初等数论 同余
- 格式:ppt
- 大小:1.59 MB
- 文档页数:28
浅谈初等数论中同余式的解法
初等数论是数学的一个分支,主要探讨整数、有理数和代数式等基础概念。
“同余”是初等
数论中概念的一个重要部分,它引用数学定义可以写为:若两个有理数或者有理函数在一
个事件上有相同的值,则它们称为“同余”。
也就是说,两个有理数或者有理函数的值不同,但它们的值是相等的。
同余的解法首先应该把同余方程写成有理函数的形式,然后进行求解。
一般可以使用图像法、合并法或者二分法来求解。
图形法是一种直观清晰的求解方法,它通过在坐标系中绘制图像来求解同余方程,从而得到所求解的值。
这是最简单也是最容
易理解的求解方法。
合并法是一种基于数学运算技巧的求解方法。
它通过合并两个同余方程来求解同余方程,得到所求的值。
二分法是运用有理数的属性来求解的方法,用二分的方法对有理数的值进行查找,来获得有理数的值。
以上就是同余的几种常用方法,虽然每种方法都有其优势和缺点,但它们都是多元素的有理函数。
使用正确的方法,可以对同余
方程进行快速准确的求解,以解决初等数论中的多元素有理函数问题。
2011年协作体夏令营系列讲座(一)初等数论中的同余问题复旦附中万军同余的概念和性质:设为非零整数,如果整数满足,则称和对模同余,记为;否则称和对模不同余,记为.注意到,,故,所以我们总是可以假定为正整数.对于固定的模,同余有很多性质:1)同余是一种等价关系,即有①自反性:;②对称性:若,则;③传递性:若,,则.2)加法、减法、乘法和乘方运算:若,,则,,.3)除法运算:,则.特别地,若,则.4)同余组:同时成立的充要条件是剩余类与完全剩余系:设为一个给定的正整数,则全体整数可以分成个集,记为,其中,则称为模的剩余类.模的剩余类有下列性质:1)每个整数必属于且仅属于模的一个剩余类中;2)两个整数同在一个剩余类中的充要条件是这两个整数模同余.事实上,,0≤≤,有如果个整数中不存在两个数属于同一剩余类,则称为模的一个完全剩余系(或称完系).最常用的剩余系称为模的非负最小完全剩余系.此外也常用到绝对值最小完全剩余系,它们是:当为奇数时,当为偶数时,或完全剩余系有下列性质:1)个整数作为模的一个完全剩余系的充要条件是它们两两模不同余;2)若是模的一个完全剩余系,,那么也是模的一个完全剩余系;也常这样描述:设是正整数,,若通过模的一个完全剩余系,则也通过模的一个完全剩余系.3)若是互质的两个正整数,而分别通过的一个完全剩余系,则通过的一个完全剩余系.如果一个模的剩余类里面的数与互质,就把它叫做一个与模互质的剩余类,在与模互质的全部剩余类中,从每一类各任取一个代表元所组成的数集,叫做模的一个简化剩余类系(或缩系).定理1:模的剩余类是模互质的剩余类的充要条件是此类中有一个数与互质.因此与模互质的剩余类的个数是,模的每一个简化剩余类系是由与互质的个对模不同余的整数组成的.其中,(欧拉函数)是定义在正整数上的函数,它在正整数上的值是集合中与互质的数的个数.定理2:若是个与互质的数整,并且两两对模不同余,则是模的一个简化剩余类系.定理3:若,通过模的一个简化剩余系,则也通过模的一个完全剩余系.定理4:若是互质的两个正整数,而分别通过的一个简化剩余系,则通过的一个简化剩余系.推论:若是互质的两个正整数,则.下面的几个定理在处理数论问题时经常用到,并且它们本身的证明也是很好的例题.1、(欧拉函数)是定义在正整数上的函数,它在正整数上的值是集合中与互质的数的个数,求.2、(欧拉定理)设是正整数,且,则.3、(费尔马小定理)若是质数,是正整数,则.4、(拉格朗日定理)设为素数,多项式是一个模为次整系数多项式,则关于的同余方程(在模的意义下)至多有个不同的解.5、(威尔逊定理)设为素数,则.6、设为整数,为正整数,若存在,使得,则称为模的二次剩余,否则,称为模的二次非剩余.7、已知斐波那契数列,设为大于5的素数,证明:8、求所有满足下面两式的三元组,其中为奇素数,为大于1的整数.①②练习题:1、设为素数,证明:存在无穷多个,使得.2、对,如果对任意,只要,就有,那么就称具有性质.1)证明:每个素数都具有性质;2)是否存在无穷多个合数具有性质?3、求所有满足的正整数和素数.(其中欧拉函数)4、求不定方程的整数解为.(其中表示最接近整数的5的倍数)5、对于正奇数,若存在正奇数,满足,求满足条件的正奇数的总和.6、设,,正整数数组满足:,如果不能将分为和相等的两组数,那么称数组为“优秀的”,求所有的“优秀的”数组.讲座一参考答案 2011-7-18例题答案:1.解:设,其中是质数,是正整数,由定理4的推论得,由欧拉函数的定义知等于减去集合中与不互质的元素个数,也就是减去集合中与不互质的元素个数,又是质数,∴∴另证:本定理也可以用容斥原理来证明.设,其中是质数,是正整数,记,∴由容斥原理得2.证明:设是模的一个简化剩余系,则由定理3知,也是模的一个简化剩余系.∴与且仅与中的一个数对模同余,∴即(*)又是模的一个简化剩余系,故.∴∴由(*)知:.3.证明:若,则,结论显然成立;若,由欧拉定理知,即.注:费尔马小定理的另一种形式:若是质数,是正整数,,则.另证:对进行归纳,当时,结论显然成立;假设时,结论也成立,即则.(其中用到了,当时,)∴对任意,有.4.证明:对进行归纳.当时,由于,则无解,∴定理成立.假设定理对所有次数小于的多项式都成立,现设存在一个次多项式,使得同余方程有个(在模的意义下)不同的解.利用因式定理,可设,则在模的意义下是一个至多次的多项式.由都是的解,知对≤≤,都有,而,故,从而至少有根,与归纳假设矛盾,所以,定理对次整系数多项式也成立.综上,定理成立.5.证明:当时,显然成立;当为奇素数时,考虑多项式可以看到的最高次数为又当时,,由费尔马小定理知,∴由拉格朗日定理知,的展开式中各项系数都是的倍数,∴又为奇素数,为偶数,∴,得证.6.设为奇素数,且,证明:是模的二次剩余充要条件是;是模的二次非剩余充要条件是.证明:若为模的二次剩余,即存在,使得.由,可知,由费尔马小定理知,.反过来,若,则是同余方程的解,由拉格朗日定理知,该方程至多有个解,而都是该同余方程的解,∴它们就是该方程的全部解,∴存在,使得.另一方面,若是模的二次非剩余,则但由费尔马小定理,,即∴,即反过来,,又是模的二次剩余,则∴与为奇素数矛盾.7.证明:知斐波那契数列的通项公式()对大于5的素数,由费尔马小定理可知,∴,又∴或如果(其中用到了,当时,,及费尔马小定理)∴如果,类似计算可得,则综上,8.解:显然是①的解,代入②解得,∴都是方程的解.另外,当或时,同样可以得出上述解.下设≥5,当时,由②知而∴或但是,∴上式不可能成立.∴≥3由①知同理可得,∴∴③又在≥4时,单调递增,∴≥∴③式≤≤矛盾.∴由于又,没有平方因数,∴∴≥7,≥11并且≤≤,∴≤与③式矛盾.∴本题的解只能是.练习题答案:1、设为素数,证明:存在无穷多个,使得.证明:当时,只需要取为偶数即可;当为奇素数时,由费尔马小定理知,,此时令,则.2、对,如果对任意,只要,就有,那么就称具有性质.1)证明:每个素数都具有性质;2)是否存在无穷多个合数具有性质?证明:对任意素数,由,可知,从而由费尔马小定理知,∴,可得,∴∴.2)存在无穷多个合数具有性质.例如:对奇素数,数都具有性质.事实上,,则为奇数,∴又,∴或若,由1)知;若,由费尔马小定理知,,这时,∴综上,总有,∴,即数都具有性质.3、求所有满足的正整数和素数.(其中欧拉函数)解:若时,,∴为偶数,且中所有的奇数均与互质,∴若为奇素数,设,其中是质数,是正整数,且∴,∴,又∴,但是,当时,,而∴,,∴∴综上:时,;时,;4、求不定方程的整数解为.(其中表示最接近整数的5的倍数)解:由,若,设,则,又,∴解得;若,设,则,又∴解得或.5、对于正奇数,若存在正奇数,满足,求满足条件的正奇数的总和.解:由为正奇数得:又由为正奇数得:∴另一方面:若,可以找到满足条件的正奇数当时,则;当时,∴共个正奇数的平方和.综上:,则其总和为.6、设,,正整数数组满足:,如果不能将分为和相等的两组数,那么称数组为“优秀的”,求所有的“优秀的”数组.解:设数组为“优秀的”,对1≤≤,考虑下面的个数:,其中由于不能将分为和相等的两组数,即其中没有若干个数之和等于,∴上面的个数中,除外,其余任意两项对模不同余,否则这两项之差等于.另外,上面的个数中,必有两个数模同余,∴对都成立∴又∴综上:当为奇数时,中有一个是,其余都是1,或;当为偶数时,中有一个是,其余都是1.。
初等数论同余方程组初等数论是数学中的一个分支,主要研究自然数的性质和整数的性质。
同余方程组是初等数论中的一个重要概念,它涉及到数与数之间的整除关系。
本文将介绍同余方程组的定义、性质以及解法,并通过例题来加深理解。
一、同余方程组的定义同余方程组是由若干个同余方程组成的一组方程。
同余方程的定义如下:对于整数a、b和正整数m,如果m能整除(a-b),即(a-b)能被m整除,则称a与b对于模m同余,记为a≡b(mod m)。
这里的≡表示同余关系。
二、同余方程组的性质1. 同余关系具有自反性、对称性和传递性。
即对于任意的整数a、b和正整数m,有a≡a(mod m),a≡b(mod m)等价于b≡a(mod m),若a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。
2. 同余关系具有加法和乘法的性质。
即对于任意的整数a、b和正整数m,若a≡b(mod m),则a+c≡b+c(mod m),ac≡bc(mod m)。
三、同余方程组的解法1. 线性同余方程组的解法:线性同余方程组是形如ax≡b(mod m)的方程组,其中a、b为整数,m为正整数。
若a与m互质,则存在唯一的解x0,且x≡x0(mod m)。
若a与m不互质,且b可被a整除,则方程组有无穷多个解,否则无解。
2. 中国剩余定理:中国剩余定理适用于一组两两互质的模数的同余方程组。
设m1、m2、...、mn为两两互质的正整数,a1、a2、...、an为整数,则同余方程组:x≡a1(mod m1)x≡a2(mod m2)...x≡an(mod mn)有唯一的解x,且0≤x<m1m2...mn。
四、例题解析1. 解线性同余方程组:求解方程组2x≡3(mod 5)和3x≡4(mod 7)。
首先,对于第一个方程,由于2与5互质,所以存在唯一解x0。
根据扩展欧几里得算法,我们可以求出x0=4。
然后,将x0代入第二个方程,得到3*4≡4(mod 7),即12≡4(mod 7)。
第四章 同余式§1 基本概念及一次同余式作为一个解。
中的一切数,即成立,故把都能使中的任意整数,则剩余类的合理性:若定义的一个解。
叫做成立的一个整数,则是使若称为次数。
,则的同余式。
若称为模,则,其中,设余方程)的求解问题。
课题是研究同余式(同初等数论中的一个基本)(m od )(m od 0)()(m od 0)(2)(m od 0)()(m od )(m od 0)()(m od 0)(m od 0)()(011m a x K m a f a K m a f m x f m a x m a f a n m a m m x f a a x a x a x f m a a n i n n n n ≡≡''≡≡≡≡≡/≡∈+++=∈--+定义2定义1Z Z 。
,解数为,的解为同余式,所以,,的一切整数解为因为不定方程。
有解不定方程有解同余式的任一个解。
是同余式其中,,个解,它们是余式共有。
当此条件成立时,同有解的充分必要条件是,则一次同余式设d d k m dmk x x m b ax t t dmx x b my ax b d b my ax m b ax m b ax x d k m dmk x x d b d m b ax d m a 1,,1,0)(m od )(m od )2(|)(m od )1()(m od 1,,1,0)(m od |)(m od ),(0000-=⋅+≡≡∈+==+⇔=+⇔≡≡-=⋅+≡≡= Z 证明定理。
解时,一次同余式有唯一当)(m od 1),(1)(m b a x m a m -≡=ϕ注同余式的解法1、代入法(适用于模较小时) 。
,得的完全剩余系逐一代入以,,所以同余式有唯一解因为解同余式)17(m od 6171)17,3()17(m od 13≡=≡x x 解例12、公式法(适用于模较小时)。
从而,,,所以同余式有唯一解因为解同余式)11(m od 8656)2()2()3(98981)11,8()11(m od 98491101)11(≡⋅≡⋅-≡-⋅-≡⋅≡⋅≡=≡--ϕx x 解例23、变换系数法 。