ni Y n χσ=⎛= ⎝(){}()()22333210yn Y Y F y P Y y P y f x dx n σχσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()()233'2211Y Y y f y F y f n n χσσ⎛⎫== ⎪⎝⎭()()221000x x f x x χ-⎧>=≤⎩故 ()232000y n Y y f y y σ-⎧>=≤⎩(4)因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅ 所以()()1224210,11ni ni N Y χσ==⎛= ⎝(){}()()()()()224224442210'2211yY Y Y y F y P Y y P f x dxy f y F y f σχχχσσσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎛⎫== ⎪⎝⎭⎰ 故 ()242000y Y y f y y σ-⎧>=≤⎩17.解:因为 ()X t n存在相互独立的U ,V()0,1UN ()2Vn χ使X =()221U χ则 221U X V n=由定义可知 ()21,F n χ18解:因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()10,1ni N =()221n mi i n X m χσ+=+⎛⎫⎪⎝⎭∑所以()1nniX Y t m ==(2)因为()0,1iX N σ1,2,,i n m =⋅⋅⋅+()()221221ni i n mi i n X n X m χσχσ=+=+⎛⎫⎪⎝⎭⎛⎫ ⎪⎝⎭∑∑所以 ()221122211,ni n i ii n m n mi ii n i n X m X n Y F n m X n X m σσ==++=+=+⎛⎫⎪⎝⎭==⎛⎫ ⎪⎝⎭∑∑∑∑19.解:用公式计算()20.010.019090χ= 查表得 0.012.33U =代入上式计算可得 ()20.01909031.26121.26χ=+= 20.解:因为 ()2X n χ 2E n χ= 22D n χ=由2χ分布的性质3可知()0,1N{}P X c P≤=≤22lim tnP dt-→∞-∞≤==Φ故{}P X c≤≈Φ第二章1.00,0()0,0()()1()111xxx xxe xf xxE x f x xdx xe dxxe e d xexλλλλλλλλλλλλ-+∞+∞--∞+∞+∞--+∞-⎧≥=⎨<⎩=⋅==-+=-==⎰⎰⎰令从而有1xλ∧=2.()111121).()(1)(1)1111k kx xE x k p p p k pppp∞∞--===-=-==⎡⎤--⎣⎦∑∑令1p=X所以有1pX∧=2).其似然函数为1`11()(1)(1)nix i in X nniL P P p p p-=-=∑=-=-∏1ln()ln()ln(1)niiL P n p X n p==+--∑3. 解:因为总体X服从U(a ,b )所以()2122!2!!()12n i i a b n E X r n r X X X X a b S X b X =∧∧+=--⎧=⎪⎪⎨-⎪=⎪⎩⎧=-⎪⎨⎪=+⎩∑222(a-b )() D (X )=12令E (X )= D (X )=S ,1S =n a+b 2()a 4. 解:(1)设12,,n x x x 为样本观察值则似然函数为:111()(),01,1,2,,ln ()ln ln ln ln 0n ni i i nii inii L x x i nL n x d L nxd θθθθθθθθ-====<<==+=+=∏∑∑(-1)解之得:11ln ln nii nii nxnxθθ=∧==-==∑∑(2)母体X 的期望1()()1E x xf x dx x dx θθθθ+∞-∞===+⎰⎰而样本均值为:11()1nii X x n E x X X Xθ=∧===-∑令得5.。
随机过程习题解答第一章习题解答1.设随机变量X 服从几何分布,即:(),0,1,2,kP X k pqk ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtk k X k f t E ee pq ∞===∑ =()1jt k jtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑(其中 0(1)nnnn n n nx n x x ∞∞∞====+-∑∑∑)令 0()(1)nn S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰同理 2(1)2kkkk k k k k kx k x kx x ∞∞∞∞=====+--∑∑∑∑令2()(1)kk S x k x ∞==+∑ 则211()(1)(1)xkk kk k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为(2) 其期望和方差;(3)证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则 (2)'1()(0)Xp E X fjb∴==(4)若(,)i i X p b Γ 1,2i = 则同理可得:()()i i P X b f t b jt∑=∑-3、设ln (),()(kZ F X E Zk =并求是常数)。
X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数; (2)ln (),()(kZ F X E Z k =并求是常数)。
解(1)11{()}{()}[()]P F x y P x F y F F y y --<=<==(01y ≤≤) ∴00()0111y F y yy y <⎧⎪=≤≤⎨⎪>⎩∴()F x 在区间[0,1]上服从均匀分布()F x ∴的特征函数为11001()(1)jtx jtx jt X e f t e dx e jt jt ===-⎰ (2)ln ()()()[]jtz jt F x Z f t E e E e ===1ln 01jt ye dy ⋅⎰=111jty dy jt =+⎰4、设12n X X X ,,相互独立,且有相同的几何分布,试求1nkk X =∑的分布。
西安交通大学汪荣鑫随机过程第二版课后答案------------------------------------------作者xxxx------------------------------------------日期xxxx随机过程习题解答第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtk k X k f t E ee pq ∞===∑ 0()k jtkk p q e∞==∑ =0()1jtkjt k pp qe qe ∞==-∑ 又20()kk k k q qE X kpq p kq pp p∞∞======∑∑ 222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 100()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰22201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
西安交通大学汪荣鑫随机过程第二版课后答案------------------------------------------作者xxxx------------------------------------------日期xxxx随机过程习题解答第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtk k X k f t E ee pq ∞===∑ 0()k jtkk p q e∞==∑ =0()1jtkjt k pp qe qe ∞==-∑ 又20()kk k k q qE X kpq p kq pp p∞∞======∑∑ 222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 100()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰22201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
数理统计习题答案 第一章1.解:()()()()()()()12252112222219294103105106100511100519210094100103100105100106100534n i i n i i i i X x n S x x x n ===++++====-=-⎡⎤=-+-+-+-+-⎣⎦=∑∑∑2. 解:子样平均数 *11li i i X m x n ==∑()118340610262604=⨯+⨯+⨯+⨯=子样方差 ()22*11l i i i S m x x n ==-∑()()()()222218144034106422646018.67⎡⎤=⨯-+⨯-+⨯-+⨯-⎣⎦=子样标准差4.32S == 3. 解:因为i i x ay c-=所以 i i x a cy =+11ni i x x n ==∑()1111ni i ni i a cy n na cy n ===+⎛⎫=+ ⎪⎝⎭∑∑1nii c a y n a cy==+=+∑ 所以 x a cy =+ 成立()2211nxi i s x x n ==-∑()()()22122111ni i ini i nii a cy a c y n cy c yn c y y n====+--=-=-∑∑∑因为 ()2211nyi i s y yn ==-∑ 所以222x ys c s = 成立 ()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====4. 解:变换 2000i i y x =-11n i i y y n ==∑()61303103042420909185203109240.444=--++++-++=()2211n y i i s y y n ==-∑()()()()()()()()()222222222161240.444303240.4441030240.4449424240.44420240.444909240.444185240.44420240.444310240.444197032.247=--+--+-+⎡⎣-+-+-+⎤--+-+-⎦=利用3题的结果可知2220002240.444197032.247xyx y s s =+===5. 解:变换 ()10080i i y x =-13111113n i i i i y y y n ====∑∑ []12424334353202132.00=-++++++-+++++=()2211n y i i s y y n ==-∑()()()()()()22222212 2.0032 2.005 2.0034 2.001333 2.003 2.005.3077=--+⨯-+-+⨯-⎡⎣⎤+⨯-+--⎦=利用3题的结果可知2248080.021005.30771010000yx ys s -=+===⨯ 6. 解:变换()1027i i y x =-11li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=-2710yx =+=26.85 ()2211lyi i i s m y y n ==-∑()()()()22221235 1.539 1.5412 1.534 1.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s ==*11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯=()22*11l i i i s m x x n ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦=8解:将子样值重新排列(由小到大)-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2,3.21()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====9解: 121211121211n n i ji j n x n x n n x n n ==+=+∑∑112212n x n xn n +=+()12221121n n ii s x x n n +==-+∑试写出子样的频数分布,再写出经验分布函数并作出其图形。