微波技术基础10-微波谐振腔的微扰理论
- 格式:ppt
- 大小:399.00 KB
- 文档页数:22
微波实验二:用谐振腔微扰法测量微波介质特性一、微波基本知识一、电磁波的基本关系描写电磁场的基本方程是:ρ=⋅∆D , 0=⋅∆Bt B E ∂∂-=⨯∆,tD j H ∂∂+=⨯∆ ⑴ 和E D ∂=, H B μ=, E j γ=。
⑵方程组⑴称为Maxwell 方程组,方程组⑵描述了介质的性质对场的影响。
对于空气和导体的界面,由上述关系可以得到边界条件(左侧均为空气中场量)0=t E ,on E εσ=, ⑶i H t = ,0=n H 。
方程组⑶表明,在导体附近电场必须垂直于导体表面,而磁场则应平行于导体表面。
二、矩形波导中波的传播在微波波段,随着工作频率的升高,导线的趋肤效应和辐射效应增大,使得普通的双导线不能完全传输微波能量,而必须改用微波传输线。
常用的微波传输线有平行双线、同轴线、带状线、微带线、金属波导管及介质波导等多种形式的传输线,本实验用的是矩形波导管,波导是指能够引导电磁波沿一定方向传输能量的传输线。
根据电磁场的普遍规律——Maxwell 方程组或由它导出的波动方程以及具体波导的边界条件,可以严格求解出只有两大类波能够在矩形波导中传播:①横电波又称为磁波,简写为TE 波或H 波,磁场可以有纵向和横向的分量,但电场只有横向分量。
②横磁波又称为电波,简写为TM 波或E 波,电场可以有纵向和横向的分量,但磁场只有横向分量。
在实际应用中,一般让波导中存在一种波型,而且只传输一种波型,我们实验用的TE 10波就是矩形波导中常用的一种波型。
1.TE 10型波在一个均匀、无限长和无耗的矩形波导中,从电磁场基本方程组⑴和⑵出发,可以解得沿z 方向传播的TE 10型波的各个场分量为)()sin(z t j x e a x a j H βωππβ-=, 0=y H , )()cos(z t j z e ax a j H βωππβ-= 0=x E , )(0)s i n (z t j y e a x a jE βωππωμ--=, 0=z E , ⑷ 其中:ω为电磁波的角频率,f πω2=,f 是微波频率;a 为波导截面宽边的长度;β为微波沿传输方向的相位常数β=2π/λg ;λg 为波导波长,2)2(1a g λλλ-= 图2和式⑷均表明,TE 10波具有如下特点:①存在一个临界波长λ=2α,只有波长λ<λC 的电磁波才能在波导管中传播。
第二章微波测量技术实验微波(microwave)是一种波长较短的电磁波,频率范围约为300 MHz~300GHz,对应波长范围约为1m~1mm。
微波波段还可细分为分米波(波长为1m至10cm),厘米波(波长10cm至1cm)和毫米波(波长为1cm至1mm)。
波长在1毫米以下至红外线之间的电磁波称为亚毫米波或超微波,这是一个正在开发的THz波段。
微波技术是近代发展起来的一门尖端科学技术,不仅在雷达、通讯、导航、电子对抗、空间技术、工农业生产的各个方面有着广泛的应用,而且在高能粒子加速器、受控热核反应、射电天文、气象观测、分子生物学、等离子体、遥感技术等当代尖端科学研究中也是一种重要手段。
微波测量技术(microwave measurement technique)作为微波技术的实验部分,在科学研究和工程实际中具有重要作用。
例如:微波加速器可研究原子和分子结构,微波衍射仪可用来研究晶体结构,微波波谱仪可测定物质的许多基本物理量,微波谐振腔可用来测量物质的常数和介电损耗,等等。
因此,微波测量技术已成为重要的近代物理实验技术。
微波测量技术实验的基本目的包含“学微波”和“用微波”两个方面:(1)学习微波基础知识和掌握微波基本测量技术;(2)学习用微波作为观测手段或处理方法来研究物理现象的基本原理和实验方法。
通过一系列实验,了解微波信号(microwave signal)的产生特点、工作状态及传输特性,了解常用微波器件(microwave devices)的基本性能和使用方法;掌握微波传输与测量系统的基本组成和调试技术,掌握频率、功率及驻波比等基本参量的测量技术,掌握微波传输系统的阻抗测量和匹配技术;学会微波网络特性参数测量的基本方法和技术,学会微波天线基本特性参数的测量方法和技术,学会介质材料电磁特性参数的微波测量方法和技术。
本章共包括5个实验项目,分别为微波测量系统调试与频率测量、微波晶体检波律测定与驻波比测量、二端口微波网络散射参量测量、微波天线方向图与极化特性测量、复介电常数的微波测量,各实验项目的实验内容都设计了基础性实验内容和设计性实验内容,后者的设计主要结合了石油或能源应用特色。
第26卷第6期V ol 126 N o 16长春师范学院学报(自然科学版)Journal of Changchun N ormal Un iv ersity (N atural Science )2007年12月Dec.2007微波谐振腔微扰法测量植物叶片介电常数刘澄宇(江西新余高等专科学校,江西新余 338031)[摘 要]采用微波谐振腔微扰法测量植物叶片介电常数。
实验采用三种不同植物的叶片,并分早、午、晚不同时间测量。
通过对数据处理与分析得出叶片介电常数与矿物质的含量与种类有关,且植物叶片在不同的时间由于生理活动的不同,其介电常数也存在差异,从而影响到植物叶片在交变电场中行为的差异。
[关键词]复介电常数;微扰法;叶片[中图分类号]T N 24 [文献标识码]A [文章编号]1008-178X (2007)06-0044203[收稿日期]8[作者简介]刘澄宇(),女,江西新余人,江西新余高等专科学校基础实验中心助理实验师,从事物理实验教学研究。
叶片是绿色植物进行光合作用、呼吸作用与蒸腾作用的主要器官。
植物通过光合作用制造生长发育所需的碳水化合物,并以此为原料,合成各种多糖、脂肪和蛋白质等有机物。
可见,植物是地球上各种生命赖以生存的必要条件。
[1]为了更好地了解植物及其生理活动,实验将采用微波介质谐振器对叶片的表面进行介电常数的测量。
基本原理是:将介质样品放入空腔谐振器中,根据放入前后腔体谐振频率和品质因数值的变化来测定介质参数,由此得出不同时间、不同叶片的介电常数,进而得出影响叶片介电常数的因素。
[2,3]1 材料和方法111 实验材料带叶活体树枝若干(名称分别为:接骨木、忍冬、榆叶梅、白丁香)。
112 实验仪器可输出等幅的扫频微波信号,扫频范围为8600~9600MH z 的半导体固态源,反射式谐振腔采用TE10P (P 为奇数)模式的矩形谐振腔,各种波导元件分别为隔离器、波长表、衰减器、环行器、检波器、检流计(示波器)、样品式谐振腔等。
《微波技术基础》题集一、选择题(每题2分,共20分)1.微波是指频率为()的电磁波。
A. 300MHz-300GHzB. 300Hz-300MHzC. 300GHz-300THzD. 300kHz-300MHz2.微波在真空中的传播速度与()相同。
A. 光速B. 声速C. 电场传播速度D. 磁场传播速度3.微波的主要特性不包括()。
A. 直线传播B. 穿透性强C. 反射性D. 绕射能力强4.微波传输线主要包括()。
A. 同轴电缆和光纤B. 双绞线和同轴电缆C. 光纤和波导D. 双绞线和波导5.在微波通信中,常用的天线类型是()。
A. 偶极子天线B. 抛物面天线C. 环形天线D. 螺旋天线6.微波谐振腔的主要作用是()。
A. 储存微波能量B. 放大微波信号C. 转换微波频率D. 衰减微波信号7.微波加热的原理是()。
A. 微波与物体内部的分子振动相互作用B. 微波使物体表面温度升高C. 微波直接转化为热能D. 微波引起物体内部化学反应8.微波在介质中的传播速度与介质的()有关。
A. 密度B. 介电常数C. 磁导率D. 温度9.微波通信中,为了减少信号的衰减,通常采取的措施是()。
A. 增加信号频率B. 减小信号功率C. 使用中继站D. 改用光纤通信10.微波测量中,常用的仪器是()。
A. 示波器B. 微波功率计C. 万用表D. 频谱分析仪(部分功能重叠,但更专用于频率分析)二、填空题(每题2分,共20分)1.微波的频率范围是_________至_________。
2.微波在真空中的传播速度约为_________m/s。
3.微波的_________特性使其在雷达和通信系统中得到广泛应用。
4.微波传输线中,_________具有宽频带、低损耗的特点。
5.微波天线的作用是将微波能量转换为_________或相反。
6.微波加热过程中,物体吸收微波能并将其转化为_________。
7.微波在介质中的衰减主要取决于介质的_________和频率。
用谐振腔微扰法测定微波电介质的介电常数随着微波技术的飞速发展,微波材料及微波器件设计得到了深入研究。
微波工程中广泛应用各种介质材料,微波介质材料的介电常数和介电损耗角正切,是研究材料的微波特性和设计微波器件必须了解的重要参数,因此,准确测量这两个参量十分重要。
本实验介绍一种常用的测量方法,即采用谐振腔微扰法测量介质的介电常数。
一、 实验目的⒈了解谐振腔微扰法测量介质介电常数的实验原理;⒉了解微波元器件,组建微波测量系统,调试系统测量介电常数。
二、 实验原理⒈微波铁氧体的介电常数ε和介电损耗角正切tan εδ根据电磁场理论,电介质在交变电场的作用下,存在转向极化,且在极化时存在弛豫,因此,微波电介质的介电常数一般是复数: )("'00εεεεεεj r -=='"tan εεδε= (1) 其中0ε是真空的介电常数,0εε=r 是相对介电常数;电介质在交变电场的作用下产生的电位移滞后电场一个相位角εδ,电介质的能量损耗与εδtan 成正比, 故称εεtan 为介电损耗角正切; 当εεtan <<1时,可以认为是“无耗介质”,r ε近似为实数。
若介质的损耗很小,常采用谐振腔微扰法测量微波介质的介电常数。
⒉谐振腔微扰法测量微波介质的介电常数谐振腔是封闭的金属导体空腔,具有储能、选频等特性,常见的谐振腔有矩形和圆柱形两种,我们选用矩形谐振腔。
谐振腔的一个重要参量是品质因素Q ,它表明谐振效率的高低,从Q 值能够知道在电磁振荡延续过程中有多少功率消耗。
相对谐振腔所存储的能量来说,功率的消耗越多,则谐振腔的品质因素Q 值就越低,反之,功率消耗愈少,Q 值就愈高。
作为有效的振荡器,谐振腔必须有足够高的品质因素值。
品质因素的一般定义是谐振腔内总储能02f Q π=0f 为谐振腔的谐振频率。
事实上有载品质因素210f f f Q L -=,可由实验测定,21,f f 分别为半功率点的频率,如图1所示。
北京邮电大学电磁场与微波测量实验报告实验六用谐振腔微扰法测量介电常数微波技术中广泛使用各种微波材料,其中包括电介质和铁氧体材料。
微波介质材料的介电特性的测量,对于研究材料的微波特性和制作微波器件,获得材料的结构信息以促进新材料的研制,以及促进现代尖端技术(吸收材料和微波遥感)等都有重要意义。
一、实验目的1.了解谐振腔的基本知识。
2.学习用谐振腔法测量介质特性的原理和方法二、实验原理本实验是采用反射式矩形谐振腔来测量微波介质特性的。
反射式谐振腔是把一段标准矩形波导管的一端加上带有耦合孔的金属板,另一端加上封闭的金属板,构成谐振腔,具有储能、选频等特性。
谐振条件:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时,电磁波在腔内连续反射,产生驻波。
谐振腔的有载品质因数QL 由下式确定:210f f f Q L 式中:f0为腔的谐振频率,f1,f2分别为半功率点频率。
谐振腔的Q 值越高,谐振曲线越窄,因此Q 值的高低除了表示谐振腔效率的高低之外,还表示频率选择性的好坏。
如果在矩形谐振腔内插入一样品棒,样品在腔中电场作用下就会极化,并在极化的过程中产生能量损失,因此,谐振腔的谐振频率和品质因数将会变化。
图1 反射式谐振腔谐振曲线图2 微找法TE10n 模式矩形腔示意图电介质在交变电场下,其介电常数ε为复数,ε和介电损耗正切tan δ可由下列关系式表示:,,j tan其中:ε,和ε,,分别表示ε的实部和虚部。
选择TE10n ,(n 为奇数)的谐振腔,将样品置于谐振腔内微波电场最强而磁场最弱处,即x =α/2,z =/2处,且样品棒的轴向与y 轴平行,如图2所示。
l 假设:1.样品棒的横向尺寸d(圆形的直径或正方形的边长)与棒长九相比小得多(一般d /h<1/10),y 方向的退磁场可以忽略。
2.介质棒样品体积Vs 远小于谐振腔体积V0,则可以认为除样品所在处的电磁场发生变化外,其余部分的电磁场保持不变,因此可以把样品看成一个微扰,则样品中的电场与外电场相等。
用谐振腔微扰法测量微波介质特性微波技术中广泛使用各种微波材料,其中包括电介质和铁氧体材料。
微波介质材料的介电特性的测量,对于研究材料的微波特性和制作微波器件,获得材料的结构信息以促进新材料的研制,以及促进现代尖端技术(吸收材料和微波遥感)等都有重要意义。
本实验是采用反射式矩形谐振腔用微扰法来测量微波介质特性的。
反射式谐振腔是把一段标准矩形波导管的一端加上带有耦合孔的金属板,另一端加上封闭的金属板,构成谐振腔,它具有储能、选频等特性。
而微扰法则是通过分析腔体的微小变形对谐振频率的影响,来测量谐振腔的一些主要参数的,它不仅对加深谐振腔的理解有帮助,而且在谐振腔的设计和调试中也有实际的应用。
2.1 实验目的1.了解谐振腔的基本知识。
2.学习用谐振腔法测量介质特性的原理和方法实验原理:一、谐振腔的基本知识谐振腔是在微波频率下工作的谐振元件,它是一个任意形状的导电壁(或导磁壁)包围的,并能在其中形成电磁振荡的介质区域,它具有储存电磁能及选择一定频率信号的特性。
1、谐振腔的基本参数谐振腔通常采用谐振频率f0 (或谐振波长?0)、品质因数Q0及等效电导G0作为它的基本参数。
(1)谐振频率f0 (或谐振波长?0)谐振频率描述电磁能量在谐振腔中的运动规律。
它是指在谐振腔中激起的电磁振荡的工作频率(或工作波长)。
比较普遍的求解谐振频率的方法是“场分析的方法”,它从求解谐振腔的电磁场边值问题入手,导出谐振频率或波长。
从电磁场理论可知,在自由空间中,电磁场满足的波动方程及边界条件为2?E?kE?0 n?E?0 22?H?kH?0 n?H?0 1 222式中,k2??2k0??2?k0??2,μ、ε为谐振腔中介质参数,n 是由腔壁导体无耗?指向外的法向单位矢量,k是与谐振腔的几何形状、尺寸及波型有关的数值。
在谐振腔内满足式1的电磁场对应于一系列的确定的kn 值(称为本征值)。
即kn??n0 2或f0n?kn2? 3求出了本征值kn后,谐振腔的谐振频率f0n即可由式3求出。
实验三利用谐振腔及微扰法测试介质参数试验一、预习要求1、什么是微波谐振腔?2、什么是微扰法?3、了解测试系统的基本组成二、实验目的1、认识谐振腔,理解耦合的原理和作用2、通过了解介质微扰的特性3、掌握介质参数测试原理三、实验原理本装置的基本形式是四分之一波长开路同轴传输线谐振腔(以后简称开路腔)。
通过加装短路块,可构成电容加载的同轴传输线谐振腔(以后简称加载腔)。
与标量网络分析仪配合,可做谐振腔各项参数的测量,也可用作介质参数测量的传感器。
`本装置由腔体、内导体、耦合元件及传动、读数机构组成。
通过耦合元件可在谐振腔中激励(或耦合)同轴传输线中的TEM模。
腔体机构图如图1,其内径为24mm、内导体直径为8mm、内导体自短路面伸入腔体最大长度42mm、调节范围25mm。
对开路腔而言,其谐振频率范围为1.8~4.3GHz。
腔体和内导体均为HPb—59黄铜制作。
表面涂复7μm银层。
特性阻抗65.8Ω。
本装置配备有耦合环和耦合探针各两件。
学生可根据兴趣组成不同耦合方式的反射型或传输型谐振腔。
通过螺旋测微器,可精确调节和显示内导体的位置,并可将其固定。
在开路腔、内导体开路端内外导体间,装入小尺寸的介质样品环。
读出加入样品前后,谐振频率和有载品质因数的变化。
根据微扰原理,可计算样品的介电常数实部ε'和损耗角正切tanδ。
端盖图1谐振腔结构示意图四、实验内容与步骤1、谐振腔的激励与耦合;谐振腔由其耦合方式不同可以分为反射型和传输型两种类型,分别介绍如下:1.1.反射型谐振腔:将耦合环和耦合探针插入谐振腔任一耦合孔中,将其与标量网络分析仪的定向器件(驻波比桥或定向耦合器)测试端相连。
扫描范围设定为1.8~4.3GHz,调节耦合环的插入深度、方向。
可在显示屏上观测到谐振腔反射的频率响应曲线(反射谐振曲线)。
继续调节耦合环的插入深度和方向,使在感兴趣的频率上接近匹配状态。
(反射损耗—dB数最大或驻波比最小)。
微波技术与天线哈尔滨工业大学(威海)微波谐振器一.引言在微波领域中,具有储能和选频特性的元件称为微波谐振器,它相当于低频电路中的LC振荡回路,它是一种用途广泛的微波元件。
低频LC振荡回路是一个集中参数系统,随着频率的升高,LC回路出现一系列缺点,主要是,①损耗增加。
这是因为导体损耗、介质损耗及辐射损耗均随频率的升高而增大,从而导致品质因数降低,选频特性变差。
②尺寸变小。
LC回路的谐振频率,可见为了提高必须减少LC数值,回路尺寸相应地需要变小,这将导致回路储能减少,功率容量降低,寄生参量影响变大。
因为这些缺点,所以到分米波段也就不能再用集中参数的谐振回路了。
在分米波段,通常采用双线短截线作谐振回路。
当频率高于1GHz时,这种谐振元件也不能满意地工作了。
为此,在微波波段必须采用空腔谐振器作谐振回路。
实际上,我们可以把空腔谐振器(简称谐振腔)看成是低频LC回路随频率升高时的自然过渡。
图7-1-1表示由LC回路到谐振腔的过渡过程。
为了提高工作频率,就必须减小L 和C,因此就要增加电容器极板间的距离和减少电感线圈的匝数,直至减少到一根直导线。
然后数根导线并接,在极限情况下便得到封闭式的空腔谐振器。
二.微波谐振器的基本参量根据不同用途,微波谐振器的种类也是多种多样。
图7-2-1示出了微波谐振器的几种结构。
(a)为矩形腔,(b)为圆柱腔,(c)为球形腔,(d)为同轴腔,(e)为一端开路同轴腔,(f)为电容加载同轴腔,(g)为带状腔,(h)为微带腔。
在这些图中,省略了谐振器的输入和输出耦合装置,目的是使问题简化。
但在实际谐振器中,必须有输入和输出耦合装置。
微波谐振器的主要参量是谐振波长(谐振频率或、固有品质因数Q0及等效电导G0。
图7-2-1 几种微波谐振器的几何形状1、谐振波长与低频时不同,微波谐振器可以在一系列频率下产生电磁振荡。
电磁振荡的频率称为谐振频率或固有频率,记以。
对应的为谐振波长。
是微波腔体的重要参量之一,它表征微波谐振器的振荡规律,即表示在腔体内产生振荡的条件。