遗传算法作业
- 格式:docx
- 大小:167.11 KB
- 文档页数:15
遗传算法求最大值(大作业)09电子(2)班 郑周皓 E09610208 题目:函数]20)5()5(exp[999.0)10)5()5(exp(9.0),(22222-+--*++++*=y x y x y x f (x,y 在-10到10之间),利用遗传算法求函数的最大值及对应的位置。
要求: 种群数N=50,交叉位数n/2,即个体位数的一半,且位置自行设计,变异位数自定,x,y 分辨率为0.0001。
效果比较:交叉个数=20,28,36,44变异个数=1,5,10,15解:问题分析:对于本问题,只要能在区间[-10,,10]中找到函数值最大的点a,b,则函数f(x,y)的最大值也就可以求得。
于是,原问题转化为在区间[-10, 10]中寻找能使f(x,y)取最大值的点的问题。
显然, 对于这个问题, 任一点x ,y ∈[-10, 10]都是可能解, 而函数值f (x )= sinx/x 也就是衡量x 能否为最佳解的一种测度。
那么,用遗传算法的眼光来看, 区间[-10, 10]就是一个(解)空间,x 就是其中的个体对象, 函数值f (x )恰好就可以作为x 的适应度。
这样, 只要能给出个体x 的适当染色体编码, 该问题就可以用遗传算法来解决。
自变量x,y 可以抽象为个体的基因组,即用二进制编码表示x,y;函数值f(x,y)可以抽象为个体的适应度,函数值越小,适应度越高。
遗传算法步骤:算法流程第1步在论域空间U上定义一个适应度函数f(x),给定种群规模N,交叉率P c和变异率P m,代数T;取适度函数为f(x)=sinx/x,种群规模N=50,用popsize表示。
x,y的精度为0.0001 .交叉率(crossover rate):参加交叉运算的染色体个数占全体染色体总数的比例,记为Pc,取值范围一般为0.4~0.99,根据要求本例中选为20/50、28/50、36/50、44/50。
变异率(mutation rate):发生变异的基因位数所占全体染色体的基因总位数的比例,记为Pm,取值范围一般为0.0001~0.1,根据要求本例中选为1/50、5/50、10/50、15/50。
数学建模遗传算法例题数学建模中,遗传算法是一种基于进化思想的优化算法,可以应用于复杂的优化问题中。
本文将介绍一些遗传算法的例题,帮助读者更好地理解遗传算法的应用。
例题一:背包问题有一个体积为V的背包和n个物品,第i个物品的体积为vi,价值为wi。
求这个背包最多能装多少价值的物品。
遗传算法的解决步骤:1. 初始化种群:随机生成一定数量的个体作为初始种群。
2. 适应度函数:将每个个体代入适应度函数,计算其适应度值。
3. 选择:根据每个个体的适应度值,选择一定数量的个体进入下一代。
4. 交叉:对被选中的个体进行交叉操作,生成新的个体。
5. 变异:对新的个体进行变异操作,引入新的基因。
6. 重复以上步骤,直到符合终止条件。
在背包问题中,适应度函数可以定义为:背包中物品的总价值。
交叉操作可以选择单点交叉或多点交叉,变异操作可以选择随机变异或非随机变异。
例题二:旅行商问题有n个城市,旅行商需要依次经过这些城市,每个城市之间的距离已知。
求旅行商经过所有城市的最短路径。
遗传算法的解决步骤:1. 初始化种群:随机生成一定数量的个体作为初始种群,每个个体代表一种旅行路线。
2. 适应度函数:将每个个体代入适应度函数,计算其适应度值。
3. 选择:根据每个个体的适应度值,选择一定数量的个体进入下一代。
4. 交叉:对被选中的个体进行交叉操作,生成新的个体。
5. 变异:对新的个体进行变异操作,引入新的基因。
6. 重复以上步骤,直到符合终止条件。
在旅行商问题中,适应度函数可以定义为:旅行商经过所有城市的总距离。
交叉操作可以选择顺序交叉或部分映射交叉,变异操作可以选择交换或反转基因序列。
总结:遗传算法是一种强大的优化算法,可以应用于多种复杂的优化问题中。
在数学建模中,遗传算法的应用也越来越广泛。
本文介绍了背包问题和旅行商问题的遗传算法解决步骤,希望对读者有所帮助。
遗传算法例题详解遗传算法是一种模拟自然选择和遗传机制的优化方法,它模拟了生物进化的过程,通过模拟种群的遗传变异和适应度选择,寻找最优解。
下面我们以一个简单的例题来详细解释遗传算法的原理和应用。
假设我们要解决一个简单的优化问题,找到函数 f(x) = x^23x + 4 的最小值,其中 x 的取值范围在 [0, 5] 之间。
首先,我们需要定义遗传算法的基本要素:1. 个体表示,在这个例子中,个体可以用一个实数来表示,即x 的取值。
2. 适应度函数,即要优化的目标函数,对于这个例子就是 f(x) = x^2 3x + 4。
3. 遗传操作,包括选择、交叉和变异。
接下来,我们用遗传算法来解决这个优化问题:1. 初始化种群,随机生成一定数量的个体作为初始种群。
2. 评估适应度,计算每个个体的适应度,即计算函数 f(x) 的值。
3. 选择操作,根据个体的适应度来选择父代个体,适应度越高的个体被选中的概率越大。
4. 交叉操作,对选中的父代个体进行交叉操作,生成新的个体。
5. 变异操作,对新生成的个体进行变异操作,引入一定的随机性。
6. 重复步骤2-5,直到满足停止条件(如达到迭代次数或找到满意的解)。
通过不断地迭代选择、交叉和变异操作,种群中的个体将不断进化,最终找到函数的最小值对应的 x 值。
在上述例题中,遗传算法通过模拟自然选择和遗传机制,不断优化种群中个体的适应度,最终找到了函数 f(x) = x^2 3x + 4 的最小值对应的 x 值。
这个例子展示了遗传算法在优化问题中的应用,它能够有效地搜索解空间,找到全局最优解或者接近最优解的解。
遗传算法在实际应用中有着广泛的应用,如工程优化、机器学习、数据挖掘等领域。
遗传算法求解优化问题实例
一个常见的优化问题是旅行商问题(Traveling Salesman Problem,TSP)。
给定一组城市和每对城市之间的距离,旅行商问题要求找到一条经过所有城市一次且回到起点的最短路径。
以下是使用遗传算法求解TSP的实例:
1. 随机生成一个初始种群,种群中的每个个体表示一条路径。
每个个体由一个城市序列表示,例如[1, 2, 3, ..., n],其中n是城市的数量。
2. 计算种群中每个个体的适应度。
适应度可以定义为路径的总长度,即经过所有城市的距离之和。
3. 选择适应度较高的个体作为父代,进行交叉和变异操作以生成新的子代。
交叉操作可以是将两条路径的一部分交换,变异操作可以是随机改变路径中的一个或多个城市顺序。
4. 计算新生成的子代的适应度。
5. 重复步骤3和4,直到达到终止条件(例如达到最大迭代次数)。
6. 返回适应度最好的个体作为最优解,即最短路径。
遗传算法的优势在于可以在大规模问题中寻找较好的解,虽然不一定能找到最佳解,但可以得到相对较优的解。
第三章遗传算法习题与答案1.填空题(1)遗传算法的缩写是,它模拟了自然界中过程而提出,可以解决问题。
在遗传算法中,主要的步骤是、、。
(2)遗传算法的三个算子是、、。
解释:本题考查遗传算法的基础知识。
具体内容请参考课堂视频“第3章遗传算法”及其课件。
答案:(1)GA,生物进化,全局优化,编码,计算适应度函数,遗传算子(2)选择,交叉,变异2.对于编码长度为7的二进制编码,判断以下编码的合法性。
(1)[1020110](2)[1011001](3)[0110010](4)[0000000](5)[2134576]解释:本题考查遗传算法的二进制编码的合法性。
具体内容请参考课堂视频“第3章遗传算法”及其课件。
答案:(1)[1020110]不合法,不能出现“2”(2)[1011001]合法(3)[0110010]合法(4)[0000000]合法(5)[2134576]不合法,不能出现0、1以外的数字3.下图能够基本反映生物学遗传与优胜劣汰的过程。
理解该图,联想计算类问题求解,回答下列问题。
(1)下列说法正确的是_____。
(多选)A)任何一个生物个体的性状是由其染色体确定的,染色体是由基因及其有规律的排列所构成的,因此生物个体可由染色体来代表。
B)生物的繁殖过程是通过将父代染色体的基因复制到子代染色体中完成的,在复制过程中会发生基因重组或基因突变。
基因重组是指同源的两个染色体之间基因的交叉组合,简称为“杂交/交配”。
基因突变是指复制过程中基因信息的变异,简称“突变”。
C)不同染色体会产生不同生物个体的性状,其适应环境的能力也不同。
D)自然界体现的是“优胜劣汰,适者生存”的丛林法则。
不适应环境的生物个体将被淘汰,自然界生物的生存能力会越来越强。
解释:本题考核对生物遗传观点以及所给图片的理解。
具体内容请参考课堂视频“第3章遗传算法”及其课件。
答案:A、B、C、D关于生物遗传进化的基本观点如下:(1)生物的所有遗传信息都包含在其染色体中,染色体决定了生物的性状。
数学建模遗传算法例题数学建模是一种重要的实践活动,通过运用数学工具和方法对实际问题进行建模和求解。
而遗传算法则是一种基于生物进化原理的优化算法,能够通过模拟自然选择、交叉和变异等过程来搜索全局最优解。
在数学建模中,遗传算法也是一种常用的求解工具。
下面以一个简单的例题来介绍遗传算法在数学建模中的应用。
假设有一个机器人需要从起点出发沿着一条直线路径到达终点,并且需要尽量减少行驶路程。
此外,机器人有两种可选的行驶策略:一种是直行,另一种是先左转再右转。
由于机器人的行驶方向只能是水平或竖直,因此左转和右转的方向只有两种。
问题:如何确定机器人应该采用哪种行驶策略,并如何规划其行驶路径?解决此问题的一种方法是使用遗传算法。
具体步骤如下:1. 定义遗传算法的编码和解码方式因为机器人只有两种行驶策略,因此可以用一个二进制字符串来表示机器人的行驶方案。
例如,'01'表示机器人先左转再右转,“10”表示机器人直行。
因此,一个长度为N的二进制字符串可以代表机器人在N个路口的行驶方案。
2. 定义适应度函数适应度函数用于评估染色体的优劣程度。
在此例中,适应度函数应为机器人到达终点的路程长度。
因此,需要计算出每个染色体对应的机器人行驶方案下的总路程长度作为其适应度值。
3. 初始化种群初始化一个大小为M的随机种群,每个染色体为长度为N的二进制字符串。
4. 选择操作选择操作是指通过适应度函数对染色体进行选择,保留适应度较高的染色体,淘汰适应度较低的染色体。
在此例中,可以采用轮盘赌选择算法对染色体进行选择。
5. 交叉操作交叉操作是指将两个染色体的部分基因进行交换,产生新的后代染色体。
在此例中,可以采用单点交叉算法,即随机选择一个位置将两个染色体划分成两部分,然后交换这两部分,从而产生新的后代染色体。
6. 变异操作变异操作是指随机改变染色体中的一个基因,从而产生一个新的染色体。
在此例中,可以选择随机选择一个基因位置,将其取反,从而产生一个新的染色体。
⼈⼯智能结课作业-遗传算法粒⼦群寻优蚁群算法解决TSP问题代码已经发布到了github:如果帮到你了,希望给个star⿎励⼀下1 遗传算法1.1算法介绍遗传算法是模仿⾃然界⽣物进化机制发展起来的随机全局搜索和优化⽅法,它借鉴了达尔⽂的进化论和孟德尔的遗传学说。
其本质是⼀种⾼效、并⾏、全局搜索的⽅法,它能在搜索过程中⾃动获取和积累有关搜索空间的知识,并⾃适应的控制搜索过程以求得最优解。
遗传算法操作使⽤适者⽣存的原则,在潜在的解决⽅案种群中逐次产⽣⼀个近似最优解的⽅案,在遗传算法的每⼀代中,根据个体在问题域中的适应度值和从⾃然遗传学中借鉴来的再造⽅法进⾏个体选择,产⽣⼀个新的近似解。
这个过程导致种群中个体的进化,得到的新个体⽐原来个体更能适应环境,就像⾃然界中的改造⼀样。
遗传算法具体步骤:(1)初始化:设置进化代数计数器t=0、设置最⼤进化代数T、交叉概率、变异概率、随机⽣成M个个体作为初始种群P(2)个体评价:计算种群P中各个个体的适应度(3)选择运算:将选择算⼦作⽤于群体。
以个体适应度为基础,选择最优个体直接遗传到下⼀代或通过配对交叉产⽣新的个体再遗传到下⼀代(4)交叉运算:在交叉概率的控制下,对群体中的个体两两进⾏交叉(5)变异运算:在变异概率的控制下,对群体中的个体进⾏变异,即对某⼀个体的基因进⾏随机调整(6)经过选择、交叉、变异运算之后得到下⼀代群体P1。
重复以上(1)-(6),直到遗传代数为 T,以进化过程中所得到的具有最优适应度个体作为最优解输出,终⽌计算。
旅⾏推销员问题(Travelling Salesman Problem, TSP):有n个城市,⼀个推销员要从其中某⼀个城市出发,唯⼀⾛遍所有的城市,再回到他出发的城市,求最短的路线。
应⽤遗传算法求解TSP问题时需要进⾏⼀些约定,基因是⼀组城市序列,适应度是按照这个基因的城市顺序的距离和分之⼀。
1.2实验代码import randomimport mathimport matplotlib.pyplot as plt#读取数据f=open("test.txt")data=f.readlines()#将cities初始化为字典,防⽌下⾯被当成列表cities={}for line in data:#原始数据以\n换⾏,将其替换掉line=line.replace("\n","")#最后⼀⾏以EOF为标志,如果读到就证明读完了,退出循环if(line=="EOF"):break#空格分割城市编号和城市的坐标city=line.split("")map(int,city)#将城市数据添加到cities中cities[eval(city[0])]=[eval(city[1]),eval(city[2])]#计算适应度,也就是距离分之⼀,这⾥⽤伪欧⽒距离def calcfit(gene):sum=0#最后要回到初始城市所以从-1,也就是最后⼀个城市绕⼀圈到最后⼀个城市for i in range(-1,len(gene)-1):nowcity=gene[i]nextcity=gene[i+1]nowloc=cities[nowcity]nextloc=cities[nextcity]sum+=math.sqrt(((nowloc[0]-nextloc[0])**2+(nowloc[1]-nextloc[1])**2)/10)return 1/sum#每个个体的类,⽅便根据基因计算适应度class Person:def__init__(self,gene):self.gene=geneself.fit=calcfit(gene)class Group:def__init__(self):self.GroupSize=100 #种群规模self.GeneSize=48 #基因数量,也就是城市数量self.initGroup()self.upDate()#初始化种群,随机⽣成若⼲个体def initGroup(self):self.group=[]i=0while(i<self.GroupSize):i+=1#gene如果在for以外⽣成只会shuffle⼀次gene=[i+1 for i in range(self.GeneSize)]random.shuffle(gene)tmpPerson=Person(gene)self.group.append(tmpPerson)#获取种群中适应度最⾼的个体def getBest(self):bestFit=self.group[0].fitbest=self.group[0]for person in self.group:if(person.fit>bestFit):bestFit=person.fitbest=personreturn best#计算种群中所有个体的平均距离def getAvg(self):sum=0for p in self.group:sum+=1/p.fitreturn sum/len(self.group)#根据适应度,使⽤轮盘赌返回⼀个个体,⽤于遗传交叉def getOne(self):#section的简称,区间sec=[0]sumsec=0for person in self.group:sumsec+=person.fitsec.append(sumsec)p=random.random()*sumsecfor i in range(len(sec)):if(p>sec[i] and p<sec[i+1]):#这⾥注意区间是⽐个体多⼀个0的return self.group[i]#更新种群相关信息def upDate(self):self.best=self.getBest()#遗传算法的类,定义了遗传、交叉、变异等操作class GA:def__init__(self):self.group=Group()self.pCross=0.35 #交叉率self.pChange=0.1 #变异率self.Gen=1 #代数#变异操作def change(self,gene):#把列表随机的⼀段取出然后再随机插⼊某个位置#length是取出基因的长度,postake是取出的位置,posins是插⼊的位置geneLenght=len(gene)index1 = random.randint(0, geneLenght - 1)index2 = random.randint(0, geneLenght - 1)newGene = gene[:] # 产⽣⼀个新的基因序列,以免变异的时候影响⽗种群 newGene[index1], newGene[index2] = newGene[index2], newGene[index1] return newGene#交叉操作def cross(self,p1,p2):geneLenght=len(p1.gene)index1 = random.randint(0, geneLenght - 1)index2 = random.randint(index1, geneLenght - 1)tempGene = p2.gene[index1:index2] # 交叉的基因⽚段newGene = []p1len = 0for g in p1.gene:if p1len == index1:newGene.extend(tempGene) # 插⼊基因⽚段p1len += 1if g not in tempGene:newGene.append(g)p1len += 1return newGene#获取下⼀代def nextGen(self):self.Gen+=1#nextGen代表下⼀代的所有基因nextGen=[]#将最优秀的基因直接传递给下⼀代nextGen.append(self.group.getBest().gene[:])while(len(nextGen)<self.group.GroupSize):pChange=random.random()pCross=random.random()p1=self.group.getOne()if(pCross<self.pCross):p2=self.group.getOne()newGene=self.cross(p1,p2)else:newGene=p1.gene[:]if(pChange<self.pChange):newGene=self.change(newGene)nextGen.append(newGene)self.group.group=[]for gene in nextGen:self.group.group.append(Person(gene))self.group.upDate()#打印当前种群的最优个体信息def showBest(self):print("第{}代\t当前最优{}\t当前平均{}\t".format(self.Gen,1/self.group.getBest().fit,self.group.getAvg())) #n代表代数,遗传算法的⼊⼝def run(self,n):Gen=[] #代数dist=[] #每⼀代的最优距离avgDist=[] #每⼀代的平均距离#上⾯三个列表是为了画图i=1while(i<n):self.nextGen()self.showBest()i+=1Gen.append(i)dist.append(1/self.group.getBest().fit)avgDist.append(self.group.getAvg())#绘制进化曲线plt.plot(Gen,dist,'-r')plt.plot(Gen,avgDist,'-b')plt.show()ga=GA()ga.run(3000)print("进⾏3000代后最优解:",1/ga.group.getBest().fit)1.3实验结果下图是进⾏⼀次实验的结果截图,求出的最优解是11271为避免实验的偶然性,进⾏10次重复实验,并求平均值,结果如下。
遗传、蚁群算法作业1、利用遗传算法求出下面函数的极小值:z=2-exp[-(x2+y2)], x,y∈[-5,+5] 解:第一步确定决策变量及其约束条件:x,y∈[-5,+5]第二步建立优化模型:min z(x,y)=2-exp[-(x2+y2)]第三步确定编码方法。
用长度为50位的二进制编码串来表示决策变量x,y。
第四步确定解码方法。
解码时将50位长的二进制编码前25位转换为对应的十进制整数代码,记为x,后25位转换后记为y。
第五步确定个体评价方法。
第六步设计遗传算子。
选择运算用比例选择算子,交叉运算使用单点交叉算子,变异运算使用基本位变异算子。
第七步确定遗传算法的运行参数。
实现代码:% n ---- 种群规模% ger ---- 迭代次数% pc ---- 交叉概率% pm ---- 变异概率% v ---- 初始种群(规模为n)% f ---- 目标函数值% fit ---- 适应度向量% vx ---- 最优适应度值向量% vmfit ---- 平均适应度值向量clear all;close all;clc;tic;n=30;ger=200;pc=0.65;pm=0.05;% 生成初始种群v=init_population(n,50);[N,L]=size(v);disp(sprintf('Number of generations:%d',ger));disp(sprintf('Population size:%d',N));disp(sprintf('Crossover probability:%.3f',pc));disp(sprintf('Mutation probability:%.3f',pm));% 待优化问题xmin=-5;xmax=5;ymin=-5;ymax=5;f='-(2-exp(-(x.^2+y.^2)))';[x,y]=meshgrid(xmin:0.1:xmax,ymin:0.1:ymax); vxp=x;vyp=y;vzp=eval(f);figure(1);mesh(vxp,vyp,-vzp);hold on;grid on;% 计算适应度,并画出初始种群图形x=decode(v(:,1:25),xmin,xmax);y=decode(v(:,26:50),ymin,ymax);fit=eval(f);plot3(x,y,-fit,'k*');title('(a)染色体的初始位置');xlabel('x');ylabel('y');zlabel('f(x,y)');% 迭代前的初始化vmfit=[];vx=[];it=1; % 迭代计数器% 开始进化while it<=ger% Reproduction(Bi-classist Selection)vtemp=roulette(v,fit);% Crossoverv=crossover(vtemp,pc);% MutationM=rand(N,L)<=pm;%M(1,:)=zeros(1,L);v=v-2.*(v.*M)+M;% Resultsx=decode(v(:,1:25),xmin,xmax);y=decode(v(:,26:50),ymin,ymax);fit=eval(f);[sol,indb]=max(fit); % 每次迭代中最优目标函数值v(1,:)=v(indb,:);fit_mean=mean(fit); % 每次迭代中目标函数值的平均值 vx=[vx sol];vmfit=[vmfit fit_mean];it=it+1;end%%%% 最后结果disp(sprintf('\n')); %空一行% 显示最优解及最优值disp(sprintf('Maximumfound[x,f(x)]:[%.4f,%.4f,%.4f]',x(indb),y(indb),-sol));% 图形显示最优结果figure(2);mesh(vxp,vyp,-vzp);hold on;grid on;plot3(x,y,-fit,'r*');title('染色体的最终位置');xlabel('x');ylabel('y');zlabel('f(x,y)');% 图形显示最优及平均函数值变化趋势figure(3);plot(-vx);%title('最优,平均函数值变化趋势');xlabel('Generations');ylabel('f(x)');hold on;plot(-vmfit,'r');hold off;runtime=toc结果:Number of generations:200Population size:30Crossover probability:0.650Mutation probability:0.050Maximum found[x,f(x)]:[-0.0091,0.0099,1.0002] runtime =5.2720故最优解为x=-0.0091,y=0.0099,z=1.0002第八步结果分析图1 原始函数图形图2 染色体的最终位置图3 个体适应度的最大值和平均值2、利用蚁群算法求出下面函数的极小值:z=2-exp[-(x2+y2)], x,y [-5,+5]解:实现代码如下:% Ant main programclear all;close all;clc;tic;Ant=100;Ger=50;xmin=-5;xmax=5;ymin=-5;ymax=5;tcl=0.05;f='-(2-exp(-(x.^2+y.^2)))'; % 待优化的目标函数[x,y]=meshgrid(xmin:tcl:xmax,ymin:tcl:ymax);vxp=x;vyp=y;vzp=eval(f);figure(1);mesh(vxp,vyp,-vzp);hold on;% 初始化蚂蚁位置for i=1:AntX(i,1)=(xmin+(xmax-xmin)*rand(1));X(i,2)=(ymin+(ymax-ymin)*rand(1));% T0----信息素,函数值越大,信息素浓度越大T0(i)=exp(-(X(i,1).^2+X(i,2).^2))-2;endplot3(X(:,1),X(:,2),-T0,'k*');hold on;grid on;title('蚂蚁的初始分布位置');xlabel('x');ylabel('y');zlabel('f(x,y)');% 开始寻优for i_ger=1:GerP0=0.2; % P0----全局转移选择因子P=0.8; % P ----信息素蒸发系数lamda=1/i_ger; % 转移步长参数[T_Best(i_ger),BestIndex]=max(T0);for j_g=1:Ant % 求取全局转移概率r=T0(BestIndex)-T0(j_g);Prob(i_ger,j_g)=r/T0(BestIndex);endfor j_g_tr=1:Antif Prob(i_ger,j_g_tr)<P0temp1=X(j_g_tr,1)+(2*rand(1)-1)*lamda;temp2=X(j_g_tr,2)+(2*rand(1)-1)*lamda;elsetemp1=X(j_g_tr,1)+(xmax-xmin)*(rand(1)-0.5);temp2=X(j_g_tr,2)+(ymax-ymin)*(rand(1)-0.5);endif temp1<xmintemp1=xmin;endif temp1>xmaxtemp1=xmax;endif temp2<ymintemp2=ymin;endif temp2>ymaxtemp2=ymax;endif-(2-exp(-(temp1.^2+temp2.^2)))>-(2-exp(-(X(j_g_tr,1).^2+X(j_g_tr,2).^ 2)))X(j_g_tr,1)=temp1;X(j_g_tr,2)=temp2;endend%信息素更新for t_t=1:AntT0(t_t)=(1-P)*T0(t_t)-(2-exp(-(X(t_t,1).^2+X(t_t,2).^2))); end[c_iter,i_iter]=max(T0);maxpoint_iter=[X(i_iter,1),X(i_iter,2)];max_local(i_ger)=-(2-exp(-(X(i_iter,1).^2+X(i_iter,2).^2)));%将每代全局最优解存到max_global矩阵中if i_ger>=2if max_local(i_ger)>max_global(i_ger-1)max_global(i_ger)=max_local(i_ger);elsemax_global(i_ger)=max_global(i_ger-1);endelsemax_global(i_ger)=max_local(i_ger);endend% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % figure(2);mesh(vxp,vyp,-vzp);hold on;x=X(:,1);y=X(:,2);plot3(x,y,-eval(f),'b*');hold on;grid on;title('蚂蚁的最终分布位置');xlabel('x');ylabel('y');zlabel('f(x,y)');figure(3);plot(1:Ger,-max_global,'b-')hold on;title('最优函数值变化趋势');xlabel('iteration');ylabel('f(x)');grid on;[c_max,i_max]=max(T0);maxpoint=[X(i_max,1),X(i_max,2)]maxvalue=(2-exp(-(X(i_max,1).^2+X(i_max,2).^2))) runtime=toc结果:maxpoint = 0.0033 -0.0035maxvalue = 1.0000runtime = 0.9855图1 原始函数图形图2 染色体的最终位置图3 个体适应度的最大值和平均值3、利用蚁群算法求下面加权有向图中从A到G的最短路。