宁波大学科学学院 高等数学(下)期末试题
- 格式:doc
- 大小:182.50 KB
- 文档页数:4
⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯线封号序密过超号班要学教不纸题卷试答⋯学⋯大.峡三⋯⋯⋯⋯⋯⋯⋯⋯2021学年春季学期"高等数学Ⅰ〔二〕"期末考试试卷〔A〕注意:1、本试卷共3页;2、考试时间110 分钟; 3 、**、学号必须写在指定地方题号一二三四总分得分阅卷人得分一、单项选择题〔 8 个小题,每题 2 分,共 16 分〕将每题的正确答案的代号 A、B、 C 或 D 填入下表中.题号12345678答案1.a与b都是非零向量,且满足a b a b ,那么必有〔〕.(A) a b0(B) a b0(C) a b0(D) a b 02.极限lim( x2y 2 )sin12().x0x2yy0(A) 0(B) 1(C) 2(D) 不存在3.以下函数中,df f 的是().〔 A 〕f ( x, y)xy〔B 〕f ( x, y)x y c0 , c0为实数〔 C〕f (x, y)x2y2〔 D〕f ( x, y)e x y4.函数f ( x, y)xy (3x y) ,原点 (0,0)是 f (x, y) 的().〔 A〕驻点与极值点〔 B〕驻点,非极值点〔 C〕极值点,非驻点〔 D〕非驻点,非极值点5 .设平面区域D : (x 1)2( y1)22,假设I1x y d, I 2x yd ,D4D43x y d,那么有〔〕 .I 34D〔A〕I1I 2I 3〔B〕I1I 2I 3〔C〕I2I 1I 3〔D〕I3I1 I26.设椭圆L:x2y 21的周长为l,那么(3x2 4 y2 )ds〔〕 .43L(A) l(B)3l(C)4l(D)12l7.设级数a n为交织级数, a n0(n) ,那么〔〕 .n1(A) 该级数收敛(B) 该级数发散(C) 该级数可能收敛也可能发散(D) 该级数绝对收敛8. 以下四个命题中,正确的命题是〔〕 .〔 A 〕假设级数a n发散,那么级数a n2也发散n 1n 1〔 B〕假设级数a n2发散,那么级数a n也发散n 1n 1〔 C〕假设级数a n2收敛,那么级数a n也收敛n 1n 1〔 D〕假设级数| a n |收敛,那么级数a n2也收敛n 1n 1阅卷人得分二、填空题 (7 个小题,每题 2 分,共 14 分) .1. 直线3x 4 y2z60a 为.x3y z a与 z 轴相交,那么常数2.设f ( x, y)ln( xy),那么 f y (1,0)___________.x3.函数f (x, y)x y 在 (3, 4) 处沿增加最快的方向的方向导数为.4.设D : x2y22x ,二重积分( x y)d=.D5f x2222在是连续函数,{( x, y ,z) | 0z9x y } , f ( x y )dv.设的三次积分为.6. 幂级数( 1)n 1 x n的收敛域是.n 1n!7. 将函数 f ( x)1,x0为周期延拓后,其傅里叶级数在点x2,0 x以 21于.2021年"高等数学Ⅰ〔二〕"课程期末考试试卷 A 共 3 页第1 页⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯线封号序密过超号班要学教不纸题卷试答⋯学⋯大.峡三⋯⋯⋯⋯⋯⋯⋯⋯阅卷人得分三、综合解答题一〔 5 个小题,每题7分,共35分,解答题应写出文字说明、证明过程或演算步骤〕1.设 u xf ( x,x) ,其中 f 有连续的一阶偏导数,求u,u.y x y解:2.求曲面 e z z xy 3 在点 (2,1,0) 处的切平面方程及法线方程.解:3. 交换积分次序,并计算二次积分dxsin ydy .0x y解:4.设是由曲面z xy, y x, x 1及z0 所围成的空间闭区域,求 I xy2 z3dxdyd解:5.求幂级数nxn 1的和函数 S(x) ,并求级数n的和.n 1n 12n解:2021年"高等数学Ⅰ〔二〕"课程期末考试试卷 A 共 3 页第2 页⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯线封号序密过超号班要学教不纸题卷试答⋯学⋯大.峡三⋯⋯⋯⋯⋯⋯⋯⋯阅卷人得分四、综合解答题二〔 5 个小题,每题7分,共35分,解答题应写出文字说明、证明过程或演算步骤〕1.从斜边长为 1 的一切直角三角形中,求有最大周长的直角三角形.解2.计算积分( x2y2 )ds ,其中L为圆周 x2y2ax (a0 ).L解:3.利用格林公式,计算曲线积分I(x2y2)dx (x 2xy)dy ,其中 L 是由抛物线y x2和Lx y2所围成的区域D的正向边界曲线.y y x2x y2DOx4.计算xdS ,为平面xy z 1在第一卦限局部.解:5.利用高斯公式计算对坐标的曲面积分蝌dxdy + dydz + dzdx,S其中为圆锥面 z2x2y2介于平面z0 及 z 1 之间的局部的下侧.解:2021年"高等数学Ⅰ〔二〕"课程期末考试试卷 A 共 3 页第3 页2021学年春季学期"高等数学Ⅰ〔二〕"期末考试试卷 (A)答案及评分标准一、单项选择题〔 8 个小题,每题 2 分,共 16 分〕题号 123456 7 8答案DABB A D CD1.a 与b 都是非零向量,且满足 ab a b ,那么必有〔 D〕(A) a b0 ;(B)a b 0 ;(C)a b0;(D)a b0 .2. 极限lim( x 2y 2 )sin2 1 2 ( A )x 0x yy(A) 0 ;(B) 1;(C) 2;(D)不存在 .3.以下函数中,df f 的是(B );〔 A 〕 f ( x, y) xy ;〔B 〕f (x, y) x yc 0 ,c 0为实数;〔 C 〕f (x, y)x2y 2;〔 D 〕f ( x, y)e xy .4.函数f ( x, y) xy (3 xy) ,原点 (0,0) 是 f (x, y) 的( B).( A 〕驻点与极值点;〔B 〕驻点,非极值点;( C 〕极值点,非驻点; 〔 D 〕非驻点,非极值点 . 5 .设 平 面 区 域 D :( x 1)2( y 1)22,假设I 1x yd ,I 2x yd ,D4D 43xy,那么有〔 A 〕I 3dD4〔A 〕I 1 I 2 I 3; 〔B 〕 I 1 I 2 I 3;〔C 〕I 2 I 1 I 3;〔D 〕I 3I 1I 2. 6.设椭圆L :x 2y 21的周长为l ,那么(3x24 y 2)ds 〔 D〕43L(A) l ;(B)3l ;(C)4l ;(D) 12l .7.设级数a n 为交织级数, a n 0 ( n) ,那么〔C〕n 1(A) 该级数收敛; (B) 该级数发散;(C) 该级数可能收敛也可能发散; (D)该级数绝对收敛. 8. 以下四个命题中,正确的命题是〔 D 〕 〔 A 〕假设级数 a n 发散,那么级数 a n 2 也发散;n 1n 1〔 B 〕假设级数 a n 2发散,那么级 a n 也发散;数n 1n 1〔 C 〕假设级数 a n 2收敛,那么级数a n 也收敛; n 1n 1〔 D 〕假设级数 | a n |收敛,那么级数a n 2也收敛.n 1n 1二、填空题 (7 个小题,每题 2分,共 14 分).1. 直线3x 4 y 2z 6 0 与 z 轴相交,那么常数a 为3。
高等数学A(下册)期末考试试题【A卷】院(系)别班级学号姓名成绩一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量、满足,,,则.2、设,则.3、曲面在点处的切平面方程为.4、设是周期为的周期函数,它在上的表达式为,则的傅里叶级数在处收敛于,在处收敛于.5、设为连接与两点的直线段,则.※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线在点处的切线及法平面方程.2、求由曲面及所围成的立体体积.3、判定级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?4、设,其中具有二阶连续偏导数,求.5、计算曲面积分其中是球面被平面截出的顶部.三、(本题满分9分)抛物面被平面截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、(本题满分10分)计算曲线积分,其中为常数,为由点至原点的上半圆周.五、(本题满分10分)求幂级数的收敛域及和函数.六、(本题满分10分)计算曲面积分,其中为曲面的上侧.七、(本题满分6分)设为连续函数,,,其中是由曲面与所围成的闭区域,求.—-——-—-——-———--—————-—-——--——---—--—-备注:①考试时间为2小时;②考试结束时,请每位考生按卷面答题纸草稿纸由表及里依序对折上交;不得带走试卷。
高等数学A(下册)期末考试试题【A卷】参考解答与评分标准一、填空题【每小题4分,共20分】1、;2、;3、; 4、3,0;5、。
二、试解下列各题【每小题7分,共35分】1、解:方程两边对求导,得,从而,…………。
【4】该曲线在处的切向量为…………。
.【5】故所求的切线方程为 (6)法平面方程为即…….。
【7】2、解:,该立体在面上的投影区域为.….。
【2】故所求的体积为 (7)3、解:由,知级数发散 (3)又,。
故所给级数收敛且条件收敛.【7】4、解:, (3)【7】5、解:的方程为,在面上的投影区域为.又,…。
宁波大学2014-2015年高等数学A2期末考试试卷一、选择题(每题3分,共15分):1、设函数),(y x f 有连续偏导数,且2)2,1(=-x f , 1)2,1(-=-y f ,则函数),(y x f 在点)2,1(-M 处增加最快的方向是( )(A ) j - (B )j i -2 (C ) i2 (D )j i +22、二元函数极限32lim2++∞→→y xyy x 的值为 ( ) (A)、 4 ( B )、 ∞+ (C)、 34( D ) 0 3.下列说法正确的是( )(A).若∑∞=1n n u ,∑∞=1n n v 都发散,则∑∞=+1)(n n n v u 发散;(B).若∑∞=1n n u 发散,则∑∞=11n nu 收敛 (C). 若∑∞=1n n u 收敛,则∑∞=11n nu 发散; (D).若∑∞=1n n u ,∑∞=1n n v 都发散,则∑∞=1)(n n n v u 发散4、函数x e y y y x 2cos 52=+'-''的一个特解应具有形式:( ) (A)、x Ae x 2cos (B)、)2sin 2cos (x B x A e x + (C)、)2sin 2cos (x B x A xe x + (D)、)2sin 2cos (2x B x A e x x +5、设曲线积分ydy x f ydx e x f cx cos )(sin ])([--⎰与路径无关,其中)(x f 具有一阶连续导数,且0)0(=f ,则)(x f 等于( )(A))(21x x e e -- (B) )(21x x e e -- (C) 1)(21---x x e e (D) )(211x x e e ---二、填空题(每题3分,共15分): 1、曲面3=+-xy z e z 在点)0,1,2(处的切平面方程为 , 2、曲线积分dx y x L⎰-)(22= ,其中L 是抛物线2x y =上从点)0,0(到)4,2(的一段弧。
第 1 页 (共 10 页)班级(学生填写): 姓名: 学号: 命题: 审题: 审批: ----------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 ------------------------------------------------------- (答题不能超出密封线)LQdx Pdy +⎰=( )dxdy )P dxdy x 二重积分的积分区域D 是221≤+x y π C .2π+⎰L Pdx Qdy在A.∂∂-=∂∂P Qy x第 2 页(共10 页)第 3 页 (共 10 页)班级(学生填写): 姓名: 学号: ----------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 ------------------------------------------------------- (答题不能超出密封线)()Lx y ds +⎰= ()Lx y ds +⎰= Lydx xdy +⎰= 2sin y t =上对应22xy De dxdy --⎰⎰= 2.第 4 页 (共 10 页)三. 计算题(一)(每小题6分,共36分)1.计算:22xy De d σ+⎰⎰,其中D 是由圆周224x y +=所围成的闭区域。
2.计算三重积分xdxdydz Ω⎰⎰⎰,其中Ω为三个坐标面及平面21x y z ++=所围成的闭区域。
3.计算xyzdxdydz Ω⎰⎰⎰,其中Ω是由曲面2221x y z ++=,0,0,0x y z ≥≥≥所围成.第 5 页 (共 10 页)班级(学生填写): 姓名: 学号: ----------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 ------------------------------------------------------- (答题不能超出密封线)4.求2d d Dxx y y⎰⎰,其中D 为1xy =,y x =及2x =所围成的区域。
高等数学A (下册)期末考试试题【A 卷】考试日期:2009年一、A 填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a 、b 满足0a b +=,2a =,2b =,则a b ⋅= —4.2、设ln()z x xy =,则32zx y ∂=∂∂ —1/(y *y ) . 3、曲面229x y z ++=在点(1,2,4)处的切平面方程为 2x+4y+z-14=0 . 4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于 ,在x π=处收敛于 . 5、设L 为连接(1,0)与(0,1)两点的直线段,则()Lx y ds +=⎰ 1.414 .※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级. 二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在点0M (1,1,2)-处的切线及法平面方程. 解:两边同时对x 求导并移项。
2、求由曲面2222z x y =+及226z x y =--所围成的立体体积.3、判定级数11(1)lnn n n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 条件收敛4、设(,)sin xz f xy y y=+,其中f 具有二阶连续偏导数,求2,z z x x y ∂∂∂∂∂. 5、计算曲面积分,dS z ∑⎰⎰其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部.三、(本题满分9分)抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、 (本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-⎰,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.五、(本题满分10分)求幂级数13nn n x n∞=⋅∑的收敛域及和函数.六、(本题满分10分)计算曲面积分332223(1)I x dydz y dzdx z dxdy ∑=++-⎰⎰, 其中∑为曲面221(0)z x y z =--≥的上侧.七、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]tF t z f xy z dv Ω=+++⎰⎰⎰,其中t Ω是由曲面z=与z =,求 3()lim t F t t +→. ———--——-———-—-—-——————-—-————--——-—-—备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交; 不得带走试卷。
学生填写): 姓名: 学号: 命题: 审题: 审批: ------------------------------------------------ 密 ---------------------------- 封 --------------------------- 线 ----------------------------------------------------------- (答题不能超出密封装订线)班级(学生填写): 姓名: 学号: ---------------------------------------------- 密 ---------------------------- 封--------------------------- 线 ------------------------------------------------ (答题不能超出密封线)4.求方程y y y y '='+''2)(的通解.(4分)5. 求微分方程 2d 22d x yxy xe x -+=的通解。
(4分)6. 求微分方程09422=+y dxyd 满足初始条件23,20====x x dxdy y的特解。
(4分)班级(学生填写): 姓名: 学号: ------------------------------------------- 密 ---------------------------- 封--------------------------- 线 ------------------------------------------------ (答题不能超出密封线))7. 求x e y dx dy-=+微分方程的通解。
(4分)8. 求微分方程的一条积分曲线,使其在原点处与直线相切. (4分)9. 求微分方程x y y x sin =+'满足0)(=πy 的特解.(4分)10. 求微分方程430,(0)6,(0)10y y yy y ''''-+===的特解.(4分)11. 求微分方程0)(22=-+xydy dx y x 的通解。
2024级本科高等数学(二)期末试题与解答A(本科、经管类)一、选择题(本大题共5小题,每小题3分,共15分)1.到两点(1,1,0)A -和(2,0,2)B -距离相等的点的轨迹为( C ).A .230x y z ---=;B .230x y z +-+=;C .230x y z +--=;D .230x y z ++-=.2.微分方程2x y y y e x '''-+=+的非齐次特解形式可令为( A ).A .2x Ax e Bx C ++;B .x Ae BxC ++;C .2()x Ae x Bx C ++;D .x Axe Bx C ++.3.函数22(,)(4)(6)f x y y y x x =--的驻点个数为( B ).A.9;B. 5;C. 3;D. 1.4.设D 是xoy 面上以)1,1(),1,1(),1,1(---为顶点的三角形区域,1D 是D 中在第一象限的部分,则积分⎰⎰+Dd y x y x σ)sin cos (33=( D ).A.σd y x D ⎰⎰1sin cos 23;B.⎰⎰132D yd x σ;C.⎰⎰+1)sin cos (433D d y x y x σ; D.0.5.下列级数中,绝对收敛的级数为( C ). A. 111(1)n n n ∞-=-∑;B. 1(1)n n ∞-=-∑; C.111(1)3n n n ∞-=-∑;D. 11(1)n n ∞-=-∑ . 二、填空题(本大题共5小题,每小题3分,共15分)6.函数22(,)arcsin()ln f x y x y =+-的连续域为221(,)12x y x y ⎧⎫<+≤⎨⎬⎩⎭. 7.2211(),lim(2)n n n n x y a a d πσ∞→∞=+≤-+=∑⎰⎰设级数收敛则3π .8.设ln(ln )z x y =+,则1z z y x y ∂∂-=∂∂ 0 . 9.交换420(,)dy f x y dx ⎰积分次序得2200(,)x dx f x y dy ⎰⎰ .10.投资某产品的固定成本为36(万元),且成本对产量x 的改变率(即边际成本)为()240C x x '=+(万元/百台),则产量由4(百台)增至6(百台)时总成本的增值为100万元. 三、试解下列各题(本大题共6小题,每小题8分,共48分)11.求解微分方程2xy y y '-=满意初始条件11x y==的特解. 解:分别变量得d d (1)y x y y x=+ (2分) 两端积分得lnln ln 1y x C y =++,即1y Cx y =+ (5分) 由11x y ==,得12C =故所求通解为 21y x y =+或2x y x=- (8分) 12.设()y x z z ,=由方程3=-+z xy e z所确定,求221x y z zx ===∂∂及221x y z z y ===∂∂.解:令3),,(--+=z xy e z y x F z ,则y F x =,x F y =,1-=z z e F (4分) 所以ze y x z -=∂∂1,z e x y z -=∂∂1221x y z zx ===∂=∂,221x y z z y ===∂=∂. (8分) 13.(,),,.x y y z z z f e f x x y-∂∂=∂∂且可微求, 解:122x y z y e f f x x -∂''=-∂ (4分) 121x y z e f f y x-∂''=-+∂ (8分) 14.设(,)sin()f x y x x y =+,求(,)22xx f ππ,(,)22yy f ππ. 解:sin()cos()x f x y x x y =+++,cos()y f x x y =+ (2分) 2cos()sin()xx f x y x x y =+-+ (4分)sin()yy f x x y =-+ (6分) (,)222xx f ππ=-,(,)022yy f ππ= (8分) 15.求幂级数1n n nx ∞=∑的收敛区间与和函数.解:收敛半径为1R =,收敛区间为(1,1)- (2分)111n n n n nxx nx ∞∞-===∑∑,令11()n n S x nx ∞-==∑,则 (4分) 10011()()1xx n n n n x S x dx nx dx x x ∞∞-=====-∑∑⎰⎰ (6分) 所以在(1,1)-内201()(())()1(1)x n n x x nx xS x x S x dx x x x ∞=''====--∑⎰ (8分) 16.dxdy e I Dy ⎰⎰=2,其中D 是第一象限中由直线x y =与曲线3x y =所围成的闭区域. 解:22310y y y y D I e dxdy dy e dx ==⎰⎰⎰⎰ (3分)2130()y y y e dy =-⎰ (5分) 112e =- (8分)四、试解下列各题(本大题共2小题,每小题6分,共12分)17.某种产品的生产原料由,A B 构成,现投入原料,A B 各,x y 单位,可生产出产品的数量为20.01z x y =.,A B 原料的单价分别为10元和20元,欲用3000元购买原料,问两种原料各购买多少单位时,使生产数量最大?解:目标函数:20.01z x y =,约束条件: 1020300x y +=设2(,,)0.01(1020300)F x y x y x y λλ=++- (2分) 20.021000.0120010203000x y F xy F x x y λλ=+=⎧⎪=+=⎨⎪+-=⎩(4分) 消去λ解得:200,50x y ==当A 原料购买200单位,B 原料购买50单位时,生产数量最大.(6分)18.由抛物线21(0)y x x =-≥及x 轴与y 轴所围成的平面图形被另一抛物线2(0)y kx x =≥分成面积相等的两部分,试确定k 的值.解:两抛物线的交点为)1k P k+,则2210)A x kx dx =--=(2分) 而12112022(1)3A A A x dx =+=-=⎰ (4分)所以23= 解得3k =. (6分) 五、证明题(本大题共2小题,每小题5分,共10分)19.证明级数2211ln 1sin 7n n n n π∞=⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦∑发散. 证明:记221ln 1sin 7nn u n n π⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,于是 221lim lim ln 1lim sin 17n nn n n n u n π→∞→∞→∞⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭ 故级数发散. (5分) 20.设(,)z z x y =由方程222()z x y z yf y ++=所确定,其中f 可导. 试证:222()22z z x y z xy xz x y∂∂--+=∂∂ 证明:令222(,,)()z F x y z x y z yf y=++-,则 2x F x =,2()()y z z z F y f f y y y '=-+,2()z z F z f y'=- (2分) 从而22()z x z x z f y∂=-∂'-,2()()2()z z z y f f z y y y z y z f y '-+∂=-∂'- (4分) 所以2222222()2(2()())()22()z z z x x y z xy y f f z z y y y x y z xy z x y z f y'--+-+∂∂--+=-∂∂'- 2xz = (5分)。
《高等数学A2》考试试卷A一 单项选择题 (每小题3分, 共15分)1. 非零向量b a ,互相垂直, 则有 ( )A.||||||b a b a +=+;B. ||||b a b a -≤+;C. ||||b a b a -≥+;D. ||||b a b a -=+2.下列级数中,收敛级数是 ( )A.2302100n n n ∞=+∑;B.; 05!n n n ∞=∑C.∑∞=14tan n n πD.1sin 6n n π∞=∑3.设(,)f x y 可微,如果线积分(,)()Lf x y ydx xdy +⎰与路径无关,则应满足条件 ( )A. (,)(,)y x yf x y xf x y =B. ////(,)(,)xx yy xf x y yf x y =C.(,)(,)y x f x y f x y =D. (,)(,)y x xf x y yf x y =4. 若⎰⎰⎰⎰-=D a rdr r r f d dxdy y x f 22cos0)sin ,cos (),(ππθθθθ,则区域D 是 () A. 222a y x ≤+; B. 0,222≥≤+x a y x ;C. 0,22>≤+a ax y xD. 0,22<≤+a ax y x5. 设),(y x f 为连续函数, 且(1,1)6f =, 则有22220(1)(1)1lim (,)x y f x y dxdy ρρπρ→-+-≤=⎰⎰( ).A.不存在;B. -6;C.6;D. 0二 填空题 (每小题3分, 共15分) 1.2(,)lim x y → ). 2. ),(y x f z =的偏导数x z ∂∂及y z ∂∂在点),(y x 存在且连续是),(y x f 在该点可微分的( )条件.3.第二类曲面积分⎰⎰∑++Rdxdy Qdzdx Pdydz 化为第一类曲面积分是( ),其中γβα,,为有向曲面∑在点),,(z y x 处的( )的方向角.4.若级数∑∞=1n n u 绝对收敛, 则级数∑∞=1n n u 必定( ); 若级数∑∞=1n n u 条件收敛,则级数∑∞=1||n n u 必定( );5.一阶微分方程22dy xy dx=的通解等于( )三 解答题 (每小题6分, 共30分)1.设 222(,,)x y z u f x y z e ++==, 而2sin z x y =.求u x ∂∂ 和 u y∂∂. 2求函数2y z xe =在点P(1,0)处沿从点P(1,0)到点Q(2,-1)的方向的方向导数.3. 计算曲面积分⎰⎰∑=zdS I , 其中∑是球面2222a z y x =++被平面h z = )0(a h <<截出的顶部.4. 计算⎰⎰=Dxyd I σ其中D 是由抛物线x y =2及直线2-=x y 所围成的闭区域.5. 将函数()1,(0)f x x x π=-≤≤展开成余弦级数.四(8分) 计算曲线积分⎰+-L y x xdy ydx )(222, 其中L 为一条不经过原点的简单光滑闭曲线, L 的方向为逆时针方向.五(8分) 计算三重积分⎰⎰⎰Ω=dxdydz e I y , 其中Ω是由曲面1222=+-z y x 及2,0==y y 所围成的闭区域.六(7分) 判别下列级数的绝对收敛性与条件收敛性(1) ∑∞=⎪⎭⎫ ⎝⎛--1cos 1)1(n nn a , (2)∑∞=-1)1(n n n n u , 其中∑∞=12n n u 收敛七(7分) 求幂级数∑∞=+1)12(n n x n 的收敛区间及和函数.八(10分) 求微分方程///2562x y y y x e -+=-⋅的通解。
《高等数学A2》试卷A 评分标准一.1. D;2. B;3.A;4.C5.C 二. 1. 4 ; 2. 充分 3. ()⎰⎰∑++dS R Q P γβαcos cos cos , 法向量;4. 收敛, 发散;5. 21y x C=-+, 其中C 是任意常数. 三 1.. 证 由复合函数求导法则,所以 u f f z x x z x ∂∂∂∂=+∂∂∂∂ ( 1分 ) =222222222sin x y z x y z xe ze x y +++++⋅ (2分)=224222sin 2(12sin )x y x yx x y e +++, (3分) u f f z y y z y∂∂∂∂=+∂∂∂∂ (4分) =222222222cos x y z x y z ye ze x y +++++⋅ (5分)=22424sin 2(sin cos )x y x yy x y y e +++ (6分) 2.解 这里方向l 即向量(1,1)PQ =- 的方向,与l 同向的单位向量为l e = (2分) 因为函数可微分,且2(1,0)(1,0)||1y z e x∂==∂ 2(1,0)(1,0)|2|2y z xe y∂==∂ (4分) 故所求方向导数为(1,0)|12(2z l ∂=+⋅=-∂ (6分) 3.解: ∑的方程为.222y x a z --=∑ 在xOy 面上的投影区域xy D 为圆形闭区域(){}.|,2222h a y x y x -≤+ 又.122222y x a az z y x --=++ (2分)由计算公式得⎰⎰⎰⎰--==∑xy D yx a adxdy z dS I .222 (3分) 利用极坐标,得⎰⎰⎰⎰-=--=xy xyD D a d d a y x a adxdy I 22222ρθρρ (4分) =⎰⎰--2202220h a a d d a ρρρθπ =()ha a a a h a ln 2ln 21222022πρπ=⎥⎦⎤⎢⎣⎡---. (6分) 4.解 利用二重积分中Y-型区域计算公式有⎰⎰⎰⎰-+⎥⎦⎤⎢⎣⎡==2122dy xydx xyd I y y D σ=⎰-+⎥⎦⎤⎢⎣⎡212222dy y x y y (3分) ()[]⎰--+=2152221dy y y y =2162346234421-⎥⎦⎤⎢⎣⎡-++y y y y =855 (6分) 5.解 对)(x f 进行偶延拓, 并由公式有()021cos n a x nxdx ππ=-⎰ =202(1)sin cos x nx nx n n ππ-⎡⎤+⎢⎥⎣⎦ =)1(cos 22-ππn n =⎪⎩⎪⎨⎧=-=.,5,3,1,4,,6,4,2,02 n n n π (3分) 002(1)2a x dx πππ=-=-⎰将求得n a 的代入余弦级数,得2241111cos cos3cos5235x x x x ππ⎛⎫-=--+++ ⎪⎝⎭(π≤≤x 0) (6分)四 解 令)(222y x y P += , )(222y x x Q +-=. 则当022≠+y x 时,有()222222y x y x x Q +-=∂∂=yP ∂∂. (2分) 记L 所围成的闭区域为D , 当D ∉)0,0(时,由格林公式便得 ()0222=+-⎰L y x x d y y d x ; (3分) 当D ∈)0,0(时,选取适当小的0>r ,作位于D 内的圆周222:r y x l =+. 记L 和l 所围成的闭区域为1D . 对复连通区域1D 应用格林公式,得 ()()0222222=+--+-⎰⎰L l y x x d y y d x y x x d y y d x , (6分) 其中l 的方向取逆时针方向.于是()⎰=+-L y x xdy ydx 222()⎰+-l y x xdy ydx 222=θθθπd r r r ⎰--20222222cos sin =π-. (8分)五 解: Ω在-xy 面上的投影区域D 为=D }11,20|),{(22y x y y y x +≤≤+-≤≤ (2分) 从而有I=⎰⎰⎰⎰⎰-+=-+-+-Dy D x y x y y dxdy x y e dz e dxdy 2211122222 (5分) =⎰⎰++--+2011222212y y y dx x y dy e (6分)=()()⎰-=+2022131e dy e y y ππ (8分) 六 解: (1) 因为22222s i n 2|c o s 1)1(|n a n a n a n≤=⎪⎭⎫ ⎝⎛--. (2分) 又级数∑∞=1222n n a 收敛, 故原级数绝对收敛. . (4分) (2)因为 )1(21||22n u n u n n +≤, (5分) 而级数∑∞=12n n u 和级数∑∞=121n n 均收敛再由收敛级数的性质知, 级数∑∞=-1)1(n n nnu 绝对收敛. (7分) 七 解: 由 ||1uu n +=|||1232|x x n n →++ (∞→n ), 知级数在11<<-x 时收敛,显然当1±=x 时,1(21)(1)n n n ∞=+±∑发散, 故收敛区间为)1,1(-. 设其和函数为)(x S ,则 (2分) ()∑∑∞=+∞==+=1/12122)12()(n n n n x x n x S (3分) =2242/23/112)1(31x x x x x x n n --=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛∑∞=+ (6分) 从而有 22)1(3)(x x x x S --=, )1,1(-∈x (7分) 八 解 与所给方程对应的齐次方程为065///=+-y y y , 它的特征方程 0652=+-r r 有两个实根3,221==r r .于是与所给方程对应的齐次方程的通解为 x x e C e C Y 3221+= (3分) 由于2=λ是特征方程的单根, 所以应设*y 为 .)(210x e b x b x y +=* 把它代入所给方程, 得 001222b x b b x -+-=- 比较等式两端同次幂的系数,得00122,20.b b b -=-⎧⎨-=⎩ 解得011, 2.b b ==.因此求得一个特解为2(2)x y x x e*=+ (8分) 从而所求的通解为232212(2)x x x y C e C e x x e =+++ (10分)。
高等数学A(下册)期末考试试题【A卷】院(系)另寸___________ 班级___________ 学号 _______________ 姓名_________________ 成绩_____________、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上.)r r r r r1、已知向量a、b满足a b o, a 2,b 2,则a b __________ .32、设z xln(xy),贝H ----- _____________ .x y3、曲面x2 y2 z 9在点(1,2, 4)处的切平面方程为_________________________________________ .4、设f (x)是周期为2的周期函数,它在[,)上的表达式为f(x) x,贝U f (x)的傅里叶级数在x 3处收敛于____________ ,在x 处收敛于_________ .5、设L为连接(1,0)与(0,1)两点的直线段,则Jx y)ds __________ .※以下各题在答题纸上作答,答题时必须写出详细的解答过程一…,并在每张答题纸写上:姓名、学号、班级. 、解下列各题:(本题共5小题,每小题7分,满分35分)2x2 3y2 z29 亠 _1、求曲线 2 2 2 在点M o (1, 1,2)处的切线及法平面方程.z 3x y2 2 2 22、求由曲面z 2x 2y及z 6 x y所围成的立体体积.n 13、判定级数(1)n ln 是否收敛?如果是收敛的,是绝对收敛还是条件收敛?n 1 n2x z z4、设z f (xy, ) sin y,其中f具有二阶连续偏导数,求,•y x x y5、计算曲面积分dS,其中是球面x2 y2 z2 a2被平面z h (0 h a)截出的顶部.三、(本题满分9分)抛物面z x y被平面x y z 1截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、(本题满分10分)计算曲线积分L(e x siny m)dx (e x cosy mx)dy,其中m为常数,L为由点A(a,0)至原点0(0,0)的上半圆周x2 y2 ax (a 0).五、(本题满分10分)n求幕级数的收敛域及和函数.n 13n n六、(本题满分10分)计算曲面积分| 2x3dydz 2y3dzdx 3(z21)dxdy,其中为曲面z 1 x2 y2(z 0)的上侧.七、(本题满分6分)设f (x)为连续函数,f(0) a , F(t) [z f(x2 y2 z2)]dv,其中t 是由曲面z •, —y2tF(t)与z t2x2y2所围成的闭区域,求limt 0备注:①考试时间为2小时;②考试结束时,请每位考生按卷面答题纸草稿纸由表及里依序对折上交; 不得带走试卷。
高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数z =的定义域为 (2)已知函数arctany z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为 二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( ) A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交(2)设是由方程xyz =(1,0,1)-处的dz =( )A.dx dy +B.dx ++D.dx (3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D. 22520d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12D.(5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin )()yL xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 xxy y xe '+=满足 11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰,其中∑由圆锥面z =与上半球面z =所围成的立体表面的外侧 (10)' 2、(1)判别级数111(1)3n n n n∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数z =的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则=⎰;(5)已知微分方程20y y y '''-+=,则其通解为 .二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设是由方程333z xyz a -=确定,则z x ∂=∂( );A. 2yz xy z -B. 2yz z xy -C. 2xz xy z -D. 2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()x ax b e +B.2()x ax b xe +C.2()x ax b ce ++D.2()xax b cxe ++ (4)已知Ω是由球面2222x y z a++=所围成的闭区域, 将dv Ω⎰⎰⎰在球面坐标系下化成三次积分为( ); A222sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.20ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).B. 1C. 12 D.三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)xx Ley y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1nn x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃 (C )无穷 (D )振荡2、积分1⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。
第二学期高等数学练习题(二)一、 选择题1、在点处),(y x f 可微的充分条件是( )(A )),(y x f 的所有二阶偏导数存在 (B )),(y x f 连续(C )),(y x f 的所有一阶偏导数连续 (D )),(y x f 连续且),(y x f 对y x ,的偏导数都存在。
2.设22),(y xy x y x f -+=的驻点为)0,0(,则)0,0(f 是),(y x f 的 ( )(A)极大值; (B) 极小值; (C) 非极值; (D) 不能确定.3.微分方程x xey y y 2'"65=+-的特解形式是( ) (A) bx ae x +2 (B) x e b ax 2)(+(C) x e b ax x 2)(+ (D) x e b ax x 22)(+4.曲面1232222=++z y x 上,点)1,2,1(-处的切平面方程是( )A 、24682=-+z y xB 、2068=+-z y xC 、1234=-+z y xD 、1234=+-z y x5.下列级数条件收敛的是( )(A ))1(1)1(1+-∑∞=n n n n(B )211)1(n n n ∑∞=- (C )1)1(1+-∑∞=n n n n (D )n n n 1sin )1(1∑∞=- 6.设n 是曲面632222=++z y x 在点P(1,1,1)处指向外侧的法向量,则z y x u 2286+=在点P 沿方向n 的方向导数为( )(A )0 (B )711 (C )117 (D )2 。
7.设),(y x f 在点),(b a 处的偏导数存在,则xb x a f b x a f x ),(),(lim 0--+→= 。
A. 0; B 、),2(b a f x ; C 、),(b a f x ; D 、),(2b a f x 。
二、填空题1、微分方程 x y y x cos =+' 的通解是2.交换积分⎰⎰--x x dy y x f dx 1110),(的次序成为 。
大一高数期末考试,下学期高数(下)3,高数期末试题,总结归纳大一高数期末考试,下学期高数(下)3,高数期末试题,总结归纳河北科技大学高等数学(下)考试试题3一、填空题(每题4分,共16分)1.(4分)级数un收敛的必要条件是.n12.(4分)交换二次积分的次序0dy0f(x,y)dx=.3.(4分)微分方程y4y4y2xe2x 的一个特解形式可以设为.4.(4分)在极坐标系下的面积元素d.二、选择题(每题4分,共16分)221.(4分)已知曲面z4xy上点P处的切平面平行于平面1y2x2yz10,则点P的坐标是().A.(1,-1,2);B.(-1,1,2);C.(1,1,2);D.(-1,-1,2).2.(4分)级数(1)n1n11n32为().A.绝对收敛;B.条件收敛;C.发散;D.收敛性不确定.3.(4分)若是锥面xyz被平面z0与z1所截下的部分,则曲面积分(xy)dS().22222A.C.220d0rrdr;B.0d0rrdr;12120drrdr;D.12020drrdr.2120nn3xn14.(4分)幂级数(1)的收敛半径为().n1n11A.R2;B.R;C.R3;D.R.23三、解答题(每题7分,共63分)1.(7分)设zsin(xy)exy,求dz.2.(7分)计算三重积分Ixdxdydz,其中为三个坐标面及平面x2yz1所围成的闭区域.3.(7分)求I(1yz)dS,其中是平面yz5被圆柱面x2y225截出的有限部分.(1)n(x1)n的收敛域.4.(7分)求幂级数nn15.(7分)将f(x)1展开为麦克劳林级数.22xxxx6.(7分)求曲线积分IL(esinyy)dx(ecosy1)dy,其中L为x2y2ax上从A(a,0)到O(0,0)的上半圆周.7.(7分)求微分方程y2xy4x在初始条件yx03下的特解.8.(7分)求曲面积分I(x1)dydz(2y2)dzdx(3z3)dxdy,其中为曲面xyz4的内侧.9.(7分)计算曲线积分I(xy)ds,其中L是以O(0,0),A(1,0),B(0,1)L222为顶点的三角形折线.四、(5分)试确定参数t的值,使得在不含直线y0上点的区域上,曲线积分x(x2y2)tx2(x2y2)tIdxdy与路径无关,其中C是该区域上一条2yyC光滑曲线,并求出当C从A(1,1)到B(0,2)时I的值.评分标准一、1.limun0;2.0dxxf(x,y)dy;n113.y*x2(Ax2BxC)e2x;4.drdrd.二、1.C;2.A;3.D.4.D.三、1.解zxcosx3分(y)yexy(y)xezycosx3分xy7分dz[cosx(y)ye]dx[cosx(yx)yxedyxy2.解I0dx111x20dy1xy20xdz3分0xdx1x20(1x2y)dy5分110(x2x2x3)dx6分417分483.解:z5y1分2分D:x2y22522I(1y5y)1zxzydxdy4分D62dxdy6分D7分15024.解R12分当x2时收敛4分当x0时发散6分收敛域为(0,2].7分11115.解2分22xx31xx212113分x31x6(1)21n1nxx(1)5分3n06n021n1n1(1)n1x6分3n02n7分x16.解Pesinyy,Qecosy11分xxQP13分xy由格林公式得Idxdy6分Da12a7分2287.解ye2xdx2C4xexdx3分x22eCex2[C2ed(x2)]4分x225分将yx03代入上式得C16分所求特解为yex227分8.解利用高斯公式得4分I6dv46分643327分(x)ydsx)yds9.解I(xy)ds(OAOBBA112分(xy)dsxdx02OA11(xy)dsydy4分02OBBA6分(xy)ds0(x1x)2dx217分I12Px(x2y2)t1222(2tyxy)四、解1分2yyQ2x(x2y2t)1222(xytx)2分2xy令PQ22可得(2t1)(xy)0yx1因为y0,所以t3分2因曲线积分与路径无关,故取从点A(1,1)经点D(0,1)到点B(0,2)的折线积分I10xx12dx04分5分扩展阅读:大一高数期末考试,下学期高数(下)3,高数期末试题,总结归纳武汉科技大学高等数学(下)考试试题3一、填空题(每题4分,共16分)1.(4分)级数un收敛的必要条件是.n12.(4分)交换二次积分的次序3.(4分)微分方程0dy0f(x,y)dx=.1yy4y4y2xe2x的一个特解形式可以设为.4.(4分)在极坐标系下的面积元素d.二、选择题(每题4分,共16分)1.(4分)已知曲面z4x2y2上点P处的切平面平行于平面2x2yz10,则点P的坐标是().A.(1,-1,2);B.(-1,1,2);C.(1,1,2);D.(-1,-1,2).2.(4分)级数(1)n1n11n32为().A.绝对收敛;B.条件收敛;C.发散;D.收敛性不确定.3.(4分)若是锥面x2y2z2被平面z0与z1所截下的部分,则曲面积分22(xy)dS().A.C.22;B.drrdrdr0000rdr;12120d0r2rdr;D.20d0r2rdr.1214.(4分)幂级数(1)n1n13nxnn的收敛半径为().A.11R2;B.R;C.R3;D.R.23三、解答题(每题7分,共63分)1.(7分)设zsin(x2.(7分)计算三重积分Iy)exy,求dz.xdxdydz,其中为三个坐标面及平面x2yz1所围成的闭区域.3.(7分)求I(1yz)dS,其中是平面yz5被圆柱面x2y225截出的有限部分.4.(1)n(x1)n的收敛域.(7分)求幂级数nn15.(7分)将1f(x)2xx2展开为麦克劳林级数.6.(7分)求曲线积分IL(exsiynydx)ex(ycosdy,1其中L为x2y2ax上从A(a,0)到O(0,0)的上半圆周.7.(7分)求微分方程y2xy4x在初始条件yx03下的特解.(x1)dydz(2y2)dzdx(3z3)dxdy,其中8.(7分)求曲面积分I为曲面x2y2z24L 的内侧.9.(7分)计算曲线积分I角形折线.(xy)ds,其中L是以O(0,0),A(1,0),B(0,1)为顶点的三y0上点的区域上,曲线积分四、(5分)试确定参数t的值,使得在不含直线x(x2y2)tx2(x2y2)tIdxdy与路径无关,其中C是该区域上一条光滑曲线,2yyC并求出当C从评分标准一、1.limunnA(1,1)到B(0,2)时I的值.0;2.0dxxf(x,y)dy;113.二、y*x2(Ax2BxC)e2x;4.drdrd.1.C;2.A;3.D.4.D.三、1.解3分zxcos(xy)yexy分2.解zycos(xy)xexy3分7dz[cos(xy)yexy]dx[cos(xy)xexy]dyI0dx111x20dy01x2yxdz3分0xdx1x20(1x2y)dy5分110(x2x2x3)dx6分417分483.解1分:z5y2分D:x2y22522I(1y5y)1zxzydxdy4分D62dxdy6分D7分15024.解R12分当x2时收敛4分当x0时发散6分收敛域为(0,2].7分5.解11112分22xx31xx2113分31x6(1x)21n1xx(1)n5分3n06n02111(1)nn1xn6分3n02n7分x16.解Pex1分sinyy,Qexcosy1QP13分xy由格林公式得I6分dxdyD2a1a27分228x27.解ye2xdxC4xedxx23分ex2[C2ed(x2)]4分Cex225分将yx03代入上式得C16分x2所求特解为ye8.解利用高斯公式得27分4分I6dv9.解46分643327分I(xy)ds(xy)ds(x)ydsOAOBBA112分(xy)dsxdx02OA11(xy)dsydy4分02OBBA6分(xy)ds0(x1x)2dx217分I12四、解Px(x2y2)t1222(2tyxy)1分2yyQ2x(x2y2)t1222(xytx)2分2xyPQ22令可得(2t1)(xy)0yx因为13分y0,所以t2因曲线积分与路径无关,故取从点0A(1,1)经点D(0,1)到点B(0,2)的折线积分I1xx12dx04分5分友情提示:本文中关于《大一高数期末考试,下学期高数(下)3,高数期末试题,总结归纳》给出的范例仅供您参考拓展思维使用,大一高数期末考试,下学期高数(下)3,高数期末试题,总结归纳:该篇文章建议您自主创作。
宁波大学科技学院2003/2004学年第二学期试卷解答 课程名称:高等数学A (2)(6学分)考试性质:期末统考(A 卷)一、 单项选择题(每小题3分,共5⨯3=15分)1、函数),(y x f 在点),(00y x 处两个偏导数),(00'y x f x 与),(00'y x f y 存在是),(y x f 在点),(00y x 连续的( D ); A.充分条件而非必要条件 B. 必要条件而非充分条件C. 充分必要条件D. 既非充分条件又非必要条件2、设91:22≤+≤y x D ,则⎰⎰=Ddxdy y x f ),(( C );A.⎰⎰9120)sin ,cos (rdr r r f d θθθπ B.⎰⎰9120)sin ,cos (dr r r f d θθθπ C.⎰⎰3120)sin ,cos (rdr r r f d θθθπ D. ⎰⎰3120)sin ,cos (dr r r f d θθθπ 3、若级数∑∞=-1)1(n n n x a 在1-=x 处收敛,则此级数在2=x 处( B );A. 条件收敛B.绝对收敛C.发散D.收敛性不能确定4、微分方程x xe y y y -=++32'3"的一个特解应具有的形式( B );A. x e b ax -+)(B. x e b ax x -+)(C. x axe -D. x e ax -25、设L 是抛物线2x y =上从点)1,1(A 到点)0,0(O 的一段弧,则⎰=Lxydx ( A ); A. 41- B. 41 C. 52- D. 52 二.填空题(每小题3分,共6⨯3=18分)1、 设x y u =,则=∂∂xu ( y y x ln ),=∂∂y u ( 1-x xy ); 2、 曲面3=+-xy z e z 在点)0,1,2(P 处的切平面方程为( 042=-+y x );3、函数)ln(22z y x u ++=在点)1,2,1(-M 处的梯度M gradu |=( →→→-+k j i 313261 ); 4、设平面曲线L 为上半圆周21x y -=,则曲线积分⎰+Lds y x )(22=( π ); 5、设)(x f 是周期为π2的周期函数,它在区间],(ππ-上的定义为⎩⎨⎧<≤<≤-=ππx x x x f 0,00,)(,则)(x f 的傅立叶级数在π=x 处收敛于( 2π- ); 6、微分方程05'2"=+-y y y 通解为()2sin 2cos (21x c x c e y x +=)三、计算题(一)(每小题10分,共2⨯10 = 20分)1、设函数xy z arctan =,求dz 。
宁波大学科技学院2003/2004学年第二学期试卷解答 课程名称:高等数学A (2)(6学分)考试性质:期末统考(A 卷)
一、 单项选择题(每小题3分,共5⨯3=15分)
1、函数),(y x f 在点),(00y x 处两个偏导数),(00'y x f x 与
),(00'y x f y 存在是),(y x f 在点),(00y x 连续的( D )
; A.充分条件而非必要条件 B. 必要条件而非充分条件
C. 充分必要条件
D. 既非充分条件又非必要条件
2、设91:22≤+≤y x D ,则⎰⎰=D
dxdy y x f ),(( C );
A.
⎰⎰9120)sin ,cos (rdr r r f d θθθπ B.
⎰⎰9120)sin ,cos (dr r r f d θθθπ C.
⎰⎰3120
)sin ,cos (rdr r r f d θθθπ D. ⎰⎰31
20
)sin ,cos (dr r r f d θθθπ 3、若级数∑∞=-1
)1(n n n x a 在1-=x 处收敛,则此级数在2=x 处
( B );
A. 条件收敛
B.绝对收敛
C.发散
D.收敛性不能确定
4、微分方程x xe y y y -=++32'3"的一个特解应具有的形式( B );
A. x e b ax -+)(
B. x e b ax x -+)(
C. x axe -
D. x e ax -2
5、设L 是抛物线2x y =上从点)1,1(A 到点)0,0(O 的一段弧,则
⎰=L
xydx ( A )
; A. 41- B. 41 C. 5
2- D. 52 二.填空题(每小题3分,共6⨯3=18分)
1、 设x y u =,则=∂∂x
u ( y y x ln ),=∂∂y u ( 1-x xy ); 2、 曲面3=+-xy z e z 在点)0,1,2(P 处的切平面方程为( 042=-+y x );
3、函数)ln(22z y x u ++=在点)1,2,1(-M 处的梯度M gradu |=
( →→→-+k j i 3
13261 ); 4、设平面曲线L 为上半圆周21x y -=,则曲线积分
⎰+L
ds y x )(22=( π ); 5、设)(x f 是周期为π2的周期函数,它在区间],(ππ-上的定义
为⎩⎨⎧<≤<≤-=π
πx x x x f 0,00,)(,则)(x f 的傅立叶级数在π=x 处收敛于( 2
π- ); 6、微分方程05'2"=+-y y y 通解为()2sin 2cos (21x c x c e y x +=)
三、计算题(一)(每小题10分,共2⨯10 = 20分)
1、设函数x
y z arctan =,求dz 。
(答案:)(122ydx xdy y x dz -+=)
2、设函数)cos ,(x y y x f z -=,其中f 具有二阶连续偏导数,求 y
x z ∂∂∂2; (答案:x xf x y xf x y x f f cos cos sin sin )sin (cos "22'2"12"11--++- )
四、计算题(二)(每小题9分,共2⨯9 = 18分) 1、计算二重积分⎰⎰D ydxdy ,其中D 由抛物线2
,y x y x =
=及直线1=y 所围成的平面闭区域。
(答案:5
1) 2、计算曲线积分⎰+--L
dy y x dx y x )sin ()(22,其中L 是在圆周
22x x y -=上由点)0,0(O 到点)1,1(A 的一段弧; (答案:6
72sin 41-) 五、计算题(三)(每小题10分,共2⨯10=20分)
1、计算曲面积分⎰⎰∑
++=dy dx z dzdx y dydz x I 333,其中∑为球面4222=++z y x 在0≥z 部分的上侧。
(答案:
π5
192) 2、求幂级数∑∞=-+1
1)1(n n x n 的收敛域,并求和函数)(x s 。
(答案:收敛域为)1,1(-,=
)(x s 2
)1(2x x --) 六、综合题(9分) 质点在变力k xy j zx i yz F ++=的作用下,由原点沿直线运动
到椭球面1222222=++c z b y a x 上第一卦限的点),,(000z y x P ,问 ),,(000z y x 取何值时,力F 作功最大,最大值是多少? ( 答案:当3,3,3000c
z b
y a
x ===时,W 有最大值,且最
大值为 abc W 9
3max = )。