函数的极限讲解
- 格式:pps
- 大小:1.72 MB
- 文档页数:48
第二讲 函数极限一、定义:1、00lim ()0,0:(,)|()|x x f x A x U x f x A εδδε→=⇔∀>∃>∈⇒-<;2、00lim ()0,0:0|()|x x f x A x x f x A εδδε→+=⇔∀>∃><-<⇒-<;3、00lim ()0,0:0|()|x x f x A x x f x A εδδε→-=⇔∀>∃><-<⇒-<;4、lim ()0,0:|()|x f x A M x M f x A εε→+∞=⇔∀>∃>>⇒-<;5、lim ()0,0:|()|x f x A M x M f x A εε→-∞=⇔∀>∃><-⇒-<;6、lim ()0,0:|||()|x f x A M x M f x A εε→∞=⇔∀>∃>>⇒-<;7、000lim ()(,)0,0:(,)()((),|()|)x x f x M x U x f x M f x M f x M δδ→=+∞-∞∞⇔∀>∃>∈⇒><->;8、00lim ()(,)0,0:0()((),|()|)x x f x M x x f x M f x M f x M δδ→+=+∞-∞∞⇔∀>∃><-<⇒><->;9、00lim ()(,)0,0:0()((),|()|)x x f x M x x f x M f x M f x M δδ→-=+∞-∞∞⇔∀>∃><-<⇒><->;10、lim ()(,)0,0:()((),|()|)x f x N M x Mf x N f x N f x N →+∞=+∞-∞∞⇔∀>∃>>⇒><->;11、lim ()(,)0,0:()((),|()|)x f x N M x Mf x N f x N f x N →-∞=+∞-∞∞⇔∀>∃><-⇒><->;12、lim ()(,)0,0:||()((),|()|)x f x N M x Mf x N f x N f x N →∞=+∞-∞∞⇔∀>∃>>⇒><->。
函数的极限知识点总结一、函数极限的定义1. 函数的极限定义:设函数f(x)在点x0的某一去心邻域内有定义。
如果对于任意给定的正数ε,总存在正数δ,使得当0<|x-x0|<δ时,总有|f(x)-A|<ε成立,则称当x自变量趋于x0时,函数f(x)以A为极限(或者以A收敛),记作lim(x→x0)f(x)=A。
2. 函数极限概念解释:函数的极限就是描述了当自变量趋于某一特定的常数时,函数的值随之趋于的一个确定的常数。
3. 极限的图像解释:函数f(x)的极限lim(x→x0)f(x)=A,表示当x自变量在点x0的邻域内取值时,函数图像与直线y=A的距离可以任意小。
即对于任意小的正数ε,总存在正数δ,使得当0<|x-x0|<δ时,总有|f(x)-A|<ε成立。
二、函数极限的性质1. 唯一性:若函数f(x)的极限存在,那么它的极限值是唯一的。
即如果lim(x→x0)f(x)=A1,又有lim(x→x0)f(x)=A2,那么A1=A2。
2. 有界性:若函数f(x)在x0附近有极限,那么它在x0附近是有界的。
即存在一个正数M>0,使得当x自变量在点x0的邻域内取值时,总有|f(x)|<M。
3. 保序性:若函数f(x)的极限存在,那么它的极限值保持不变。
即如果lim(x→x0)f(x)=A,且f(x)≤g(x),那么lim(x→x0)g(x)也存在,并且lim(x→x0)g(x)≤A。
4. 逼近性:如果函数f(x)的极限存在,那么函数f(x)在x0附近与它的极限可以任意接近。
即对于任意小的正数ε,总存在正数δ,使得当0<|x-x0|<δ时,总有|f(x)-A|<ε成立。
三、函数极限的运算规律1. 四则运算法则:设lim(x→x0)f(x)=A,lim(x→x0)g(x)=B,且A,B存在,那么有lim(x→x0)[f(x)± g(x)]=A±B,lim(x→x0)[f(x)·g(x)]=A·B,lim(x→x0)[f(x)/g(x)]=A/B(B≠0)。
极限的概念解释极限是数学中的一个重要概念,用于描述函数在逼近某个值时的行为。
在数学分析中,极限可以通过严格的定义和符号来描述,也可以通过直观的图像和例子来理解。
本文将详细解释极限的概念,从简单的定义开始,逐步深入,以便读者全面理解和掌握。
在数学中,极限是指当一个变量趋近于某个确定值时,函数的值逐步接近这个确定值的过程。
通常,我们将自变量无限接近某个值时对应的函数值称为极限。
函数的极限可以是无穷大、有限或不存在,取决于函数在逼近过程中的性质。
数学家用严格的定义来描述极限的概念。
设函数f(x)定义在某个区间内,x趋近于某个数a时,如果对于任意给定的大于零的数ε,总存在另一个大于零的数δ,当0 < x - a < δ时,则有f(x) - L < ε成立。
其中L为一个常数,称为极限。
这个定义表明,当自变量x无限接近a时,函数值f(x)无限接近L。
为了更直观地理解极限,我们可以借助图像和例子。
考虑函数f(x) = 1/x,其中x不等于0。
当x越来越接近0时,1/x 的值趋近正无穷或负无穷。
我们可以画出这个函数的图像,可以看到当x接近0时,函数的值变得越来越大(正无穷)或越来越小(负无穷)。
这就是函数f(x) = 1/x 在x趋近于0时的极限。
极限还可以是有限值。
考虑函数f(x) = x^2 - 1,当x趋近于2时,函数的极限是3。
我们可以绘制出这个函数的图像,可以看到函数值在x=2附近逐步接近于3。
这就是函数f(x) = x^2 - 1在x趋近于2时的极限。
另一种情况是函数的极限不存在。
考虑函数f(x) = sin(1/x),其中x不等于0。
当x趋近于0时,函数值在不断振荡,没有明确的趋势。
无论我们如何接近0,函数值都不会趋近于一个确定的值。
因此,这个函数在x趋近于0时极限不存在。
为了更精确地计算和处理极限,数学家还引入了一些重要的极限性质和运算法则。
这些性质和法则提供了一些简化计算的方法。
极限的概念及性质极限是数学中的重要概念之一,它具有深刻的内涵和广泛的应用。
本文将介绍极限的定义、性质以及在数学和物理等领域的应用。
一、极限的定义在数学中,极限是指一个函数或序列在自变量逼近某个确定值时,其函数值或序列项无限接近于一个确定的值。
正式地说,对于函数而言,当自变量趋于某个指定的值时,函数的值趋于某个确定的值;对于序列而言,当项数趋于无穷大时,序列的项趋于某个确定的值。
二、极限的性质1. 唯一性:极限是唯一的,即一个函数或序列只能有一个极限值。
2. 有界性:如果一个函数或序列存在极限,那么它一定是有界的,即其函数值或序列项在一定范围内。
3. 保号性:如果一个函数在某个点的左、右两边的极限存在且不相等,那么这个点就是函数的间断点。
4. 夹逼准则:如果一个函数在某点的左、右两边的极限存在,并且存在另一个函数作为中间函数,这个中间函数在这个点的函数值介于两个边界函数在该点的函数值之间,那么这个点的函数极限也存在且相等。
三、极限的应用极限在数学和物理等领域都有广泛的应用,下面将介绍其中几个重要的应用领域。
1. 微积分微积分是极限的重要应用领域之一。
通过极限的概念,可以定义导数和积分,进而研究函数的变化率、曲线的斜率以及曲线下的面积等重要问题。
微积分的发展对于数学和物理学的发展起到了重要的推动作用。
2. 物理学在物理学中,极限的概念被广泛应用于研究物体的运动、变化以及物理定律的推导等问题。
例如,研究物体的速度、加速度等与时间的关系时,需要使用到极限的概念,从而得出重要的物理方程。
3. 统计学在统计学中,极限定理是统计推断的重要基础。
中心极限定理是指当独立随机变量的和趋于无穷大时,这些随机变量的均值的分布趋近于正态分布。
这一理论在统计推断中起到了重要的作用,使得通过样本数据对总体进行推断成为可能。
4. 工程学在工程学领域,极限的概念被应用于结构力学、电路分析、信号处理等问题中。
例如,通过极限分析结构的荷载承载能力,进行结构设计和优化;在电路分析中,通过极限分析电路的稳定性和性能;在信号处理中,通过极限分析信号的频谱特性等。
函数极限的知识点总结一、函数极限的定义在介绍函数极限的定义之前,我们先来了解一下“极限”的概念。
在数学中,极限是指当自变量趋于某一特定的值时,函数的取值趋于的值。
如果函数f(x)在x趋于a的过程中,它的取值趋于一个确定的常数L,那么我们就称L是函数f(x)在点x=a处的极限,记作lim (x→a)f(x)=L。
这个定义可以用符号来表示为:对于任意的ε>0,存在一个δ>0,当0<|x-a|<δ时,有|f(x)-L|<ε,那么我们就称lim(x→a)f(x)=L。
根据极限的定义,我们可以得到一些结论:1. 如果一个函数在点x=a处的极限存在,那么它只有一个极限值。
2. 如果一个函数在点x=a处的极限不存在,那么它没有极限值。
3. 如果一个函数在点x=a处的极限存在且等于L,那么在点x=a的邻域内,函数的取值都趋于L。
函数极限的定义为我们提供了计算函数在某一点处的极限的依据,下面我们将介绍一些常见的计算方法。
二、函数极限的计算方法1. 代入法代入法是最直接的计算函数极限的方法,当函数的极限存在时,我们可以直接将自变量的值代入函数中计算即可。
例如,计算lim(x→2)(3x+1),我们只需要将x=2代入函数中得到lim(x→2)(3x+1)=3*2+1=7。
2. 分式的极限对于分式函数的极限计算,我们通常采用有理化或者分子分母同除等方法,将分式转化为更简单的形式进行计算。
例如,计算lim(x→1)(x^2-1)/(x+1),我们可以将分式有理化为(x-1)(x+1)/(x+1),然后可以进行约分化简得到lim(x→1)(x-1)=0。
3. 夹逼定理夹逼定理也是一种常见的计算函数极限的方法,它适用于一些复杂函数的极限计算。
夹逼定理的原理是,如果函数f(x)在x=a的邻域内被另外两个函数g(x)和h(x)夹在中间,并且lim(x→a)g(x)=lim(x→a)h(x)=L,那么函数f(x)在x=a处的极限也存在且等于L。
函数的24种极限总结极限是微积分的核心概念之一,它在数学和物理等学科中具有重要的应用价值。
本文将对24种极限进行总结,以帮助读者更好地理解和应用这一概念。
一、极限的基本概念极限是指当自变量趋于某一特定值时,取值逐渐接近于一个确定的值。
可以用数列逼近的思想进行理解。
极限常用的符号表示是“lim”。
二、一元极限1.常数函数极限常数极限是其本身的值,即 lim(a) = a。
2.幂函数极限幂极限取决于指数的大小关系。
当指数小于1时,函数趋于无穷大;当指数等于1时,函数趋于1;当指数大于1时,函数趋于有限值或无穷大。
3.指数函数极限指数极限是通过不同的底数和指数,对数值进行无穷逼近得到的。
例如,底数为e时,指数极限是e;底数为2时,指数极限是2。
4.对数函数极限对数极限是自然对数的极限。
当自变量趋于无穷大时,对数极限趋近于无穷大。
5.三角函数极限三角极限取决于自变量趋于无穷大时的周期性变化。
对于正弦函数和余弦函数,它们的极限是区间[-1,1]内的一系列值。
6.反三角函数极限反三角极限取决于自变量趋于无穷大时的周期性变化。
对于正切函数和余切函数,它们的极限不存在;而对于正割函数和余割函数,它们的极限是一系列值。
7.指数对数函数极限指数对数极限取决于底数和自变量之间的关系。
当自变量趋于无穷大时,指数对数极限趋近于无穷大。
8.复合函数极限复合极限是通过两个或多个极限运算得到的。
根据复合特性,可以通过分解成多个简单函数,再对每个极限进行计算。
三、多元极限9.二元函数极限二元极限是自变量趋于某个点时,取值逐渐接近于一个确定的值。
常用的符号表示是“lim(f(x,y))”。
10.多元函数序列极限多元函数序列的极限是对每个变量的极限进行运算得到的。
可以通过求极限的方法,得到多元极限。
11.多元孤立点多元孤立点是指在某个点上极限值不存在或无法确定的情况。
针对这种情况,需要进行特殊处理或进行极限的推导。
四、变限积分的极限12.定积分极限定积分的极限是指当积分区间的长度趋于无穷大时,函数在区间上的取值逐渐接近于极限值。