初等数论§3同余
- 格式:ppt
- 大小:1.75 MB
- 文档页数:5
初等数论同余方程组初等数论是数学中的一个分支,主要研究自然数的性质和整数的性质。
同余方程组是初等数论中的一个重要概念,它涉及到数与数之间的整除关系。
本文将介绍同余方程组的定义、性质以及解法,并通过例题来加深理解。
一、同余方程组的定义同余方程组是由若干个同余方程组成的一组方程。
同余方程的定义如下:对于整数a、b和正整数m,如果m能整除(a-b),即(a-b)能被m整除,则称a与b对于模m同余,记为a≡b(mod m)。
这里的≡表示同余关系。
二、同余方程组的性质1. 同余关系具有自反性、对称性和传递性。
即对于任意的整数a、b和正整数m,有a≡a(mod m),a≡b(mod m)等价于b≡a(mod m),若a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。
2. 同余关系具有加法和乘法的性质。
即对于任意的整数a、b和正整数m,若a≡b(mod m),则a+c≡b+c(mod m),ac≡bc(mod m)。
三、同余方程组的解法1. 线性同余方程组的解法:线性同余方程组是形如ax≡b(mod m)的方程组,其中a、b为整数,m为正整数。
若a与m互质,则存在唯一的解x0,且x≡x0(mod m)。
若a与m不互质,且b可被a整除,则方程组有无穷多个解,否则无解。
2. 中国剩余定理:中国剩余定理适用于一组两两互质的模数的同余方程组。
设m1、m2、...、mn为两两互质的正整数,a1、a2、...、an为整数,则同余方程组:x≡a1(mod m1)x≡a2(mod m2)...x≡an(mod mn)有唯一的解x,且0≤x<m1m2...mn。
四、例题解析1. 解线性同余方程组:求解方程组2x≡3(mod 5)和3x≡4(mod 7)。
首先,对于第一个方程,由于2与5互质,所以存在唯一解x0。
根据扩展欧几里得算法,我们可以求出x0=4。
然后,将x0代入第二个方程,得到3*4≡4(mod 7),即12≡4(mod 7)。
数论算法讲义3章(同余方程)第 3 章同余方程(一)内容:● 同余方程概念● 解同余方程● 解同余方程组(二)重点● 解同余方程(三)应用● 密码学,公钥密码学3.1 基本概念及一次同余方程(一) 同余方程(1)同余方程【定义3.1.1】(定义1)设m 是一个正整数,f(x)为n 次多项式()0111a x a x a x a x f n n n n ++++=--Λ其中i a 是正整数(n a ≠0(mod m )),则f (x)≡0(mod m )(1)叫做模m 的(n 次)同余式(或模m 的(n 次)同余方程),n 叫做f(x)的次数,记为deg f 。
(2)同余方程的解若整数a 使得f (a)≡0(mod m )成立,则a 叫做该同余方程的解。
(3)同余方程的解数若a 是同余方程(1)的解,则满足x ≡a (mod m )的所有整数都是方程(1)的解。
即剩余类a C ={x |x ∈Z ,x ≡a (mod m )}中的每个剩余都是解。
故把这些解都看做是相同的,并说剩余类a C 是同余方程(1)的一个解,这个解通常记为x ≡a (mod m )当21,c c 均为同余方程(1)的解,且对模m 不同余时,就称它们是同余方程(2)的不同的解,所有对模m 的两两不同余的解的个数,称为是同余方程(1)的解数,记作()m f T ;。
显然()m f T ;≤m(4)同余方程的解法一:穷举法任意选定模m 的一组完全剩余系,并以其中的每个剩余代入方程(1),在这完全剩余系中解的个数就是解数()m f T ;。
【例1】(例1)可以验证,x ≡2,4(mod 7)是同余方程15++x x ≡0(mod 7)的不同的解,故该方程的解数为2。
50+0+1=1≡3 mod 751+1+1=3≡3 mod 752+2+1=35≡0 mod 753+3+1=247≡2 mod 754+4+1=1029≡0 mod 755+5+1=3131≡2 mod 756+6+1=7783≡6 mod 7【例2】求同余方程122742-+x x ≡0(mod 15)的解。
第三讲:初等数论3——同余的性质和应用三、巩固练习1. 今天是星期三,到第1000天是星期几?解:从今天到第1000天相隔999天,1000-1≡5(mod 7),3+5-7=1,是星期一.2. 若1059,1417,2313分别被自然数x除时,所得余数都是y,则x-y= .解:∵1059≡y(mod x) ,1417≡y(mod x) , 2313≡y(mod x),∴1417-1059=358≡0(mod x),2313-1417=896≡0(mod x), 2313-1059=1254≡0(mod x)又(358,896,1254)的最大公约数为2,则x=2, y=1,x-y=1.3. 若正整数a和1995对于模6同余,则a的值可以是()A. 25B. 26C. 27D. 28解:1995除以6的余数是3,a≡1995 (mod 6),a除以6的余数也是3,只有a=27,选C.4. 一个两位数被7除余1,它的反序数被7除也余1,那么这样的两位数共有()A. 2个B. 3个C. 4个D. 5个解:列出满足条件的所有两位数:15,22,29,36,43,50,57,64,71,78,85,92,99 两位数据反序数也满足条件的有:22,29,92,99,选C.5. 设n为自然数,则32n+8被8除的余数是_________.解:由32n+8=9n+8,知32n+8≡1n+0(mod 8)≡1(mod 8) ,故32n+8被8除余1.6. 黑板上写着13个数:1908,1918,1928,1938,1948,1958,1968,1978,1988,1998,2008,2018,2028.小明第一次擦掉其中的一个数,第二次擦掉剩下数中的两个数,第三次擦掉剩下数中的三个数,第四次擦掉剩下数中的四个数,他想使得每次擦掉数后剩下的所有数之和为13的倍数,小明的意图能否达到?如果可以,给出一种可行的方法,不能请说明理由.答案:可以:依次擦掉(2028);(1958,1968);(1908,1938,1978);(1918,1928,1998,2008)。
初等数论(三)--同余基本性质:(1) 反身性:(mod )a a m ≡(2) 对称性:若(mod ),a b m ≡则(mod ),b a m ≡(3) 传递性:如果(mod ),a b m ≡(mod ),b c m ≡那么(mod ),a c m ≡以上三个性质说明∙“同余是一个等价关系,Z 中元素可以按照模m 分成m 个类,粗略地讲,用一类中的元素可以认为是相同的”(4) 如果(mod ),a b m ≡(mod ),c d m ≡那么(mod ),(mod ),a c b d m ac bd m ±≡±≡(5) 如果(mod ),a b m ≡那么(mod ),n n a b m ≡(6) 如果(mod )ac ab m ≡,不一定有(mod )c b m ≡(整数之间的乘法消去律不一定成立),(7) 若(mod ),ac bc m ≡则mod (,)m a b c m ⎛⎫≡ ⎪⎝⎭。
因此,(,)1c m =时,才会有(mod )a b m ≡。
例1.若质数5,p ≥并且21p +也是质数,证明:41p +是合数。
例2.对于任何n 个整数的集合,存在一个子集,该子集的元素之和被n 整除。
例3.证明表达式23,95x y x y ++按照相同的,x y 被17整除。
例4.设3p ≥为奇质数且111...21a p b +++=-, 证明:p a 。
作业:证明:3131421x x ++++被7整除。
例5.30对夫妻围着圆桌而坐。
证明:至少有两名妻子到各自丈夫的距离相等。
例6.设(,)1a m =,证明方程(mod )ax b m ≡在{0,1,2,3,...,1}m -中有唯一解。
例7.设01,,,,1,2,3,...n n a b x N x ax b n -∈=+=。
证明:数列12,,....,,...n x x x 不可能都是质数。
例8.证明方程2222x y z xyz ++=只有一个整数解0x y z ===。
同余关系的概念与定理同余关系是离散数学中一个重要的概念,它在数论、代数和密码学等领域有着广泛的应用。
本文将介绍同余关系的概念和相关定理。
一、同余关系的概念同余关系是数论中的一个基本概念,它描述了两个数之间的整除关系。
具体来说,给定两个整数a和b,如果它们除以一个正整数m所得的余数相同,即a和b对m同余,记作a≡b(mod m),则称a和b关于模m同余。
二、同余关系的性质同余关系具有以下三个性质:1.自反性:对于任意整数a,a≡a(mod m)恒成立。
即任意整数与自身关于模m同余。
2.对称性:对于任意整数a和b,若a≡b(mod m),则b≡a(mod m)。
即若a与b关于模m同余,则b与a关于模m同余。
3.传递性:对于任意整数a、b和c,若a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。
即若a与b关于模m同余,且b与c关于模m同余,则a与c关于模m同余。
三、同余关系的定理1. 除法定理:对于任意整数a和正整数m,存在唯一的整数q和r,使得a=qm+r,其中0≤r<m。
即任意整数a可以表示为以m为模的除法形式。
2. 模运算性质:- 同余类的性质:对于任意整数a和正整数m,a关于模m的同余类可以表示为[a]m={b∈Z | b≡a(mod m)},其中Z表示整数集合。
同余类[a]m是所有与a关于模m同余的整数构成的集合。
- 同余的运算性质:对于任意整数a、b和正整数m,若a≡a' (mod m)且b≡b' (mod m),则有a+b≡a'+b' (mod m),a-b≡a'-b' (mod m),ab≡a'b' (mod m)。
3. 唯一性定理:对于给定的整数a、b和正整数m,存在整数x,使得a≡b (mod m)的充分必要条件是a和b对m的余数相同。
即a和b关于模m同余的充分必要条件是它们对m的余数相同。
4. 同余定理:对于任意整数a、b和正整数m,若a≡b (mod m),则a^n≡b^n (mod m),其中n是正整数。
同余的运算法则全文共四篇示例,供读者参考第一篇示例:同余的概念最早出现在数论领域,是一种描述整数间的模运算关系的数学概念。
同余的运算法则涉及到模运算的一系列性质和规律,对于解决一些数论问题和密码学中的加密算法起着至关重要的作用。
本文将介绍同余的概念及其运算法则,并讨论其在数学和应用方面的重要性。
1. 同余的定义在数论中,我们通常使用符号“≡”表示同余关系。
如果两个整数a和b除以一个正整数m的余数相等,即a除以m和b除以m的余数相等,我们就说a与b关于模m同余,记为a≡b(mod m)。
简单来说,同余就是指两个数除以同一个数的余数相等。
12和22关于模5同余,因为12除以5的余数为2,22除以5的余数也为2,即12≡22(mod 5)。
2. 同余的运算法则在模运算中,同余有着一系列的运算法则。
我们可以根据这些法则来简化模运算的计算,并处理一些复杂的数论问题。
(1)同余的传递性如果a≡b(mod m)且b≡c(mod m),那么可以推出a≡c(mod m)。
这就是同余关系的传递性,即如果两个数与同一个模同余,那么它们之间也是同余的。
举例来说,如果5≡15(mod 10)且15≡25(mod 10),那么可以推出5≡25(mod 10)。
(2)同余的对称性和反对称性(3)同余的加法和乘法性质对于同余关系来说,加法和乘法都具有良好的性质。
(4)同余的幂运算性质如果a≡b(mod m),那么对于任意正整数n,有a^n≡b^n(mod m)。
即同余数的幂运算后依然同余。
(5)同余的逆元如果a在模m下存在逆元,即存在整数b使得ab≡1(mod m),那么我们称b是a的逆元。
对于素数模m来说,任意整数a在模m下都有逆元。
同余的概念在数论和密码学领域有着广泛的应用。
(1)同余在数论中的应用在数论中,同余可以用来证明一些整数性质和解决一些数论问题。
在证明费马小定理和欧拉定理等定理时就会用到同余的性质。
在密码学中,同余的概念有着重要的应用。
第三章同余§ 1同余的概念及其基本性质定义1设meZ\称之为模。
若用加去除两个整数“与b所得的余数相同,则称"上对模加【可余,记作:a = b (mod /n);若所得的余数不同,则称w,〃对模加不同余,记作:"圭b(mod〃2)。
例如,8 = 1 (mod 7),:所有偶数“三0 (mod 2),所有奇数“ =1 (mod 2)。
同余是整数之间的一种关系,它具有下列性质:R a = a (mod m);(反身性)2、若"三b (mod加),贝肪三a (mod m);(对称性)3、若"三b (mod m), b = c (mod m),贝h 三 c (mod 加);(传递性) 故同余关系是等价关系。
定理1整数对模加同余的充分必要条件是RP a = b + mt,r eZo证明设"=+ b = mq2 + r v 0 < r2 < m,贝l] a = b (mod m) O 打=r2 O a — b = m(q{一⑴)O I (" 一b)°性质1(1)若%三S (mod m)> a2 = b2 (mod m)> 则a x + a2 +b2 (mod /n);(2)若"+ h = c (mod 〃?),贝ij a = c-b (mod m)o性质2 若=/?, (mod /??), a2 =b2 (mod m),则"]5 "心(mod m):特别地,若a = b (mod m),则畑三kb (mod加)。
定理2若比…亞三〃叶・%(mod/),兀三片(mod皿),j = 1,2,…人则艺比…致坊‘…場三另3时灼)吓…yj (mod/);特别地,若%三化(mod加),i = OJ2・・・,n,则心* +"心]北1 + - - +u()=b n x n +/>n_|x71'1 + …+ "o (mod 加)。
千里之行,始于足下。
同余问题学问点讲解同余问题是数论中的一个重要概念,它在数学中有着广泛的应用。
同余问题的定义是:对于给定的整数a、b和正整数m,假如a-b能够被m整除,则称a与b对于模m同余,记作a≡b(mod m)。
同余问题的本质是数的剩余,即两个数除以某个正整数得到的余数相等。
通过同余问题的争辩,可以得到一些有关数的性质和关系。
同余问题有一些基本性质:1. 若a≡b (mod m) ,则对于任意的正整数k,有 a+k*m≡b+k*m (mod m) ,即同余关系对加法成立。
2. 若a≡b (mod m) ,则对于任意的正整数k,有 a*k≡b*k (mod m) ,即同余关系对乘法成立。
3. 若a≡b (mod m) ,且b≡c (mod m) ,则 a≡c (mod m) ,即同余关系对传递成立。
4. 若a≡b (mod m) ,则 a^n ≡ b^n (mod m) ,即同余关系对幂运算成立。
基于同余性质,我们可以进行一系列的运算和推导。
首先,同余问题可以用来简化计算。
例如,对于不便利计算的大数,可以通过取模运算将其转化为较小的数进行计算,而不转变其同余关系。
第1页/共2页锲而不舍,金石可镂。
同余问题还可以用来求解方程。
例如,对于形如ax≡b (mod m) 的方程,可以通过同余性质进行变形和推导,得到方程的解。
同余问题在密码学中也有重要应用。
例如,RSA算法中的模运算就是基于同余问题的。
同余问题还可以用来进行数字签名和数据加密等操作。
同余问题还与模运算有亲密的关系。
模运算是将一个数除以另一个数得到的余数,而同余问题是比较两个数的余数是否相等。
通过同余问题,可以推导出一些模运算的性质和规章。
最终,同余问题还有一些重要的定理,如中国剩余定理、费马小定理等。
这些定理在数论和密码学中有广泛的应用。
总结起来,同余问题是数论中的一个基本概念,它争辩的是两个数取模后的余数是否相等。
通过同余问题的争辩,可以推导出一些有关数的性质和关系,用来简化计算、求解方程、进行密码学操作等。
数论中的同余关系数论作为数学的一个分支,研究的是整数及其性质。
其中,同余关系是数论中一个重要的概念。
本文将就数论中的同余关系进行探讨,以便深入理解这一概念。
1. 引言在数论中,同余是指两个整数除以一个给定的正整数所得的余数相等。
形式化定义为:对于整数a、b和正整数m,如果m|(a-b),即m能被a-b整除,那么就称a与b对模m同余,记作a≡b(mod m),读作“a 同余于b模m”。
同余关系具有如下性质:(1) 自反性:对于任意整数a和正整数m,a≡a(mod m);(2) 对称性:对于任意整数a、b和正整数m,如果a≡b(mod m),那么b≡a(mod m);(3) 传递性:对于任意整数a、b、c和正整数m,如果a≡b(mod m)且b≡c(mod m),那么a≡c(mod m)。
2. 同余关系的性质同余关系具有一些重要的性质,这些性质对于解决数论问题非常有用。
(1) 同余的基本性质:- 同余关系是等价关系。
即满足自反性、对称性和传递性。
- 设a≡b(mod m),那么对于任意的整数k,a+km≡b(mod m)。
- 设a≡b(mod m),c≡d(mod m),那么a+c≡b+d(mod m)和ac≡bd(mod m)。
(2) 同余的运算性质:- 加法性质:设a≡b(mod m),c≡d(mod m),那么a+c≡b+d(mod m)。
- 减法性质:设a≡b(mod m),c≡d(mod m),那么a-c≡b-d(mod m)。
- 乘法性质:设a≡b(mod m),c≡d(mod m),那么ac≡bd(mod m)。
(3) 欧拉定理:欧拉定理是数论中的一个重要结果,描述了同余关系与指数运算之间的关系。
- 设a和m是两个互质的正整数,那么a^φ(m) ≡ 1(mod m),其中φ(m)表示小于m且与m互质的正整数的个数。
3. 同余方程同余关系在解决某些问题时,经常涉及到同余方程的求解。
同余方程是指形如ax ≡ b(mod m)的方程,其中a、b和m都是整数,求解的目标是找到整数x满足这个方程。
第1讲初等数论中的同余问题复旦大学附属中学万军2011年协作体夏令营系列讲座(一)初等数论中的同余问题复旦附中万军同余的概念和性质:设为非零整数,如果整数满足,则称和对模同余,记为;否则称和对模不同余,记为.注意到,,故,所以我们总是可以假定为正整数.对于固定的模,同余有很多性质:1)同余是一种等价关系,即有①自反性:;②对称性:若,则;③传递性:若,,则.2)加法、减法、乘法和乘方运算:若,,则,,.3)除法运算:,则.特别地,若,则.4)同余组:同时成立的充要条件是剩余类与完全剩余系:设为一个给定的正整数,则全体整数可以分成个集,记为,其中,则称为模的剩余类.模的剩余类有下列性质:1)每个整数必属于且仅属于模的一个剩余类中;2)两个整数同在一个剩余类中的充要条件是这两个整数模同余.事实上,,0≤≤,有如果个整数中不存在两个数属于同一剩余类,则称为模的一个完全剩余系(或称完系).最常用的剩余系称为模的非负最小完全剩余系.此外也常用到绝对值最小完全剩余系,它们是:当为奇数时,当为偶数时,或完全剩余系有下列性质:1)个整数作为模的一个完全剩余系的充要条件是它们两两模不同余;2)若是模的一个完全剩余系,,那么也是模的一个完全剩余系;也常这样描述:设是正整数,,若通过模的一个完全剩余系,则也通过模的一个完全剩余系.3)若是互质的两个正整数,而分别通过的一个完全剩余系,则通过的一个完全剩余系.如果一个模的剩余类里面的数与互质,就把它叫做一个与模互质的剩余类,在与模互质的全部剩余类中,从每一类各任取一个代表元所组成的数集,叫做模的一个简化剩余类系(或缩系).定理1:模的剩余类是模互质的剩余类的充要条件是此类中有一个数与互质.因此与模互质的剩余类的个数是,模的每一个简化剩余类系是由与互质的个对模不同余的整数组成的.其中,(欧拉函数)是定义在正整数上的函数,它在正整数上的值是集合中与互质的数的个数.定理2:若是个与互质的数整,并且两两对模不同余,则是模的一个简化剩余类系.定理3:若,通过模的一个简化剩余系,则也通过模的一个完全剩余系.定理4:若是互质的两个正整数,而分别通过的一个简化剩余系,则通过的一个简化剩余系.推论:若是互质的两个正整数,则.下面的几个定理在处理数论问题时经常用到,并且它们本身的证明也是很好的例题.1、(欧拉函数)是定义在正整数上的函数,它在正整数上的值是集合中与互质的数的个数,求.2、(欧拉定理)设是正整数,且,则.3、(费尔马小定理)若是质数,是正整数,则.4、(拉格朗日定理)设为素数,多项式是一个模为次整系数多项式,则关于的同余方程(在模的意义下)至多有个不同的解.5、(威尔逊定理)设为素数,则.6、设为整数,为正整数,若存在,使得,则称为模的二次剩余,否则,称为模的二次非剩余.7、已知斐波那契数列,设为大于5的素数,证明:8、求所有满足下面两式的三元组,其中为奇素数,为大于1的整数.①②练习题:1、设为素数,证明:存在无穷多个,使得.2、对,如果对任意,只要,就有,那么就称具有性质.1)证明:每个素数都具有性质;2)是否存在无穷多个合数具有性质?3、求所有满足的正整数和素数.(其中欧拉函数)4、求不定方程的整数解为.(其中表示最接近整数的5的倍数)5、对于正奇数,若存在正奇数,满足,求满足条件的正奇数的总和.6、设,,正整数数组满足:,如果不能将分为和相等的两组数,那么称数组为“优秀的”,求所有的“优秀的”数组.讲座一参考答案 2011-7-18例题答案:1.解:设,其中是质数,是正整数,由定理4的推论得,由欧拉函数的定义知等于减去集合中与不互质的元素个数,也就是减去集合中与不互质的元素个数,又是质数,∴∴另证:本定理也可以用容斥原理来证明.设,其中是质数,是正整数,记,∴由容斥原理得2.证明:设是模的一个简化剩余系,则由定理3知,也是模的一个简化剩余系.∴与且仅与中的一个数对模同余,∴即(*)又是模的一个简化剩余系,故.∴∴由(*)知:.3.证明:若,则,结论显然成立;若,由欧拉定理知,即.注:费尔马小定理的另一种形式:若是质数,是正整数,,则.另证:对进行归纳,当时,结论显然成立;假设时,结论也成立,即则.(其中用到了,当时,)∴对任意,有.4.证明:对进行归纳.当时,由于,则无解,∴定理成立.假设定理对所有次数小于的多项式都成立,现设存在一个次多项式,使得同余方程有个(在模的意义下)不同的解.利用因式定理,可设,则在模的意义下是一个至多次的多项式.由都是的解,知对≤≤,都有,而,故,从而至少有根,与归纳假设矛盾,所以,定理对次整系数多项式也成立.综上,定理成立.5.证明:当时,显然成立;当为奇素数时,考虑多项式可以看到的最高次数为又当时,,由费尔马小定理知,∴由拉格朗日定理知,的展开式中各项系数都是的倍数,∴又为奇素数,为偶数,∴,得证.6.设为奇素数,且,证明:是模的二次剩余充要条件是;是模的二次非剩余充要条件是.证明:若为模的二次剩余,即存在,使得.由,可知,由费尔马小定理知,.反过来,若,则是同余方程的解,由拉格朗日定理知,该方程至多有个解,而都是该同余方程的解,∴它们就是该方程的全部解,∴存在,使得.另一方面,若是模的二次非剩余,则但由费尔马小定理,,即∴,即反过来,,又是模的二次剩余,则∴与为奇素数矛盾.7.证明:知斐波那契数列的通项公式()对大于5的素数,由费尔马小定理可知,∴,又∴或如果(其中用到了,当时,,及费尔马小定理)∴如果,类似计算可得,则综上,8.解:显然是①的解,代入②解得,∴都是方程的解.另外,当或时,同样可以得出上述解.下设≥5,当时,由②知而∴或但是,∴上式不可能成立.∴≥3由①知同理可得,∴∴③又在≥4时,单调递增,∴≥∴③式≤≤矛盾.∴由于又,没有平方因数,∴∴≥7,≥11并且≤≤,∴≤与③式矛盾.∴本题的解只能是.练习题答案:1、设为素数,证明:存在无穷多个,使得.证明:当时,只需要取为偶数即可;当为奇素数时,由费尔马小定理知,,此时令,则.2、对,如果对任意,只要,就有,那么就称具有性质.1)证明:每个素数都具有性质;2)是否存在无穷多个合数具有性质?证明:对任意素数,由,可知,从而由费尔马小定理知,∴,可得,∴∴.2)存在无穷多个合数具有性质.例如:对奇素数,数都具有性质.事实上,,则为奇数,∴又,∴或若,由1)知;若,由费尔马小定理知,,这时,∴综上,总有,∴,即数都具有性质.3、求所有满足的正整数和素数.(其中欧拉函数)解:若时,,∴为偶数,且中所有的奇数均与互质,∴若为奇素数,设,其中是质数,是正整数,且∴,∴,又∴,但是,当时,,而∴,,∴∴综上:时,;时,;4、求不定方程的整数解为.(其中表示最接近整数的5的倍数)解:由,若,设,则,又,∴解得;若,设,则,又∴解得或.5、对于正奇数,若存在正奇数,满足,求满足条件的正奇数的总和.解:由为正奇数得:又由为正奇数得:∴另一方面:若,可以找到满足条件的正奇数当时,则;当时,∴共个正奇数的平方和.综上:,则其总和为.6、设,,正整数数组满足:,如果不能将分为和相等的两组数,那么称数组为“优秀的”,求所有的“优秀的”数组.解:设数组为“优秀的”,对1≤≤,考虑下面的个数:,其中由于不能将分为和相等的两组数,即其中没有若干个数之和等于,∴上面的个数中,除外,其余任意两项对模不同余,否则这两项之差等于.另外,上面的个数中,必有两个数模同余,∴对都成立∴又∴综上:当为奇数时,中有一个是,其余都是1,或;当为偶数时,中有一个是,其余都是1.。
第三章同余1 同余的概念及其基本性质定义1 设m Z ,称之为模。
若用m去除两个整数a与b所得的余数相同,则称a, b对模m同余,记作: a b (mod m);若所得的余数不同,则称a, b对模m不同余,记作: a b (mod m)。
例如,8 1 (mod 7),;所有偶数 a 0 (mod 2),所有奇数 a 1 (mod 2)。
同余是整数之间的一种关系,它具有下列性质:1、 a a (mod m);(反身性)2、若a b (mod m),则 b a (mod m);(对称性)3、若 a b (mod m), b c (mod m),则 a c (mod m);(传递性)故同余关系是等价关系。
定理1 整数a, b 对模m 同余的充分必要条件是m | (a b),即a b mt,t Z。
证明设 a mq1 r1, b mq2r2,0 r1 , r2m,则 a b (mod m) r1 r2 a b m(q1 q2 ) m | (a b)。
性质1 (1) 若a1 b1 (mod m),a2 b2 (mod m),则a1a2 b1 b2 (mod m);(2) 若a b c (mod m),则 a c b (mod m)。
性质2 若a1 b1 (mod m),a2b2(mod m),则a1a2b1b2(modm);特别地,若 a b (mod m),则 k a kb (mod m)。
定理2 若 A 1 k B 1 k (mod m), x i y i (mod m), i 1,2, , k ,B 1 k y 1 1y k k(mod m);特别地,若 a i b i (mod m),1kn n1i 0,1,2,, n ,则a n x a n 1x性质3 若 a a 1d , b b 1d , (d , m) 1, a b (mod m),则 a 1 b 1 (mod m)。
性质4 (1) 若 a b (mod m), k 0,则 ak bk (mod mk);(2) 若 a b (mod m), d 是 a, b 及 m 的任一公因数,则a b(mod m )。