泰勒公式与拉格朗日中值定理在证明不等式中的简单应用
- 格式:doc
- 大小:491.50 KB
- 文档页数:6
拉格朗日中值定理在高中数学不等式证明中的巧妙运用作者:左代丽来源:《新校园(下)》2016年第03期摘要:本文首先介绍了拉格朗日中值定理在高中数学中的主要应用形式和应用范围,对拉格朗日中值定理予以三种方式证明,并结合相关证明不等式例题,介绍了拉格朗日中值定理在高中不等式证明中的巧妙运用。
关键词:拉格朗日中值定理;不等式;证明;应用拉格朗日中值定理是微积分中值定理(包含罗尔定理、柯西定理以及拉格朗日定理)中的一种,对于微积分理论构造有重要的作用。
不等式的证明作为高中数学中较为常见的题型,也是高考中较为常见的题型。
对于不等式证明的解题方式有很多,利用中值定理解不等式是一种常见的方式。
但高中生并没有深入学习微积分,对此种方法的理解不够深入,应用起来稍显笨拙。
一、拉格朗日中值定理在高中数学中的主要应用1.极限问题的求解。
极限问题是高中数学中极限学习的考察重点,在高中数学教学中,许多教师都向学生介绍了洛必达法则、夹逼定理、泰勒公式等解题方式。
这些解题方式原理简单,解题思路顺畅,解题效果较好,极容易被学生吸收。
而利用拉格朗日中值定理来求解极限问题的教学比较少见,一方面,拉格朗日中值定理相对复杂,通常用来解决复杂的极限问题,另一方面,学生对于复杂的极限题目往往具有畏难心理,常常在解题过程中选择放弃。
实际上,利用拉格朗日中值定理来解决复杂的极限问题,其实质在于分解题目,实现对题型的转变,运用拉格朗日中值定理求极限的时候要把握好拉格朗日中值定理与极限问题之间的关联,寻找两者之间的连接点,做好式子的简化,这样才能快速解题。
2.不等式证明的求解。
不等式证明题是不等式教学中最基本的题型之一,解决不等式证明的常规方法有许多,例如:数形结合、导数法等。
利用拉格朗日中值定理来解决不等式证明题,其核心在于对函数的构建,以及进一步探索导数与构建的函数之间的关系,利用这种关系,进一步确定在特定条件下函数成立,继而证明不等式。
常规方法证明较复杂的不等式需要耗费大量的演算时间,且容易在求解过程中产生思维冲突,不利于正确解题,但直接运用拉格朗日中值定理非常简单,能够快速求解。
导数在不等式证明中的应用
【摘要】导数概念的产生有着直觉的起源,与曲线的切线和运动质点的速度有密切的关系导数用于描述函数变化率,刻画函数的因变量随自变量变化的快慢程度。
在数学教学中,将数学问题系列化,能够有效地提高学生解决数学问题的能力。
【关键词】导数函数不等式中值定理
一、利用导数的定义证明不等式
定义1:设函数在点某0的某一领域内有定义,在点某0处给自变量以增量(点某0+仍在该领域内),相应地,函数有增量
如果当时比值的极限
存在,则称此极限值为函数在点处的导数,记作,,.并称函数在点处可导.
二、利用中值定理证明不等式
定理1:(拉格朗日中值定理)若函数满足条件:(1)在闭区间上连续;
(2)在开区间内可导,则在区间内至少存在一点,使得.定理2:(柯西中值定理)设函数和满足条件:(1)、在闭区间上连续;(2)、在开区间可导,且,则至少存在一点,使.
三、积分第二中值定理
四、用泰勒公式(Taylor公式)证明不等式
定理5:(泰勒定理)若在包含的某个区间上具有阶导数,则对于此区间内任一点,在此区间内至少存在一点,使得
通常为拉格朗日余项。
从上面的讨论中我们可以得知,导数在证明不等式中的重要性.导数在证明不等式中的应用在历年研究生入学考试及各种《高等数学》竞赛中经常出现。
㊀㊀解题技巧与方法㊀㊀152㊀数学分析中几类证明不等式的方法数学分析中几类证明不等式的方法Һ郭㊀鑫㊀(天津师范大学,天津㊀300222)㊀㊀ʌ摘要ɔ在学习数学分析时我们常会见到一些不等式,当然,其中有一些著名的不等式无论是在解题还是在实际应用中都有重要的作用.笔者认为解决这些不等式的证明应该先找到对应的数学分析知识点,所以,本文中结合数学分析的知识点列举了四种常用的证明不等式的思路.本文中在每一种方法后附加了例题及解答,一些题目是选择了教材上的典型例题,还有一些是考研题目及其改编.不等式的证明往往有多种证明方法,还望读者多思考出更多不同的证明方法.ʌ关键词ɔ不等式;数学分析;积分;证明为了加深对数学分析中不等式证明的理解和掌握,本文在数学分析的基础上研究并整理了几种证明不等式的方法,也节选了典型例题辅助讲解.本文属于综述型论文,归纳总结了前人的理论成果并加上自己的理解与补充,希望本文可以帮助读者对于不等式问题有初步的解题思路,并借此探索更多的关于不等式的证明方法.一㊁几个著名不等式(一)Jensen不等式如果f(x)为[a,b]上的凸函数,那么对任何xiɪ[a,b],λi>0(i=1,2, ,n),ðni=1λi=1有f(ðni=1λixi)ɤðni=1λifxi().证明㊀当n=1时,结论显然成立;当n=2时,由凸函数的定义可以知道f(λ1x1+λ2x2)ɤλ1f(x1)+λ2f(x2)成立.假设n-1时命题成立,则对任意x1,x2, ,xnɪ[a,b],以及λi>0,ðni=1λi=1,令μi=λi1-λn>0(i=1,2, ,n-1),可以得到μ1+μ2+ +μn-1=1,由归纳假设得fðn-1i=1μixi()ɤðn-1i=1μif(xi),所以ðni=1λixi()=f((1-λn)㊃λ1x1+λ2x2+ +λn-1xn-11-λn+λnxn)ɤ(1-λn)㊃fλ1x1+λ2x2+ +λn-1xn-11-λnæèçöø÷+λnf(xn)ɤ(1-λn)㊃[μ1f(x1)+μ2f(x2)+ +μn-1f(xn-1)]+λnf(xn)=λ1f(x1)+λ2f(x2)+ +λnf(xn).由数学归纳法可知原命题成立.例1㊀求证:(abc)a+b+c3ɤaabbcc,其中a,b,c均为正数.提示㊀令f(x)=xlnx,运用Jensen不等式即证.(二)平均值不等式任意ai>0(i=1,2, ,n),有n1a1+1a2+ +1anɤna1 anɤa1+a2+ +ann.证明㊀设f(x)=lnx,则fᵡ(x)<0,从而f(x)为凹函数,所以由Jensen不等式可得fa1+a2+ +annæèçöø÷ȡf(a1)+f(a2)+ +f(an)n,即lnna1a2 an=1n(lna1+lna2+ +lnan)ɤlna1+a2+ +ann.因为f(x)为增函数,所以na1a2 anɤa1+a2+ +ann,同理n1a1㊃1a2㊃ ㊃1anȡ1a1+1a2+ +1ann,即得结论.注:此题还可运用条件极值证明.(三)Schwarz不等式若f(x)和g(x)在[a,b]上可积,则ʏbaf(x)g(x)dx()2ɤʏbaf2(x)dx㊃ʏbag2(x)dx.证明㊀因为f(x),g(x)在[a,b]上可积,所以f(x)+tg(x)在[a,b]上可积,从而ʏba(f(x)+tg(x))2dx=ʏbaf2(x)dx+ʏba2tf(x)g(x)dx+ʏbat2g2(x)dxȡ0,(∗)将(∗)式看作自变量t的一元二次函数,则Δ=4ʏbaf(x)g(x)dx()2-4ʏbaf2(x)dx㊃ʏbag2(x)dxɤ0,结论得证.推论㊀(柯西不等式)对任意ai,bi有ðni=1aibi()2ɤðni=1ai2㊃ðni=1bi2.例2㊀若f(x),g(x)都在[a,b]上可积,则有闵可夫斯基(Minkowski)不等式:ʏba(f(x)+g(x))2dx[]12ɤʏbaf2(x)dx[]12+ʏbag2(x)dx[]12.提示㊀不等式两边平方,化简,利用Schwarz不等式.(四)Hadamard不等式设f(x)为[a,b]上的连续凸函数.求证:fa+b2()ɤ1b-aʏbaf(x)dxɤf(a)+f(b)2.提示㊀利用凸函数的性质,证明详细过程见下页.二㊁利用函数单调性与极值解决不等式问题(一)利用单调性解决不等式问题函数的单调性是较为简单直接的证明不等式的方法,对于可导函数f(x)可以通过fᶄ(x)的正负判断f(x)的增减性,从而利用具体自变量的取值得到不等式.此类题目的关键在于构建合适的f(x).(例题中涉及几类常用的构造函数的方法)㊀㊀㊀解题技巧与方法153㊀㊀例3㊀(若尔当不等式)设0<xɤπ2,则2πɤsinxx<1.证明㊀设f(x)=sinxx,则fᶄ(x)=xcosx-sinxx2;再令g(x)=xcosx-sinx,则gᶄ(x)=-xsinx<0,从而g(x)递减.又因为g(0)=0,所以g(x)<0,则有fᶄ(x)<0,即f(x)递减.又因为limxң0f(x)=1,且fπ2()=π2,所以,由f(x)的单调性可得2πɤsinxx<1.(二)利用极值与最值解决不等式问题对于在定义域内不单调的函数,极值和最值是解决这类函数不等式的一个突破口,构造合适的函数利用极值的定义来证明.例4㊀(利用条件极值)任意ai>0(i=1,2, ,n),有n1a1+1a2+ +1anɤna1a2 anɤa1+a2+ +ann.证明㊀下面只证明na1a2 anɤa1+a2+ +ann(另一不等号的证明见上一页).设x1+x2+ +xn=a(∗),f(x1,x2, ,xn)=x1x2 xn,则只需证在条件(∗)下f(x)的最大值为annn.令L(x1,x2, ,xn,λ)=x1x2 xn+λ(x1+x2+ +xn-a),则Lxi=x1 xi-1xi+1 xn+λ=0,Lλ=x1+x2+ +xn-a=0,{解得λ=-na(x1x2 xn);xi=an.又因为f(x)有上界,所以所求点为最大值点,即最大值为annn,结论得证.三㊁利用微分中值定理和泰勒公式解决不等式问题(一)利用拉格朗日定理解决不等式问题拉格朗日定理可以将函数在区间端点的函数值与导函数在某一点的值联系起来,从而利用单调性或已知条件得到不等式.例5㊀求证:b-ab<lnba<b-aa,其中0<a<b.证明㊀原不等式等价于1b<lnb-lnab-a<1a,由拉格朗日定理,得lnb-lnab-a=1ξ,其中ξɪ(a,b).因为1b<1ξ<1a,所以1b<lnb-lnab-a<1a.(二)利用柯西定理解决不等式问题对于已知两个函数的端点函数值问题可利用柯西定理转换成导数比值形式,从而化简不等式.例6㊀设x>0,求证:2arctanx<3ln(1+x).证明㊀原不等式等价于arctanxln(1+x)<32;∀x>0,在[0,x]上由柯西中值定理,得∃ξɪ(0,x),使得arctanxln(1+x)=arctanx-arctan0ln(1+x)-ln(1+0)=1+ξ1+ξ2,设f(x)=1+x1+x2,则fᶄ(x)=1-2x-x2(1+x2)2,所以f(x)在x=2-1时取极大值(最大值),2+12<32,所以1+ξ1+ξ2<32,即arctanxln(1+x)<32,结论得证.(三)利用泰勒公式解决不等式问题对于一些不等式中涉及高阶导数及其范围的问题,可尝试利用泰勒公式的近似展开式,而利用泰勒公式的重点在于找到一个合适的点展开.四㊁函数凹凸性(一)函数凹凸性的简单推论推论1㊀f(x)为凸函数的充要条件为:对于定义域上,任意x1<x2<x3,则有f(x2)-f(x1)x2-x1ɤf(x3)-f(x1)x3-x1ɤf(x3)-f(x2)x3-x2.推论2㊀(此推论及其变形适用于许多涉及一阶导数的不等式证明)可导函数为凸(凹)函数当且仅当任意x1,x2有f(x2)ȡf(x1)+fᶄ(x1)(x2-x1)(f(x2)ɤf(x1)+fᶄ(x1)(x2-x1)).推论3㊀若f(x)为二阶可导函数,则f(x)是凸函数的充分必要条件为fᵡ(x)ȡ0.(此命题适用于涉及二阶导数的不等式证明)推论4㊀f(x)为[a,b]上的凸函数,则f(x)ȡ2fa+b2()-f(a)-f(b).(二)运用函数凹凸性证明不等式例7㊀证明Hadamard不等式.证明㊀设x=(1-t)a+tb=(b-a)t+a,则1b-aʏbaf(x)dx=ʏ10f[(1-t)a+tb]dt.同理可得1b-aʏbaf(x)dx=ʏ10f[ta+(1-t)b]dt.因为f(x)为凸函数,所以1b-aʏbaf(x)dx=ʏ10f[(1-t)a+tb]dtɤʏ10(1-t)f(a)+tf(b)dt=f(a)+f(b)2,且1b-aʏbaf(x)dx=12ʏ10f[(1-t)a+tb]dt+12ʏ10f[ta+(1-t)b]dt=ʏ1012f[(1-t)a+tb]+12f[ta+(1-t)b]dtȡʏ10f[12(1-t)a+t2b+t2a+12(1-t)b]dt=fa+b2(),所以fa+b2()ɤ1b-aʏbaf(x)dxɤf(a)+f(b)2.不等式的解法有许多,以上几种方法需要在数学分析的基础上研究不等式.在学习过程中抓住每种方法的要点并掌握相应的数学分析的基础知识才是关键.ʌ参考文献ɔ[1]华东师范大学数学系.数学分析(上册):第4版[M].北京:高等教育出版社,2010.[2]陈守信.考研数学分析总复习:精选名校真题:第5版[M].北京:机械工业出版社,2018.[3]徐利治,王兴华.数学分析的方法及例题选讲:第2版[M].北京:高等教育出版社,2015.[4]蒙诗德.数学分析中证明不等式的常用方法[N].赤峰学院学报(自然科学版),2009(09):20-22.[5]舒斯会.数学分析选讲[M].北京:北京大学出版社,2007.[6]林源渠,方企勤.数学分析解题指南[M].北京:北京大学出版社,2003.。
内容概要课后习题全解习题3-1★1.下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出满足定理的数值ξ。
(1)]511[32)(2.,,x x x f ---=;(2)]30[3)(,,x x x f -=。
知识点:罗尔中值定理。
思路:根据罗尔定理的条件和结论,求解方程0)(/=ξf ,得到的根ξ便为所求。
解:(1)∵32)(2--=x x x f 在]511[.,-上连续,在)5.1,1(-内可导,且0)51()1(==-.f f ,∴32)(2--=x x x f 在]511[.,-上满足罗尔定理的条件。
令()410f ξξ'=-=得)511(41.,ξ-∈=即为所求。
(2)∵x x x f -=3)(在]30[,上连续,在)30(,内可导,且0)3()0(==f f , ∴x x x f -=3)(在]30[,上满足罗尔定理的条件。
令()0f ξ'==,得)30(2,ξ∈=即为所求。
★2.验证拉格朗日中值定理对函数25423-+-=x x x y 在区间]10[,上的正确性。
知识点:拉格朗日中值定理。
思路:根据拉格朗日中值定理的条件和结论,求解方程(1)(0)()10f f f ξ-'=-,若得到的根]10[,ξ∈则可验证定理的正确性。
解:∵32()452y f x x x x ==-+-在]10[,连续,在)10(,内可导,∴25423-+-=x x x y 在区间]10[,上满足拉格朗日中值定理的条件。
又2)0(2)1(-=-=,f f ,2()12101f x x x '=-+,∴要使(1)(0)()010f f f ξ-'==-,只要:(01),ξ=,∴(01),ξ∃=,使(1)(0)()10f f f ξ-'=-,验证完毕。
★3.已知函数4)(x x f =在区间]21[,上满足拉格朗日中值定理的条件,试求满足定理的ξ。
证明不等式之泰勒展式和拉格朗日中值定理【典型例题】例1.已知函数f (x )=ln a ⋅xe -x +a sin x ,a >0.(1)若x =0恰为f (x )的极小值点.(ⅰ)证明:12<a <1;(ⅱ)求f (x )在区间(-∞,π)上的零点个数;(2)若a =1,f (x )x =1-x π 1+x π 1-x 2π 1+x 2π 1-x 3π 1+x 3π ⋯1-x n π 1+xn π ⋯,又由泰勒级数知:cos x =1-x 22!+x 44!-x 66!+⋯+(-1)n x 2n (2n )!+⋯,n ∈N *.证明:112+122+132+⋯+1n2+⋯=π26.例2.已知函数f(x)=x2+ln x-ax.(1)求函数f(x)的单调区间;(2)若f(x)≤2x2,对x∈[0,+∞)恒成立,求实数a的取值范围;(3)当a=1时,设g x =xe x2-f x -x-1.若正实数λ1,λ2满足λ1+λ2=1,x1,x2∈(0,+∞)(x1≠x2),证明:g(λ1x1+λ2x2)<λ1g(x1)+λ2g(x2).例3.英国数学家泰勒发现了如下公式:sin x=x-x33!+x55!-x77!+⋯,其中n!=1×2×3×4×⋯×n,此公式有广泛的用途,例如利用公式得到一些不等式:当x∈0,π2时,sin x<x,sin x>x-x33!,sin x<x-x33!+x55!,⋯.(1)证明:当x∈0,π2时,sin x x>12;(2)设f(x)=m sin x,若区间[a,b]满足当f(x)定义域为[a,b]时,值域也为[a,b],则称为f(x)的“和谐区间”,(ⅰ)m=1时,f(x)是否存在“和谐区间”?若存在,求出f(x)的所有“和谐区间”,若不存在,请说明理由;(ⅱ)m=-2时,f(x)是否存在“和谐区间”?若存在,求出f(x)的所有“和谐区间”,若不存在,请说明理由.例4.给出以下三个材料:①若函数f(x)可导,我们通常把导函数f (x)的导数叫做f(x)的二阶导数,记作f (x).类似地,二阶导数的导数叫做三阶导数,记作f (x),三阶导数的导数叫做四阶导数⋯⋯一般地,n-1阶导数的导数叫做n阶导数,记作f(n)(x)=[f(n-1)(x)]′,n≥4.②若n∈N*,定义n!=n×(n-1)×(n-2)×⋯×3×2×1.③若函数f(x)在包含x0的某个开区间(a,b)上具有n阶的导数,那么对于任一x∈(a,b)有g(x)=f(x0)+f (x0)1!(x-x0)+f (x0)2!(x-x0)2+f (x0)3!(x-x0)3+⋯+f(n)(x0)n!(x-x0)n,我们将g(x)称为函数f(x)在点x=x0处的n阶泰勒展开式.例如,y=e x在点x=0处的n阶泰勒展开式为1+x+12x2+⋯+1n!x n.根据以上三段材料,完成下面的题目:(1)求出f1(x)=sin x在点x=0处的3阶泰勒展开式g1(x),并直接写出f2(x)=cos x在点x=0处的3阶泰勒展开式g2(x);(2)比较(1)中f1(x)与g1(x)的大小.(3)已知y=e x不小于其在点x=0处的3阶泰勒展开式,证明:x≥0时,e x+sin x+cos x≥2+2x.例5.利用拉格朗日(法国数学家,1736-1813)插值公式,可以把二次函数F(x)表示成F(x)=d(x-b)(x-c) (a-b)(a-c)+e(x-a)(x-c)(b-a)(b-c)+f(x-a)(x-b)(c-a)(c-b)的形式.(1)若a=1,b=2,c=3,d=4,e<f,把F(x)的二次项系数表示成关于f的函数G(f),并求G(f)的值域(此处视e为给定的常数,答案用e表示);(2)若a<b<c,d>0,e<0,f>0,求证:a+b<d(b2-c2)+e(c2-a2)+f(a2-b2)d(b-c)+e(c-a)+f(a-b)<b+c.例6.用拉格朗日中值定理证明不等式:x1+x<ln(1+x)<x(x>0).例7.已知函数f (x )=mx 3+nx 2(m 、n ∈R ,m ≠0)的图象在(2,f (2))处的切线与x 轴平行.(1)求n ,m 的关系式并求f (x )的单调减区间;(2)证明:对任意实数0<x 1<x 2<1,关于x 的方程:f (x )-f (x 2)-f (x 1)x 2-x 1=0在(x 1,x 2)恒有实数解;(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f (x )是在闭区间[a ,b ]上连续不断的函数,且在区间(a ,b )内导数都存在,则在(a ,b )内至少存在一点x 0,使得f (x 0)=f (b )-f (a )b -a.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:当0<a <b 时,b -a b<ln b a <b -a a (可不用证明函数的连续性和可导性).例8.已知f (x )=23x 3-2x 2+cx +4,g (x )=e x -e 2-x +f (x ),(1)若f (x )在x =1+2处取得极值,试求c 的值和f (x )的单调增区间;(2)如图所示,若函数y =f (x )的图象在[a ,b ]连续光滑,试猜想拉格朗日中值定理:即一定存在c ∈(a ,b ),使得f (c )=f (b )-f (a )b -a,利用这条性质证明:函数y =g (x )图象上任意两点的连线斜率不小于2e -4.xyabcA By =f x【同步练习】一、单选题1.十八世纪早期,英国数学家泰勒发现了公式sin x=x-x33!+x55!-x77!+⋯+-1n-1x2n-12n-1!+⋯,(其中x∈R,n∈N*,n!=1×2×3×⋯×n,0!=1),现用上述公式求1-12!+14!-16!+⋯+-1n-112n-2!+⋯的值,下列选项中与该值最接近的是()A.sin57°B.sin36°C.sin33°D.sin30°2.公元1715年英国数学家布鲁克·泰在他的著作中陈述了“泰勒公式”,如果满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值构建一个多项式来近似表达这个函数.泰勒公式将一些复杂函数近似地表示为简单的多项式函数,使得它成为分析和研究许多数学问题的有力工具,例如:e x=+∞n=0x nn!=x0 0!+x11!+x22!+x33!+⋯+x nn!+⋯,其中x∈R,n∈N*,试用上述公式估计e的近似值为(精确到0.001)()A.1.647B.1.649C.1.645D.1.6463.计算器是如何计算sin x,cos x,πx,ln x,x等函数值的呢?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sin x=x-x3 3!+x55!-x77!+⋯,cos x=1-x22!+x44!-x66!+⋯,其中n!=1×2×⋯×n,英国数学家泰勒发现了这些公式,可以看出,右边的项用得越多,计算得出的sin x和cos x的值也就越精确.运用上述思想,可得到sinπ2+1的近似值为()A.0.50B.0.52C.0.54D.0.56二、填空题4.英国数学家泰勒(1685-1731)以发现泰勒公式和泰勒级数闻名于世,由泰勒公式,我们得到e=1+1 1!+12!+13!+⋯+1n!+eθ(n+1)!(其中e为自然对数的底数,0<θ<1,n!=n×n-1×n-2×...×2×1),其拉格朗日余项是R n=eθ(n+1)!.可以看出,右边的项用得越多,计算得到的e的近似值也就越精确.若3(n+1)!近似地表示e的泰勒公式的拉格朗日余项R n,R n不超过11000时,正整数n的最小值是_____三、解答题5.给出以下三个材料:①若函数f x 可导,我们通常把导函数f x 的导数叫做f x 的二阶导数,记作f x .类似地,二阶导数的导数叫做三阶导数,记作f x ,三阶导数的导数叫做四阶导数⋯⋯一般地,n -1阶导数的导数叫做n 阶导数,记作f n x =f n -1 x ,n ≥4.②若n ∈N ∗,定义n !=n ×n -1 ×n -2 ×⋅⋅⋅×3×2×1.③若函数f x 在包含x 0的某个开区间a ,b 上具有n 阶的导数,那么对于任一x ∈a ,b 有g x =f x 0 +f x 0 1!x -x 0 +f x 0 2!x -x 0 2+f x 0 3!x -x 0 3+⋅⋅⋅+f n x 0 n !x -x 0 n,我们将g x 称为函数f x 在点x =x 0处的n 阶泰勒展开式.例如,y =e x 在点x =0处的n 阶泰勒展开式为1+x +12x 2+⋅⋅⋅+1n !x n .根据以上三段材料,完成下面的题目:(1)求出f 1x =sin x 在点x =0处的3阶泰勒展开式g 1x ,并直接写出f 2x =cos x 在点x =0处的3阶泰勒展开式g 2x ;(2)比较(1)中f 1x 与g 1x 的大小.(3)证明:e x +sin x +cos x ≥2+2x .6.在高等数学中,我们将y=f x 在x=x0处可以用一个多项式函数近似表示,具体形式为:f x =f x0+f′x0x-x0+f x02!x-x02+⋅⋅⋅+f n x0n!x-x0n+⋅⋅⋅(其中f n x 表示f x 的n次导数),以上公式我们称为函数f x 在x=x0处的泰勒展开式.(1)分别求e x,sin x,cos x在x=0处的泰勒展开式;(2)若上述泰勒展开式中的x可以推广至复数域,试证明:e iπ+1=0.(其中i为虚数单位);(3)若∀x∈0,32,e a sin x>x+1恒成立,求a的范围.(参考数据ln52≈0.9)7.英国数学家泰勒发现了如下公式:sin x=x-x33!+x55!-x77!+⋯,其中n!=1×2×3×4×⋯×n,此公式有广泛的用途,例如利用公式得到一些不等式:当x∈0,π2时,sin x<x,sin x>x-x33!,sin x<x-x3 3!+x55!,⋯.(1)证明:当x∈0,π2时,sin x x>12;(2)设f x =m sin x,若区间a,b满足当f x 定义域为a,b时,值域也为a,b,则称为f x 的“和谐区间”.(i)m=1时,f x 是否存在“和谐区间”?若存在,求出f x 的所有“和谐区间”,若不存在,请说明理由;(ii)m=-2时,f x 是否存在“和谐区间”?若存在,求出f x 的所有“和谐区间”,若不存在,请说明理由.8.计算器是如何计算sin x,cos x,e x,ln x,x等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sin x=x-x33!+x55!-x77!+⋯,cos x=1-x22!+x44!-x66!+⋯,其中n!=1⋅2⋅3⋅⋯⋅n.英国数学家泰勒(B.Taylor,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得到的sin x和cos x的值也就越精确.例如,我们用前三项计算sin0.9,就得到sin0.9≈0.9-(0.9)3 3!+(0.9)55!≈0.78342075.像这些公式已被编入计算器内,计算器利用足够多的项就可确保其显示值是精确的.试用你的计算器计算sin0.9,并与上述结果进行比较.9.给出以下三个材料:①若函数f x 可导,我们通常把导函数f x 的导数叫做f x 的二阶导数,记作f x .类似地,二阶导数的导数叫做三阶导数,记作f x ,三阶导数的导数叫做四阶导数⋯⋯一般地,n -1阶导数的导数叫做n 阶导数,记作f n x =f n -1 x ,n ≥4.②若n ∈N ∗,定义n !=n ×n -1 ×n -2 ×⋅⋅⋅×3×2×1.③若函数f x 在包含x 0的某个开区间a ,b 上具有n 阶的导数,那么对于任一x ∈a ,b 有g x =f x 0 +f x 0 1!x -x 0 +f x 0 2!x -x 0 2+f x 0 3!x -x 0 3+⋅⋅⋅+f n x 0 n !x -x 0 n,我们将g x 称为函数f x 在点x =x 0处的n 阶泰勒展开式.例如,y =e x 在点x =0处的n 阶泰勒展开式为1+x +12x 2+⋅⋅⋅+1n !x n .根据以上三段材料,完成下面的题目:(1)求出f 1x =sin x 在点x =0处的3阶泰勒展开式g 1x ,并直接写出f 2x =cos x 在点x =0处的3阶泰勒展开式g 2x ;(2)比较(1)中f 1x 与g 1x 的大小.(3)已知y =e x 不小于其在点x =0处的3阶泰勒展开式,证明:e x +sin x +cos x ≥2+2x .10.已知函数f x =ln a ⋅xe -x +a sin x ,a >0.(1)若x =0恰为f x 的极小值点.①证明:12<a <1;②求f x 在区间-∞,π 上的零点个数;(2)若a =1,f x x =1-x π 1+x π 1-x 2π 1-x 3π 1+x 3π ⋅⋅⋅1-x n π 1+xn π⋅⋅⋅,又由泰勒级数知:cos x =1-x 22!+x 44!-x 66!+⋅⋅⋅+-1 n x 2n2n !+⋅⋅⋅n ∈N * ,证明:112+122+132+⋅⋅⋅+1n 2+⋅⋅⋅=π2611.英国数学家泰勒发现了如下公式:sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,其中n !=1×2×3×4×5×⋯×n .这些公式被编入计算工具,计算工具计算足够多的项就可以确保显示值的精确性.比如,用前三项计算cos0.3,就得到cos0.3≈1-0.322!+0.344!=0.9553375.试用你的计算工具计算cos0.3,并与上述结果比较.四、双空题12.记f (n )(x )为函数f (x )的n 阶导数且f 2 x =f x ,f n x =f n -1 x n ≥3,n ∈N * .若f (n )(x )存在,则称f x n 阶可导.英国数学家泰勒发现:若f (x )在x 0附近n +1阶可导,则可构造T n x =f x 0 +f x 0 1!x -x 0 +f 2 x 0 2!x -x 0 2+⋯+f n x 0 n !x -x 0 n(称为n 次泰勒多项式)来逼近f (x )在x 0附近的函数值.据此计算f (x )=e x 在x 0=0处的3次泰勒多项式为T 3(x )=_________;f (x )=-1x在x 0=-1处的10次泰勒多项式中x 3的系数为_________证明不等式之泰勒展式和拉格朗日中值定理【典型例题】例1.已知函数f (x )=ln a ⋅xe -x +a sin x ,a >0.(1)若x =0恰为f (x )的极小值点.(ⅰ)证明:12<a <1;(ⅱ)求f (x )在区间(-∞,π)上的零点个数;(2)若a =1,f (x )x =1-x π 1+x π 1-x 2π 1+x 2π 1-x 3π 1+x 3π ⋯1-x n π 1+xn π ⋯,又由泰勒级数知:cos x =1-x 22!+x 44!-x 66!+⋯+(-1)n x 2n (2n )!+⋯,n ∈N *.证明:112+122+132+⋯+1n2+⋯=π26.【解析】解:(1)证明:(ⅰ)由题意得:f (x )=ln a (1-x )e -x +a cos x (a >0),因为x =0为函数f (x )的极值点,所以f (0)=ln a +a =0,令g (x )=ln x +x (x >0),则g (x )=1x+1>0,g (x )在(0,+∞)上单调递增,因为g (1)>0,g 12=ln 12+12=ln e 2<0,所以g (x )=ln x +x (x >0)在12,1上有唯一的零点a ,所以12<a <1;(ⅱ)由(ⅰ)知:ln a =-a ,f (x )=a (sin x -xe -x ),f (x )=a [cos x -(1-x )e -x ],①当x ∈(-∞,0)时,由a >0,-1≤cos x ≤1,1-x >1,e -x >1得:f (x )<0,所以f (x )在(-∞,0)上单调递减,f (x )>f (0)=0,所以f (x )在区间(-∞,0)上不存在零点;②当x ∈(0,π)时,设h (x )=cos x -(1-x )e -x ,则h (x )=(2-x )e -x -sin x ,1°若x ∈0,π2,令m (x )=(2-x )e -x -sin x ,则m (x )=(x -3)e -x-cos x <0,所以m (x )在0,π2 上单调递减,因为m (0)=2>0,m π2 =2-π2 e -π2-1<0;所以存在α∈0,π2,满足m (α)=0,当x ∈(0,α)时,m (x )=h (x )>0,h (x )在(0,α)上单调递增;当x ∈α,π2时,m (x )=h(x )<0,h (x )在α,π2 上单调递减;2°若x ∈π2,2,令φ(x )=(2-x )e -x ,x ∈π2,2 ,则φ (x )=(x -3)e -x <0,所以φ(x)在区间π2,2上单调递减,所以φ(x)<φπ2 =2-π2e-π2<1e,又因为sin x≥sin2=sin(π-2)>sin π6=12,所以h (x)=(2-x)e-x-sin x<0,h(x)在π2,2上单调递减;3°若x∈(2,π),则h (x)=(2-x)e-x-sin x<0,h(x)在(2,π)上单调递减;由1°2°3°得,h(x)在(0,α)上单调递增,h(x)在(α,π)单调递减,因为h(α)>h(0)=0,h(π)=(π-1)e-π-1<0,所以存在β∈(α,π)使得h(β)=0,所以当x∈(0,β)时,f (x)=h(x)>0,f(x)在(0,β)上单调递增,f(x)>f(0)=0,当x∈(β,π)时,f (x)=h(x)<0,f(x)在(β,π)上单调递减,因为f(β)>f(0)=0,f(π)<0,所以f(x)在区间(β,π)上有且只有一个零点;综上,f(x)在区间(-∞,π)上的零点个数为2个;(2)因为sin xx =1-x2π21-x24π21-x232π2⋯1-x2n2π2⋯①对cos x=1-x22!+x44!-x66!+⋯+(-1)n x2n(2n)!+⋯,两边求导得:-sin x=-x1!+x33!-x55!+⋯+(-1)n x2n-1(2n-1)!+⋯,sin x=x1!-x33!+x55!+⋯+(-1)n-1x2n-1(2n-1)!+⋯,所以sin xx=1-x23!+x45!+⋯+(-1)n-1x2n-2(2n-1)!+⋯②比较①②式中x2的系数,得:-13!=-1π2112+122+132+⋯+1n2+⋯所以112+122+132+⋯+1n2+⋯=π26.例2.已知函数f(x)=x2+ln x-ax.(1)求函数f(x)的单调区间;(2)若f(x)≤2x2,对x∈[0,+∞)恒成立,求实数a的取值范围;(3)当a=1时,设g x =xe x2-f x -x-1.若正实数λ1,λ2满足λ1+λ2=1,x1,x2∈(0,+∞)(x1≠x2),证明:g(λ1x1+λ2x2)<λ1g(x1)+λ2g(x2).【解析】解:(1)f′(x)=2x+1x-a=2x2-ax+1x,x>0,△=a2-8,①a≤22时,f′(x)≥0恒成立,故函数f(x)在(0,+∞)递增,无递减区间,②a >22时,f ′(x )>0⇒0<x <a -a 2-84或x >a +a 2-84,故函数f (x )在0,a -a 2-84 ,a +a 2-84,+∞ 递增,在a -a 2-84,a +a 2-84递减,综上,a ≤22时,函数f (x )在(0,+∞)递增,无递减区间,a >22时,函数f (x )在0,a -a 2-84 ,a +a 2-84,+∞ 递增,在a -a 2-84,a +a 2-84递减,(2)f (x )≤2x 2,对x ∈[0,+∞)恒成立,即x ∈[0,+∞)时,a ≥ln xx-x 恒成立,令F (x )=ln x x -x ,(x >0),则F ′(x )=1-ln x -x 2x 2,令G (x )=1-ln x -x 2(x >0),则G ′(x )=-1x-2x <0,∴G (x )在(0,+∞)递减且G (1)=0,∴x ∈(0,1)时,G (x )>0,F ′(x )>0,F (x )递增,当x ∈(1,+∞),G (x )<0,F ′(x )<0,F (x )递减,∴F (x )max =F (1)=-1,综上,a 的范围是[-1,+∞).(3)证明:当a =1时,g (x )=xe -(ln x -x )-x -1=xe x -ln x -x -1=e x -x -1,g ′(x )=e x -1>0(x >0),不妨设0<x 1<x 2,下先证:存在ξ∈(x 1,x 2),使得g (x 2)-g (x 1)=g ′(ξ)(x 2-x 1),构造函数H (x )=g (x )-g (x 1)-g (x 2)-g (x 1)x 2-x 1(x -x 1),显然H (x 1)=H (x 2),且H ′(x )=g ′(x )-)-g (x 2)-g (x 1)x 2-x 1,则由导数的几何意义可知,存在ξ∈(x 1,x 2),使得H ′(ξ)=g ′(ξ)-)-g (x 2)-g (x 1)x 2-x 1=0,即存在ξ∈(x 1,x 2),使得g (x 2)-g (x 1)=g ′(ξ)(x 2-x 1),又g ′(x )=e x -1为增函数,∴g (x 2)-g (x 1)=g ′(ξ)(x 2-x 1)>g ′(x 1)(x 2-x 1),即g (x 2)>g (x 1)+g ′(x 1)(x 2-x 1),设x 3=λ1x 1+λ2x 2(λ1+λ2=0),则x 1-x 3=(1-λ1)x 1-λ2x 2,x 2-x 3=(1-λ2)x 2-λ1x 1,∴g (x 1)>g (x 3)+g ′(x 3)(x 1-x 3)=g (x 3)+g ′(x 3)[(1-λ1)x 1-λ2x 2]①,g (x 2)>g (x 3)+g ′(x 3)(x 2-x 3)=g (x 3)+g ′(x 3)[(1-λ2)x 2-λ1x 1]②,由①×λ1+②×λ2得,λ1g (x 1)+λ2g (x 2)>g (x 3)=g (λ1x 1+λ2x 2),即g (λ1x 1+λ2x 2)<λ1g (x 1)+λ2g (x 2).例3.英国数学家泰勒发现了如下公式:sin x=x-x33!+x55!-x77!+⋯,其中n!=1×2×3×4×⋯×n,此公式有广泛的用途,例如利用公式得到一些不等式:当x∈0,π2时,sin x<x,sin x>x-x33!,sin x<x-x33!+x55!,⋯.(1)证明:当x∈0,π2时,sin x x>12;(2)设f(x)=m sin x,若区间[a,b]满足当f(x)定义域为[a,b]时,值域也为[a,b],则称为f(x)的“和谐区间”,(ⅰ)m=1时,f(x)是否存在“和谐区间”?若存在,求出f(x)的所有“和谐区间”,若不存在,请说明理由;(ⅱ)m=-2时,f(x)是否存在“和谐区间”?若存在,求出f(x)的所有“和谐区间”,若不存在,请说明理由.【解析】(1)证明:由已知当x∈0,π2时,sin x>x-x33!,得sin xx>1-x26>1-π226=1-π224>12,所以当x∈0,π2时,sin x x>12.(2)(i)m=1时,假设存在,则由-1≤f(x)≤1知-1≤a<b≤1,注意到1<π2,故[a,b]⊆-π2 ,π2,所以f(x)在[a,b]单调递增,于是f(a)=af(b)=b,即a,b是方程sin x=x的两个不等实根,易知x=±π2不是方程的根,由已知,当x∈0,π2时,sin x<x,令x=-t,则有t∈-π2 ,0时,sin(-t)<-t,即sin t>t,故方程sin x=x只有一个实根0,故f(x)不存在和谐区间.(ii)m=-2时,假设存在,则由-2≤f(x)≤2知-2≤a<b≤2,若a,b≥0,则由[a,b]⊆[0,π),知f(x)≤0,与值域是[a,b]⊆[0,π)矛盾,故不存在和谐区间,同理,a,b≤0时,也不存在,下面讨论a≤0≤b,若b≥π2,则0,π2⊆[a,b],故f(x)最小值为-2,于是a=-2,所以-π2 ,π2⊆[a,b],所以f(x)最大值为2,故b=2,此时f(x)的定义域为[-2,2],值域为[-2,2],符合题意.若b<π2,当a≤-π2时,同理可得a=-2,b=2,舍去,当a>-π2时,f(x)在[a,b]上单调递减,所以a=-2sin bb=-2sin a,于是a+b=-2(sin a+sin b),若b>-a即a+b>0,则sin b>sin(-a),故sin b+sin a>0,-2(sin a+sin b)<0,与a+b=-2(sin a+sin b)矛盾;若b<-a,同理,矛盾,所以b>-a,即b2=sin b,由(1)知当x∈0,π2时,sin x>x2,因为b∈0,π2,所以b=0,从而,a=0,从而a=b,矛盾,综上所述,f(x)有唯一的和谐区间[-2,2].例4.给出以下三个材料:①若函数f(x)可导,我们通常把导函数f (x)的导数叫做f(x)的二阶导数,记作f (x).类似地,二阶导数的导数叫做三阶导数,记作f (x),三阶导数的导数叫做四阶导数⋯⋯一般地,n-1阶导数的导数叫做n阶导数,记作f(n)(x)=[f(n-1)(x)]′,n≥4.②若n∈N*,定义n!=n×(n-1)×(n-2)×⋯×3×2×1.③若函数f(x)在包含x0的某个开区间(a,b)上具有n阶的导数,那么对于任一x∈(a,b)有g(x)=f(x0)+f (x0)1!(x-x0)+f (x0)2!(x-x0)2+f (x0)3!(x-x0)3+⋯+f(n)(x0)n!(x-x0)n,我们将g(x)称为函数f(x)在点x=x0处的n阶泰勒展开式.例如,y=e x在点x=0处的n阶泰勒展开式为1+x+12x2+⋯+1n!x n.根据以上三段材料,完成下面的题目:(1)求出f1(x)=sin x在点x=0处的3阶泰勒展开式g1(x),并直接写出f2(x)=cos x在点x=0处的3阶泰勒展开式g2(x);(2)比较(1)中f1(x)与g1(x)的大小.(3)已知y=e x不小于其在点x=0处的3阶泰勒展开式,证明:x≥0时,e x+sin x+cos x≥2+2x.【解析】(1)解:因为f1(x)=sin x,则f1 (x)=cos x,f1 (x)=-sin x,f1 (x)=-cos x,所以f1 (0)=1,f1 (0)=0,f1 (0)=-1,故g1(x)=sin0+11!(x-0)+02!(x-0)2+-13!(x-0)3,即g1(x)=x-16x3,同理可得,g2(x)=1-12x2;(2)解:由(1)可知,f1(x)=sin x,g1(x)=x-16x3,令h(x)=f1(x)-g1(x)=sin x-x+16x3,则h (x)=cos x-1+12x2,则h (x)=-sin x+x,h (x)=1-cos x≥0,所以h (x)在R上单调递增,又h (0)=0,故当x<0时,h (x)<0,故h (x)单调递减,当x>0时,h (x)>0,故h (x)单调递增,所以h (x)的最小值为h (0)=1-1+0=0,所以h (x)≥0,故h(x)在R上单调递增,又h(0)=0,所以当x<0时,h(x)<0,当x>0时,h(x)>0,综上所述,当x<0时,f1(x)<g1(x);当x=0时,f1(x)=g1(x);当x>0时,f1(x)>g1(x).(3)证明:令φ(x)=f2(x)-g2(x)=cos x-1+12x2,则φ (x)=-sin x+x,所以φ (x)=1-cos x≥0.则φ (x)在R上单调递增,又φ (0)=0,所以φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以φ(x)≥φ(0)=0,即cos x≥1-12x2,因为y=e x在点x=0处的3阶泰勒展开式为:1+x+12x2+16x3,所以e x≥1+x+12x2+16x3,又y=sin x在x=0处的3阶泰勒展开式为:x-16x3,当x≥0时,sin x≥x-16x3,所以当x≥0时,e x+sin x+cos x≥1+x+12x2+16x3+x-16x3+1-12x2≥2+2x,故e x+sin x+cos x≥2+2x(x≥0).例5.利用拉格朗日(法国数学家,1736-1813)插值公式,可以把二次函数F(x)表示成F(x)=d(x-b)(x-c) (a-b)(a-c)+e(x-a)(x-c)(b-a)(b-c)+f(x-a)(x-b)(c-a)(c-b)的形式.(1)若a=1,b=2,c=3,d=4,e<f,把F(x)的二次项系数表示成关于f的函数G(f),并求G(f)的值域(此处视e为给定的常数,答案用e表示);(2)若a<b<c,d>0,e<0,f>0,求证:a+b<d(b2-c2)+e(c2-a2)+f(a2-b2)d(b-c)+e(c-a)+f(a-b)<b+c.【解析】(1)解:由题意G(f)=d(a-b)(a-c)+e(b-a)(b-c)+f(c-a)(c-b)=4-1×(-2)+e1×(-1)+f2×1=12f-e+2,又f>e,所以G(f)>12e-e+2=-12e+2,当e≤4时,G(f)>-12e+2≥0,则G(f)的值域是-12e+2,+∞;当e>4时,-12e+2<0,所以G(f)的值域是-12e+2,0∪(0,+∞).(2)证明:因为a<b<c,d>0,e<0,f>0,所以d(b-c)+e(c-a)+f(a-b)<0,(a+b)[d(b-c)+e(c-a)+f(a-b)]=d(b-c)(a+b)+e(c-a)(a+b)+f(a2-b2) =d(b-c)([(b+c)+(a-c)]+e(c-a)[(c+a)+(b-c)]+f(a2-b2)=d(b2-c2)+e(c2-a2)+f(a2-b2)+d(b-c)(a-c)+e(c-a)(b-c),因为a<b<c,d>0,e<0,f>0,所以d(b-c)(a-c)>0,e(c-a)(b-c)>0,所以(a+b)[d(b-c)+e(c-a)+f(a-b)]>d(b2-c2)+e(c2-a2)+f(a2-b2),所以a+b<d(b2-c2)+e(c2-a2)+f(a2-b2) d(b-c)+e(c-a)+f(a-b),(b+c)[d(b-c)+e(c-a)+f(a-b)]=d(b2-c2)+e(c-a)(b+c)+f(a-b)(b+c) =d(b2-c2)+e(c-a)(c-a+b-a)+f(a-b)(a+b+c-a)=d(b2-c2)+e(c2-a2)+f(a2-b2)+e(c-a)(b-a)+f(a-b)(c-a),因为a<b<c,d>0,e<0,f>0,所以e(c-a)(b-a)<0,f(a-b)(c-a)<0,所以(b+c)[d(b-c)+e(c-a)+f(a-b)]<d(b2-c2)+e(c2-a2)+f(a2-b2),所以b+c>d(b2-c2)+e(c2-a2)+f(a2-b2) d(b-c)+e(c-a)+f(a-b),综上,原不等式成立.例6.用拉格朗日中值定理证明不等式:x1+x<ln(1+x)<x(x>0).【解析】证明:设g(t)=ln t,t∈(a,b),则g(x)符合拉格朗日中值定理的条件,即存在t0∈(a,b),使g′(t0)=g(b)-g(a) b-a,因为g′(t)=1t,由t∈(a,b),0<a<b,可知g ′(t )∈1b ,1a,b -a >0,即1b <g ′t 0)=g (b )-g (a )b -a <1a ,可得1b <g (b )-g (a )b -a =ln b -ln a b -a<1a ,即有b -a b<ln b a <b -aa ,令b a=1+x ,可得x =ba-1,即有x1+x<ln (1+x )<x (x >0).例7.已知函数f (x )=mx 3+nx 2(m 、n ∈R ,m ≠0)的图象在(2,f (2))处的切线与x 轴平行.(1)求n ,m 的关系式并求f (x )的单调减区间;(2)证明:对任意实数0<x 1<x 2<1,关于x 的方程:f (x )-f (x 2)-f (x 1)x 2-x 1=0在(x 1,x 2)恒有实数解;(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f (x )是在闭区间[a ,b ]上连续不断的函数,且在区间(a ,b )内导数都存在,则在(a ,b )内至少存在一点x 0,使得f (x 0)=f (b )-f (a )b -a.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:当0<a <b 时,b -a b <ln b a <b -a a (可不用证明函数的连续性和可导性).【解析】解:(1)因为f (x )=3mx 2+2nx ,------(1分)由已知有f (2)=0,所以3m +n =0即n =-3m ------(2分)即f (x )=3mx 2-6mx ,由f (x )>0知mx (x -2)>0.当m >0时得x <0或x >2,f (x )的减区间为(0,2);-----(3分)当m <0时得:0<x <2,f (x )的减区间为(-∞,0)和(2,+∞);-----(4分)综上所述:当m >0时,f (x )的减区间为(0,2);当m <0时,f (x )的减区间为(-∞,0)和(2,+∞);-----(5分)(2)∵f (x 2)-f (x 1)x 2-x 1=m (x 21+x 22+x 1x 2-3x 1-3x 2),------------(6分)∴f ′(x )-f (x 2)-f (x 1)x 2-x 1=0,可化为3x 2-6x -x 21-x 22-x 1x 2+3x 1+3x 2=0,令h (x )=3x 2-6x -x 21-x 22-x 1x 2+3x 1+3x 2----(7分)则h (x 1)=(x 1-x 2)(2x 1+x 2-3),h (x 2)=(x 2-x 1)(x 1+2x 2-3),即h (x 1)h (x 2)=-(x 1-x 2)2(2x 1+x 2-3)(x 1+2x 2-3)又因为0<x 1<x 2<1,所以(2x 1+x 2-3)<0,(x 1+2x 2-3)<0,即h (x 1)h (x 2)<0,-----------(8分)故h (x )=0在区间(x 1,x 2)内必有解,即关于x 的方程f (x )-f (x 2)-f (x 1)x 2-x 1=0在(x 1,x 2)恒有实数解-----(9分)(3)令g (x )=ln x ,x ∈(a ,b ),-----------(10分)则g (x )符合拉格朗日中值定理的条件,即存在x 0∈(a ,b ),使g (x 0)=g (b )-g (a )b -a =ln b -ln ab -a-----------(11分)因为g ′(x )=1x ,由x ∈(a ,b ),0<a <b 可知g ′(x )∈1b ,1a,b -a >0-----(12分)即1b <g ′(x 0)=g (b )-g (a )b -a =ln b -ln a b -a =ln bab -a<1a ,∴b -a b<ln b a <b -a a -----(14分)例8.已知f (x )=23x 3-2x 2+cx +4,g (x )=e x -e 2-x +f (x ),(1)若f (x )在x =1+2处取得极值,试求c 的值和f (x )的单调增区间;(2)如图所示,若函数y =f (x )的图象在[a ,b ]连续光滑,试猜想拉格朗日中值定理:即一定存在c ∈(a ,b ),使得f (c )=f (b )-f (a )b -a,利用这条性质证明:函数y =g (x )图象上任意两点的连线斜率不小于2e -4.xyabcA By =f x【解析】解:(1)f ′(x )=2x 2-4x +c ,(1分)依题意,有f (1+2)=0,即c =-2(1+2)2+4(1+2)=-2.(2分)∴f (x )=23x 3-2x 2-2x +4,f ′(x )=2x 2-4x -2.令f ′(x )>0,得x <1-2或x >1+2,(5分)从而f (x )的单调增区间为:(-∞,1-2]及[1+2,+∞);(6分)(2)f (c )=f (b )-f (a )b -a;g (x )=e x -e 2-x +f (x )=e x -e 2-x +23x 3-2x 2-2x +4,(7分)g ′(x )=e x+e2-x+2x 2-4x -2(9分)=e x+e 2ex +2(x -1)2-4≥2e x ⋅e 2e x +2⋅0-4=2e -4.(12分)由(2)知,对于函数y =g (x )图象上任意两点A 、B ,在A 、B 之间一定存在一点C (c ,g ′(c )),使得g ′(c )=K AB ,又g ′(x )≥2e -4,故有K AB =g ′(c )≥2e -4,证毕.(14分)【同步练习】一、单选题1.十八世纪早期,英国数学家泰勒发现了公式sin x =x -x 33!+x 55!-x 77!+⋯+-1 n -1x 2n -12n -1 !+⋯,(其中x ∈R ,n ∈N *,n !=1×2×3×⋯×n ,0!=1),现用上述公式求1-12!+14!-16!+⋯+-1 n -112n -2 !+⋯的值,下列选项中与该值最接近的是()A.sin57°B.sin36°C.sin33°D.sin30°【答案】C【解析】因为sin x =x -x 33!+x 55!-x 77!+⋯+(-1)n -1x 2n -1(2n -1)!+⋯,则(sin x )=cos x =1-x 22!+x 44!-x 66!+⋯+(-1)n -1x 2n -2(2n -2)!+⋯,当x =1时,则有cos1=1-12!+14!-16!+⋯+(-1)n -11(2n -2)!+⋯,又cos1=sin π2-1 ,则1-12!+14!-16!+⋯+(-1)n -11(2n -2)!+⋯=sin π2-1 ≈sin0.57=sin 0.57×180π °≈sin32.7°≈sin33°,故选∶C .2.公元1715年英国数学家布鲁克·泰在他的著作中陈述了“泰勒公式”,如果满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值构建一个多项式来近似表达这个函数.泰勒公式将一些复杂函数近似地表示为简单的多项式函数,使得它成为分析和研究许多数学问题的有力工具,例如:e x=+∞n =0x nn !=x 00!+x 11!+x 22!+x 33!+⋯+x n n !+⋯,其中x ∈R ,n ∈N *,试用上述公式估计e 的近似值为(精确到0.001)()A.1.647 B.1.649 C.1.645 D.1.646【答案】B【解析】由题意可知,结果只需精确到0.001即可,令x =0.5,取前6项可得:e =+∞n =00.5n n ! ≈5n =00.5n n ! =0.500!+0.511!+0.522!+0.533!+0.544!+0.555!=1+0.5+0.252+0.1256+0.062524+0.03125120≈1.649所以e 的近似值为1.649,故选:B .3.计算器是如何计算sin x ,cos x ,πx ,ln x ,x 等函数值的呢?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,其中n !=1×2×⋯×n ,英国数学家泰勒发现了这些公式,可以看出,右边的项用得越多,计算得出的sin x 和cos x 的值也就越精确.运用上述思想,可得到sin π2+1 的近似值为()A.0.50 B.0.52C.0.54D.0.56【答案】C【解析】由题意可得,sin π2+1=cos1,故cos1=1-122!+144!-166!+⋯=1-12+124-1720+⋯≈1-0.5+0.041-0.001+⋯=0.54.故选:C .二、填空题4.英国数学家泰勒(1685-1731)以发现泰勒公式和泰勒级数闻名于世,由泰勒公式,我们得到e =1+11!+12!+13!+⋯+1n !+e θ(n +1)!(其中e 为自然对数的底数,0<θ<1,n !=n ×n -1 ×n -2 ×...×2×1),其拉格朗日余项是R n =e θ(n +1)!.可以看出,右边的项用得越多,计算得到的e 的近似值也就越精确.若3(n +1)!近似地表示e 的泰勒公式的拉格朗日余项R n ,R n 不超过11000时,正整数n 的最小值是_____【答案】6【解析】依题意得3n +1 !≤11000,即n +1 !≥3000,5+1 !=6×5×4×3×2×1=720<3000,6+1 !=7×6×5×4×3×2×1=5040>3000,所以n 的最小值是6.故答案为:6三、解答题5.给出以下三个材料:①若函数f x 可导,我们通常把导函数f x 的导数叫做f x 的二阶导数,记作f x .类似地,二阶导数的导数叫做三阶导数,记作f x ,三阶导数的导数叫做四阶导数⋯⋯一般地,n -1阶导数的导数叫做n 阶导数,记作f n x =f n -1 x ,n ≥4.②若n ∈N ∗,定义n !=n ×n -1 ×n -2 ×⋅⋅⋅×3×2×1.③若函数f x 在包含x 0的某个开区间a ,b 上具有n 阶的导数,那么对于任一x ∈a ,b 有g x =f x 0 +f x 0 1!x -x 0 +f x 0 2!x -x 0 2+f x 0 3!x -x 0 3+⋅⋅⋅+f n x 0 n !x -x 0 n,我们将g x 称为函数f x 在点x =x 0处的n 阶泰勒展开式.例如,y =e x 在点x =0处的n 阶泰勒展开式为1+x +12x 2+⋅⋅⋅+1n !x n .根据以上三段材料,完成下面的题目:(1)求出f 1x =sin x 在点x =0处的3阶泰勒展开式g 1x ,并直接写出f 2x =cos x 在点x =0处的3阶泰勒展开式g 2x ;(2)比较(1)中f 1x 与g 1x 的大小.(3)证明:e x +sin x +cos x ≥2+2x .【解析】(1)∵f 1x =cos x ,f 2x =-sin x ,f 3x =-cos x ,∴f 10 =1,f 20 =0,f 30 =-1,∴g 1x =sin0+11!x -0 +02!x -0 2+-13!x -0 3,即g 1x =x -16x 3;同理可得:g 2x =1-12x 2;(2)由(1)知:f 1x =sin x ,g 1x =x -16x 3,令h x =f 1x -g 1x =sin x -x +16x 3,则h x =cos x -1+12x 2,∴h x =-sin x +x ,h x =1-cos x ≥0,∴h x 在R 上单调递增,又h 0 =0,∴当x ∈-∞,0 时,h x <0,h x 单调递减;当x ∈0,+∞ 时,h x >0,h x 单调递增;∴h x min =h 0 =1-1+0=0,∴h x ≥0,∴h x 在R 上单调递增,又h 0 =0,∴当x ∈-∞,0 时,h x <0;当x ∈0,+∞ 时,h x >0;综上所述:当x <0时,f 1x <g 1x ;当x =0时,f 1x =g 1x ;当x >0时,f 1x >g 1x ;(3)令φx =f 2x -g 2x =cos x -1+12x 2,则φ x =-sin x +x ,∴φ x =1-cos x ≥0,∴φ x 在R 上单调递增,又φ 0 =0,∴φx 在-∞,0 上单调递减,在0,+∞ 上单调递增,∴φx ≥φ0 =0,即cos x ≥1-12x 2;∵y =e x 在点x =0处的4阶泰勒展开式为:1+x +12x 2+16x 3+124x 4,∴e x =1+x +12x 2+16x 3+124x 4≥1+x +12x 2+16x 3,当且仅当x =0时取等号,①当x ≥0时,由(2)可知,sin x ≥x -16x 3,当且仅当x =0时取等号,所以e x +sin x +cos x ≥1+x +12x 2+16x 3 +x -16x 3 +1-12x 2 =2+2x ;②当x<0时,设F x =e x+sin x+cos x-2-2x,F0 =0,F x =e x+cos x-sin x-2=e x+2cos x+π4-2,F x =e x-sin x-cos x,当x∈-1,0,由(2)可知sin x<x-16x3,所以,F x =e x-sin x-cos x>1+x+12x2+16x3+16x3-x-cos x=1-cos x+16x23+2x>0,即有F x <F 0 =0;当x∈-∞,-1时,F x =e x+2cos x+π4-2<1e+2-2<12+2-2<0,所以,x<0时,F x 单调递减,从而F x >F0 =0,即e x+sin x+cos x>2+2x.综上所述:e x+sin x+cos x≥2+2x.6.在高等数学中,我们将y=f x 在x=x0处可以用一个多项式函数近似表示,具体形式为:f x =f x0+f′x0x-x0+f x02!x-x02+⋅⋅⋅+f n x0n!x-x0n+⋅⋅⋅(其中f n x 表示f x 的n次导数),以上公式我们称为函数f x 在x=x0处的泰勒展开式.(1)分别求e x,sin x,cos x在x=0处的泰勒展开式;(2)若上述泰勒展开式中的x可以推广至复数域,试证明:e iπ+1=0.(其中i为虚数单位);(3)若∀x∈0,32,e a sin x>x+1恒成立,求a的范围.(参考数据ln52≈0.9)【解析】(1)因为函数f x 在x=x0处的泰勒展开式为f x =f x0+f′x0x-x0+f x02!x-x02+⋅⋅⋅+f n x0n!x-x0n+⋅⋅⋅(其中f n x 表示f x 的n次导数),所以e x,sin x,cos x在x=0处的泰勒展开式分别为:e x=1+x+12!x2+⋯+1n!x n+⋯,sin x=x-13!x3+15!x5+⋯+(-1)n-1(2n-1)!x2n-1+⋯,cos x=1-12!x2+14!x4+⋯+(-1)n(2n)!x2n+⋯;(2)证明:把e x在x=0处的泰勒展开式中的x替换为ix,可得e ix=1+(ix)+12!(ix)2+13!(ix)3+14!(ix)4+⋯+1n!(ix)n+⋯=1-12!x2+14!x4+⋯+(-1)n(2n)!x2n+⋯+i⋅x-13!x3+15!x5+⋯+(-1)n-1(2n-1)!x2n-1+⋯=cos x+i⋅sin x,所以e iπ=cosπ+i⋅sinπ=-1,即e iπ+1=0;(3)由sin x在x=0处的泰勒展开式,先证∀x∈0,32,sin x>x-16x3,令f(x)=sin x-x+16x3,f′(x)=cos x-1+12x2,f′′(x)=x-sin x,f (x)=1-cos x,易知f (x)>0,所以f′′(x)在0,32上单调递增,所以f′′(x)>f′′(0)=0,所以f′(x)在0,3 2上单调递增,所以f′(x)>f′(0)=0,所以f(x)在0,3 2上单调递增,所以f(x)>f(0)=0,再令g(x)=x-16x3-ln(x+1),x∈0,32,易得g′(x)=-12x(x-1)(x+2)x+1,所以g(x)在(0,1)上单调递增,在1,3 2上单调递减,而g(0)=0,g32=1516-ln52>0,所以∀x∈0,3 2,g(x)>0恒成立,当a≥1时,a sin x≥sin x>x-16x3>ln(x+1) ,所以e a sin x>x+1成立,当a<1时,令h(x)=a sin x-ln(x+1),x∈0,3 2,易求得h (0)=a-1<0,所以必存在一个区间(0,m),使得h(x)在(0,m)上单调递减,所以x∈(0,m)时,h(x)<h(0)=0,不符合题意.综上所述,a≥1.7.英国数学家泰勒发现了如下公式:sin x=x-x33!+x55!-x77!+⋯,其中n!=1×2×3×4×⋯×n,此公式有广泛的用途,例如利用公式得到一些不等式:当x∈0,π2时,sin x<x,sin x>x-x33!,sin x<x-x3 3!+x55!,⋯.(1)证明:当x∈0,π2时,sin x x>12;(2)设f x =m sin x,若区间a,b满足当f x 定义域为a,b时,值域也为a,b,则称为f x 的“和谐区间”.(i)m=1时,f x 是否存在“和谐区间”?若存在,求出f x 的所有“和谐区间”,若不存在,请说明理由;(ii)m=-2时,f x 是否存在“和谐区间”?若存在,求出f x 的所有“和谐区间”,若不存在,请说明理由.【解析】(1)由已知当x∈0,π2时,sin x>x-x33!,得sin x x >1-x 26>1-π226=1-π224>12,所以当x ∈0,π2 时,sin x x >12.(2)(i )m =1时,假设存在,则由-1≤f x ≤1知-1≤a <b ≤1,注意到1<π2,故a ,b ⊆-π2,π2 ,所以f x 在a ,b 单调递增,于是f a =af b =b,即a ,b 是方程sin x =x 的两个不等实根,易知x =±π2不是方程的根,由已知,当x ∈0,π2时,sin x <x ,令x =-t ,则有t ∈-π2,0 时,sin -t <-t ,即sin t >t ,故方程sin x =x 只有一个实根0,故f x 不存在“和谐区间”.(ii )m =-2时,假设存在,则由-2≤f x ≤2知-2≤a <b ≤2,若a ,b ≥0,则由a ,b ⊆0,π ,知f x ≤0,与值域是a ,b ⊆0,π 矛盾,故不存在“和谐区间”,同理,a ,b ≤0时,也不存在,下面讨论a ≤0≤b ,若b ≥π2,则0,π2⊆a ,b ,故f x 最小值为-2,于是a =-2,所以-π2,π2⊆a ,b ,所以f x 最大值为2,故b =2,此时f x 的定义域为-2,2 ,值域为-2,2 ,符合题意.若b <π2,当a ≤-π2时,同理可得a =-2,b =2,舍去,当a >-π2时,f x 在a ,b 上单调递减,所以a =-2sinb b =-2sin a ,于是a +b =-2sin a +sin b ,若b >-a 即a +b >0,则sin b >sin -a ,故sin b +sin a >0,-2sin a +sin b <0,与a +b =-2sin a +sin b 矛盾;若b <-a ,同理,矛盾,所以b =-a ,即b2=sin b ,由(1)知当x ∈0,π2 时,sin x >x 2,因为b ∈0,π2,所以b =0,从而,a =0,从而a =b ,矛盾,综上所述,f x 有唯一的“和谐区间”-2,2 .8.计算器是如何计算sin x ,cos x ,e x ,ln x ,x 等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,其中n !=1⋅2⋅3⋅⋯⋅n .英国数学家泰勒(B .Taylor ,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得到的sin x 和cos x 的值也就越精确.例如,我们用前三项计算sin0.9,就得到sin0.9≈0.9-(0.9)33!+(0.9)55!≈0.78342075.像这些公式已被编入计算器内,计算器利用足够多的项就可确保其显示值是精确的.试用你的计算器计算sin0.9,并与上述结果进行比较.【解析】用计算器计算sin0.9得sin0.9=0.783326909627,和数值0.78342075比较发现,通过sin0.9≈0.9-(0.9)33!+(0.9)55!≈0.78342075计算的答案只能精确到小数点后第3位.9.给出以下三个材料:①若函数f x 可导,我们通常把导函数f x 的导数叫做f x 的二阶导数,记作f x .类似地,二阶导数的导数叫做三阶导数,记作f x ,三阶导数的导数叫做四阶导数⋯⋯一般地,n -1阶导数的导数叫做n 阶导数,记作f n x =f n -1 x ,n ≥4.②若n ∈N ∗,定义n !=n ×n -1 ×n -2 ×⋅⋅⋅×3×2×1.③若函数f x 在包含x 0的某个开区间a ,b 上具有n 阶的导数,那么对于任一x ∈a ,b 有g x =f x 0 +f x 0 1!x -x 0 +f x 0 2!x -x 0 2+f x 0 3!x -x 0 3+⋅⋅⋅+f n x 0 n !x -x 0 n,我们将g x 称为函数f x 在点x =x 0处的n 阶泰勒展开式.例如,y =e x 在点x =0处的n 阶泰勒展开式为1+x +12x 2+⋅⋅⋅+1n !x n .根据以上三段材料,完成下面的题目:(1)求出f 1x =sin x 在点x =0处的3阶泰勒展开式g 1x ,并直接写出f 2x =cos x 在点x =0处的3阶泰勒展开式g 2x ;(2)比较(1)中f 1x 与g 1x 的大小.(3)已知y =e x 不小于其在点x =0处的3阶泰勒展开式,证明:e x +sin x +cos x ≥2+2x .【解析】(1)∵f 1x =cos x ,f 2x =-sin x ,f 3x =-cos x ,∴f 10 =1,f 20 =0,f 30 =-1,∴g 1x =sin0+11!x -0 +02!x -0 2+-13!x -0 3,即g 1x =x -16x 3;。
高教论坛在数学分析中,微分中值定理主要包括罗尔中值定理、拉格朗日中值定理和柯西中值定理及泰勒公理等.微分中值定理是导数应用的重要基础,其中,拉格朗日中值定理的应用最为广泛。
下面,分别介绍拉格朗日中值定理的内容及其应用。
1拉格朗日中值定理的内容定理[1]:如果函数f(x)满足(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导.则在开区间(a,b)内至少存在一点ξ,使得注释:(1)拉格朗日中值定理又称为有限增量定理,该定理建立了函数与导数的关系,这样就可以利用导数的性质研究函数的性质。
(2)罗尔定理是拉格朗日中值定理的特例,柯西中值定理是拉格朗日中值定理的推广,拉格朗日公式恰好为0阶泰勒公式。
(3)拉格朗日中值定理可以证明等式和不等式,也可以研究函数的单调性、凹凸性及其连续性等性质。
2证明等式由于拉格朗日中值定理的结论本身就是一个等式,因此可以利用该定理证明某些等式。
例1[2]:闭区间[a,b]上连续,则在开区间(a,b)内至少存在一点ξ,使得证明:因f(x)连续,故它的原函数存在,设为F(x),由牛顿—莱布尼茨公式,有在区间[a,b]上,对函数F(x)应用拉格朗日中值定理,在开区间内至少存在一点ξ,使得故3不等式的证明拉格朗日中值定理中的ξ位于开区间(a,b)内,可以利用这一属性证明不等式。
例2[2]:证明当时,有.证明:设,显然f(t)在[0,x]上满足拉格朗自中值定理的条件,根据定理,应有即又由于,有,即4求极限利用拉格朗日中值定理可以解决某些特殊极限的计算问题。
例3[3]:求解:原式因为,所以当,有,故原式.5研究函数的性质利用拉格朗日中值定理可以研究函数的单调性、凹凸性及连续性.这里仅给出定理在函数一致连续方面的应用举例。
例4[4]:证明在上一致连续。
证明:由于f(x)在上一致连续,因此在[0,2]上一致连续,于是,使得当且时,有.另一方面,因为在上严格单调递减,所以在上恒有,于是,对,应用拉格朗日中值定理,得这样,对给定的ε,取,则当且时,有现取,则对,当时,一定有或,从而必有这表明f(x)在上一致连续。
拉格朗日中值定理及其应用拉格朗日中值定理是微积分学中的一条经典定理,它在许多科学和工程领域中得到了广泛的应用。
本文将简要介绍拉格朗日中值定理的基本概念、定理内容和应用实例。
一、拉格朗日中值定理的基本概念拉格朗日中值定理是微积分学中的一个重要定理。
在介绍拉格朗日中值定理之前,我们先来了解一下导数的概念。
导数是一种量度函数变化率的工具,用来描述函数在某一点的瞬间变化率。
如果函数$ f(x) $在点$ x = a $处导数存在,则其导数值为$ f'(a) $,表示函数在点$ x = a $处的切线斜率。
如果$ f(x) $在点$ x = a $处连续,则称函数在点$ x=a $处可导,即$ f(x) $在点$ x = a $处的导数存在。
其中,导数比较常见的表示方法有$ f'(x) $和$ \frac{\mathrm{d}y}{\mathrm{d}x} $。
二、拉格朗日中值定理的定理内容拉格朗日中值定理是用于描述真实的物理现象和工程应用的,尤其是在求解一些优化问题时。
该定理描述了如果函数在区间$ [a,b] $内连续且在区间$ (a, b) $内可导,则存在一点$ c $,使得$ a <c < b $且$f(b)-f(a)=f'(c)(b-a)$。
简单来说,就是说对于一个在区间中连续的可导函数,一定存在一个点,使得该点的导数等于函数在该区间两端点之间的增量与区间长度的商。
三、拉格朗日中值定理的应用实例1. 求解函数极值:可以通过拉格朗日中值定理来判断一个函数在指定区间是否存在极值。
如果其导数在该区间内始终为$0$或者不存在,则该函数在该区间可能存在极值点。
例如,求解函数$ f(x) = x^3 - 3x^2 + 2x + 1 $在区间$ [-1, 3] $内的最大值和最小值。
我们可以通过以下步骤来求解:(1)首先求出函数在该区间的导数$ f'(x) = 3x^2 - 6x + 2 $。
微分中值定理在不等式证明中的应用作者:段胜忠杨国翠来源:《现代商贸工业》2017年第28期摘要:通过典型例子的解答,给出利用拉格朗日中值定理、柯西中值定理和带拉格朗日余项泰勒公式证明不等式的方法和步骤。
关键词:不等式;拉格朗日中值定理;柯西中值定理;泰勒公式;辅助函数中图分类号:TB文献标识码:Adoi:10.19311/ki.16723198.2017.28.094不等式是初等数学和高等数学中的重要内容,在数学分析、泛函分析、非线性泛函分析和证明微分方程解的存在性方面有着非常重要的应用。
同时,不等式的证明由于题型特殊,证明的方法灵活多变,在培养学生的创新思维和创新能力上具有重要的作用。
微分中值定理反映了可导函数在闭区间上整体的平均变化率与区间内某点的局部变化率的关系,是用导数来研究函数性态的理论基础,微分中值定理作为微分学应用的桥梁,在理论和实际中具有极高的研究价值。
本文通过典型例子的解答,希望进一步概括和总结微分中值定理在不等式证明中的方法和步骤,在加深学生对微分中值定理理解的同时,提升学生证明不等式能力。
1预备知识定理1.1 (拉格朗日中值定理)若函数fx满足如下条件:(1)在闭区间a,b上连续;(2)在开区间a,b内可导。
则在a,b内至少存在一点ξ,使得f′ξ=fb-fab-a 。
定理1.2(柯西中值定理)若函数f(x)与g(x)满足下列条件:(1)在闭区间a,b连续;(2)在开区间(a,b)可导,且x∈(a,b),有g′(x)≠0,则在(a,b)内至少存在一点c,使f′(c)g′(c)=f(b)-f(a)g(b)-g(a)。
定理1.3(带拉格朗日余项的泰勒公式)若函数f(x)在点a存在n+1阶导数,则x∈Uo (a)有f(x)=f(a)+f′(a)(x-a)+…+f(n)(a)n!(x-a)n+f(n+1)(ξ)(n+1)!(x-a)n+1,其中ξ介于a与x之间。
2典型例子2.1利用拉格朗日中值定理证明不等式方法步骤:(1)构造恰当的辅助函数;(2)寻找合适的讨论区间;(3)考虑中值的取值范围,进行适当的放缩。
中值定理证明不等式中值定理是数学分析中的重要定理之一,它可以用来证明一些不等式。
下面我将通过一系列步骤详细地证明中值定理。
首先,我们需要明确中值定理的表述。
中值定理(也称为拉格朗日中值定理)是微分学中的一个定理,它陈述了如果函数f在闭区间[a,b]上连续,并且在开区间(a,b)内可导,那么在(a,b)内至少存在一个点c,使得f(b)-f(a)=(b-a)f'(c)。
这个定理可以形象地理解为函数曲线在(a,b)内至少有一点的切线与曲线的平均斜率相等。
为了证明中值定理,我们将用反证法的思想。
假设在(a,b)内不存在这样的点c,使得f(b)-f(a)=(b-a)f'(c)。
根据这个假设,我们可以得到以下两个结论:1.如果f'(x)在(a,b)内保持正号或者零,那么f(b)-f(a)>0,即f(b)>f(a)。
2.如果f'(x)在(a,b)内保持负号或者零,那么f(b)-f(a)<0,即f(b)<f(a)。
因为我们假设f在闭区间[a,b]上连续,所以根据闭区间上的最大值和最小值定理(也称为魏尔斯特拉斯极值定理),f在[a,b]上一定有最大值和最小值。
设最大值M和最小值m分别在x=c1和x=c2处取得,其中a<c1<c2<b。
根据这两个结论,我们可以得到以下两个不等式:1.f(c2)≥f(c1),因为f'(x)在(a,b)内保持正号或者零,根据结论1,我们有f(c2)>f(c1)。
如果f(c2)=f(c1),那么必定存在d∈(c1,c2),使得f'(d)=0,从而与中值定理的假设矛盾。
2.f(c2)≤f(c1),因为f'(x)在(a,b)内保持负号或者零,根据结论2,我们有f(c2)<f(c1)。
如果f(c2)=f(c1),那么必定存在d∈(c1,c2),使得f'(d)=0,从而与中值定理的假设矛盾。
高三数学培优资料(10)教师版泰勒公式与拉格朗日中值定理在证明不等式中的简单应用泰勒公式是高等数学中的重点,也是一个难点,它贯穿于高等数学的始终。
泰勒公式的重点就在于使用一个n 次多项式()n p x ,去逼近一个已知的函数()f x ,而且这种逼近有很好的性质:()n p x 与()f x 在x 点具有相同的直到阶n 的导数]31[-.所以泰勒公式能很好的集中体现高等数学中的“逼近”这一思想精髓。
泰勒公式的难点就在于它的理论性比较强,一般很难接受,更不用说应用了。
但泰勒公式无论在科研领域还是在证明、计算应用等方面,它都起着很重要的作用.运用泰勒公式,对不等式问题进行分析、构造、转化、放缩是解决不等式证明问题的常用方法与基本思想.本文拟在前面文献研究的基础上通过举例归纳,总结泰勒公式在证明不等式中的应用方法. 泰勒公式知识:设函数()f x 在点0x 处的某邻域内具有1n +阶导数,则对该邻域内异于0x 的任意点x ,在0x 与x 之间至少存在一点ξ,使得:()f x =()0f x +()0'f x 0(x -x )+()0f''x 2!02(x -x )+⋅⋅⋅+ ()()0n f x n!0n (x -x )+()n R x ,其中()n R x =()(1)(1)!n f n ξ++10)(+-n x x 称为余项,上式称为n 阶泰勒公式; 若0x =0,则上述的泰勒公式称为麦克劳林公式, 即()f x = ()0f +()0'fx +()02!f''2x +⋅⋅⋅+()()0!nf n nx +0()n x . 利用泰勒公式证明不等式:若函数)(x f 在含有0x 的某区间有定义,并且有直到)1(-n 阶的各阶导数,又在点0x 处有n 阶的导数)(0)(x fn ,则有公式)()(!)()(!2)()(!1)()()()(00)(200000x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+=在上述公式中若0)(≤x R n (或0)(≥x R n ),则可得)(00)(200000)(!)()(!2)()(!1)()()(n n x x n x f x x x f x x x f x f x f -++-''+-'+≥或)(00)(200000)(!)()(!2)()(!1)()()(n n x x n x f x x x f x x x f x f x f -++-''+-'+≤1、 证明: ).11(,32)1ln(32<<-+-≤+x x x x x 证明 设)11)1ln()(<<-+=x x x f ( 则)(x f 在0=x 处有带有拉格朗日余项三阶泰勒公式 )11()1(432)1ln(4432<<-+-+-=+ξξ x x x x x 0)1(444≤+-ξx 32)1ln(32x x x x +-≤+∴ 由以上证明可知,用泰勒公式证明不等式,首先构造函数,选取适当的点0x 在0x 处展开,然后判断余项)(x R n 的正负,从而证明不等式.对于欲证不等式中含有初等函数、三角函数、超越函数与幂函数结合的证明问题,要充分利用泰勒公式在00x =时的麦克劳林展开式,选取适当的基本函数麦克劳林的的展开式,对题目进行分析、取材、构造利用. 2、 证明不等式:316x x -≤sin x . 2、不等式左边是三次二项式的初等函数,右边是三角函数,两边无明显的大小关系 。
这时我们可用sin x 在00x =的二阶麦克劳林公式表示出来,然后进行比较判断两者的大小关系。
证明31()sin 6f x x x x =-+,(0)0f =,21'()cos 12f x x x =-+,'(0)0f =,''()sin f x x x =-+,''(0)0f =,'''()cos 1f x x =-+,'''()cos 1f ξξ=-+ 当3n =时,()f x 的泰勒展式为:331()000(1cos )()3!f x x x o x θ=+++-⋅+ ⇒()f x =331(1cos )()6x x o x θ-+≥0 (x ≥0, ξ≤x θ,0<ϕ<1)所以x ≥0,,有 316x x -≤sin x . 在含有无理函数与幂函数结合的不等式证明问题中,它们之间没有明显的大小关系。
如果用常规方法(放缩法、比较法,代换法等),我们很难比较它们之间的大小关系,但这时用泰勒公式却能轻易解答.3、 证明不等式:2128x x +-(x >0). 对于此题,若我们对不等式两边同时平方,虽可以去掉根号,但x 的次数却提高了2次,这还是难以比较他们之间的大小关系,但若用泰勒公式却可以轻易解答.证明 设()f x =(0)1f =,121'()(1)2f x x -=+,1'(0)2f =,321''()(1)4f x x -=-+,1''(0)4f =-,523'''()(1)8f x x -=+代入0x =02x - 28x +5331(1)16x x θ-+ (0<θ<1)∵ x >0, ∴ 531(1)16x θ-+3x >0 所以 2128x x +-x >0).在不等式的证明问题中,若题目中出现了一阶导数、二阶导数、初等函数、三角函数或超越函数等与幂函数结合时,可优先考虑泰勒公式在0x =0时的麦克劳林表达式。
当然能做好此类题的前提条件是要对一些基本函数的麦克劳林表达式熟悉.微分)(Lagrange 中值定理: 若)(x f 满足以下条件:(1) )(x f 在闭区间],[b a 内连续 (2) )(x f 在开区间),(b a 上可导 则 ab a f b f f b a --='∍∈∃)()()(),(ξξ 4、 若)()(1,011y x py y x y x py p x y p p p p -<-<-><<--则 分析 因为,0x y <<则原不等式等价于11--<--<p p p p px yx y x py)1(>p .令p t x f =)(,则我们容易联想到Lagrange 中值定理yx y f x f y x f --=-)()())(('ξ.证明 设p t t f =)(,显然],[)(x y t f 在满足Lagrange 中值定理的条件则 ,)()()(),(y x y f x f f x y --='∍∈∃ξξ 即yx y x p p p p ---=1ξ 111,),(---<<∴<<∴∈p p p px p py x y x y ξξξ )()(11y x py y x y x py p p p p -<-<-∴-- 5、已知函数xxx x f +-+=1)1ln()(, 的极小值求)()1(x f ; abb a b a -≥->1ln ln ,0,2求证:)若(2)1()(),1)()1(5x xx f x f +='∞+-,的定义域为(函数、.0)0()(0==f x f x 取得极小值时,函数易得当(2))0(1ln ,1)1ln(11>-≥+≥+->x xx x x x x x 可得时,)知,当由( )0(11ln >-≥x x x 即,因为b ab a b a ln ln ln ,0,=->所以abb a -≥1ln 。
故得证 (也可用Lagrange 中值定理来证)6、已知函数的最大值;求函数x x f x g x x f -+==)1()()1(,ln )(22)(2)()(02ba ab a a f b f b a +->-<<时,求证:)当( 解:x x x x f x g -+=-+=)1ln()1()(),1((+∞-∈xxxx x g +-=-+='1111)( 0)(,0,0)(,01<'>>'<<-x g x x g x 时当当 0.)(0为取得最大值,且最大值时,故当x g x =)0(1ln ),0(1ln ),1()1ln(12>-≥->-≤->≤+x x x x x x x x x 得)知)由((bab b a b a b a x -=-≥-=1ln ,得令 0)())(()()(2))(()(2222222222>+--=+--+-=+---b a b b a a b b a b a b ab b a a b b a a b a b a b 2222)(2)()(.)(2ba ab a a f b f b a a b a b a b +->-+->-故所以评注:本题得到不等式)1()1ln(->≤+x x x 与不等式)1)(1ln(1->+≤+x x x x构成经典不等式,即)1()1ln(1->≤+≤+x x x x x.7、已知2ln )()2(2)()(0,0,ln )(a b ba gb g a g b a x x x g -<+-+<<<=求证:设 解析:)2ln(22ln ln )2(2)()(ba b a b b a a b a g b g a g ++⋅-+=+-+ba bb b a a a +++=2ln2ln由经典不等式),01()1ln(≠->≤+x x x x 且 及021,02,0<-<->-<<bba a ab b a 得因此,2)21ln(2ln 2ln a ab a a b a b a b a a -->-+-=+-=+,2)21ln(2ln 2ln a a b b b a b b a b a b -->-+-=+-=+ 故022)2()2(2ln 2ln=-+-=--⋅+--⋅>+++ab b a b b a b a a b a b a b b b a a a 又2ln 2ln )(2ln 2ln 2ln 2ln ,22a b b a b a b b a b b b b a a b a b b b a a a b b a b a a -<+-=+++<++++<+ 综上所述,得2ln )()2(2)()(0a b ba gb g a g -<+-+< .)()1.(1ln )(8的最大值求、已知x f x x x f +-=()),2()1(2)12)(1(ln 33ln 22ln 2*222222N n n n n n n n ∈≥++-<+++ 求证:(1)略(2))0(11ln )0(01ln 1>-≤>≤+-x xx x x x x ,)知由( 所以22222322211311211ln 33ln 22ln nn n -++-+-<+++))1(1431321()1()13121()1(222+++⨯+⨯--<+++--=n n n n n )1(2)12)(1()1121()1(++-=+---n n n n n ),2(*N n n ∈≥9、求证:)()211()811)(411)(211(*2222N n e n ∈<++++要证明原不等式,就要证明1)]211()411)(211ln[(222<+++n即1)211ln()411ln()211ln(222<+++++n构造函数[])0()()(,1,0,)1ln()(2f x f x f x x x x f <∈-+=递减,故易得则有x x <+)1ln(2。