根据牛顿第二定律,有: kx m d 2 x dt 2
令 2 k 有:
m
d 2x dt 2
2x
简谐振动方程
解微分方程→
A, 为积分常数
0
注意:除弹簧振子外,单摆、复摆做
小角度(一般<=5°)摆动等都可以
视为简谐振动
§简谐振动的速度、加速度
x 简谐振动的位移: A cos(t )
v 简谐振动的速度: dx A sin( t )
▪
广义地讲:振动指任何一个物理量在某一定值附近作周期性的往复变化
▪
狭义地讲:振动指物体在其平衡位置附近的往复运动
▪
振动依机理不同区分为机械振动、电磁振动,但描述和研究方法相同。简谐振动是最简单、最基本的振动,任何复杂的振动都可以认为是由许多简谐振动的合成。因此研究简谐振动是进一步研究复杂振动的基础。接下来我们就一起来看一看简谐振动的描述。
t 0.83(s)
26
y
x
o
A
3
谢 谢!
2A
a
Ax
T
o tAvFra bibliotek如何通过振动曲线判断v正负、φ值?
5
5
§描述简谐振动三个特征量
▪ 圆频率(角频率):在2π秒内物 体所作的完全振动的次数(rad·s1)
A
x
2 0
v0
2
▪
相位:相位是描述振动状态的物理量
▪
与状态参量 x,v 有一一对应关系
▪
每一时刻运动状态(x,v)是唯一的
0
arctg(
简谐振动除了用三角函数 式及振动曲线描述外还可 以用一个旋转矢量来表示 简谐运动,直观地表明简 谐运动的三个特征量的物 理意义。