高等数学 全套教案
- 格式:pdf
- 大小:1.32 MB
- 文档页数:38
高等数学教案word版篇一:高等数学上册教案篇二:《高等数学》教案《高等数学》授课教案第一讲高等数学学习介绍、函数了解新数学认识观,掌握基本初等函数的图像及性质;熟练复合函数的分解。
函数概念、性质(分段函数)—基本初等函数—初等函数—例子(定义域、函数的分解与复合、分段函数的图像)授课提要:前言:本讲首先是《高等数学》的学习介绍,其次是对中学学过的函数进行复习总结(函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映。
高等数学主要以函数作为研究对象,因此必须对函数的概念、图像及性质有深刻的理解)。
一、新教程序言1、为什么要重视数学学习(1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的重要力量;(2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用;(3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术;(4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。
2、对数学的新认识(1)新数学观——数学是一门特殊的科学,它为自然科学和社会科学提供思想和方法,是推动人类进步的重要力量;(2)新数学教育观——数学教育(学习)的目的:数学精神和数学思想方法,培养人的科学文化素质,包括发展人的思维能力和创新能力。
(3)新数学素质教育观——数学教育(学习)的意义:通过“数学素质”而培养人的“一般素质”。
[见教材“序言”]二、函数概念1、函数定义:变量间的一种对应关系(单值对应)。
(用变化的观点定义函数),记:y?f(x)(说明表达式的含义)(1)定义域:自变量的取值集合(D)。
(2)值域:函数值的集合,即{yy?f(x),x?D}。
例1、求函数y?ln(1?x2)的定义域?2、函数的图像:设函数y?f(x)的定义域为D,则点集{(x,y)y?f(x),x?D} 就构成函数的图像。
《高等数学》标准教案一、教学目标1. 知识与技能:使学生掌握高等数学的基本概念、理论和方法,培养学生运用高等数学解决实际问题的能力。
2. 过程与方法:通过教师的讲解、示范和学生的自主学习、合作交流,培养学生的高等数学思维方法和解决问题的能力。
3. 情感态度与价值观:激发学生对高等数学的兴趣,培养学生克服困难的意志和团队协作的精神。
二、教学内容第一章:函数与极限1.1 函数的概念与性质1.2 极限的定义与性质1.3 无穷小与无穷大1.4 极限的运算第二章:导数与微分2.1 导数的定义与性质2.2 常见函数的导数2.3 微分的概念与运算法则2.4 微分在实际问题中的应用第三章:积分与微分方程3.1 不定积分的概念与性质3.2 常见积分公式与方法3.3 定积分的定义与性质3.4 微分方程的基本概念与解法第四章:级数4.1 数项级数的概念与收敛性4.2 幂级数的概念与性质4.3 傅里叶级数4.4 级数在实际问题中的应用第五章:空间解析几何与向量代数5.1 空间坐标系与向量5.2 向量的运算5.3 空间解析几何的基本概念5.4 向量代数在实际问题中的应用三、教学方法1. 采用讲授法、问答法、讨论法、案例分析法等多种教学方法,引导学生主动探究、积极思考。
2. 利用多媒体课件、数学软件、模型等教学资源,增强课堂教学的直观性和趣味性。
3. 注重培养学生的数学素养,鼓励学生参与课堂活动,提高学生的表达能力和合作能力。
四、教学评价1. 过程性评价:关注学生在课堂表现、作业完成情况、合作交流等方面的表现,及时给予反馈和指导。
2. 终结性评价:通过章节测试、期中和期末考试等方式,检验学生对知识的掌握程度和运用能力。
3. 鼓励学生参加数学竞赛、研究性学习等活动,全面评价学生的数学素养和发展潜力。
五、教学资源1. 教材:《高等数学》2. 多媒体课件:含动画、图片、例题等教学素材3. 数学软件:如MATLAB、Mathematica等4. 模型教具:如几何模型、物理模型等5. 网络资源:相关学术文章、教学视频等6. 练习题库:含课后习题、历年试题等六、教学计划与进度安排1. 授课时间:共计40课时,每课时45分钟。
高职高专高等数学教案第一章:函数与极限1.1 函数的概念与性质教学目标:理解函数的概念,掌握函数的性质,如单调性、奇偶性、周期性等。
教学内容:介绍函数的定义,讨论函数的性质,举例说明。
教学方法:通过讲解和示例,让学生掌握函数的基本概念和性质。
1.2 极限的概念与性质教学目标:理解极限的概念,掌握极限的性质,如保号性、夹逼性等。
教学内容:介绍极限的定义,讨论极限的性质,举例说明。
教学方法:通过讲解和示例,让学生理解极限的概念和性质。
第二章:导数与微分2.1 导数的定义与计算教学目标:理解导数的定义,掌握基本函数的导数计算。
教学内容:介绍导数的定义,讲解基本函数的导数计算法则。
教学方法:通过讲解和练习,让学生掌握导数的定义和计算方法。
2.2 微分的概念与计算教学目标:理解微分的概念,掌握微分的计算方法。
教学内容:介绍微分的定义,讲解微分的计算法则。
教学方法:通过讲解和练习,让学生理解微分的概念和计算方法。
第三章:积分与微分方程3.1 定积分的定义与计算教学目标:理解定积分的概念,掌握定积分的计算方法。
教学内容:介绍定积分的定义,讲解定积分的计算法则。
教学方法:通过讲解和练习,让学生掌握定积分的概念和计算方法。
3.2 微分方程的基本概念与解法教学目标:理解微分方程的概念,掌握基本的微分方程解法。
教学内容:介绍微分方程的定义,讲解常见的微分方程解法。
教学方法:通过讲解和练习,让学生理解微分方程的概念和解法。
第四章:级数与常微分方程4.1 数项级数的概念与收敛性教学目标:理解数项级数的概念,掌握级数的收敛性判断。
教学内容:介绍数项级数的定义,讲解级数的收敛性判断方法。
教学方法:通过讲解和练习,让学生掌握数项级数的概念和收敛性判断。
4.2 常微分方程的解法与应用教学目标:理解常微分方程的概念,掌握常见的解法及其应用。
教学内容:介绍常微分方程的定义,讲解常见的解法及其应用。
教学方法:通过讲解和练习,让学生理解常微分方程的概念和解法及其应用。
高数教学设计〔共8篇〕第1篇:高数教案设计教案设计教材:《高等数学》〔第三版〕上册,第一章函数与极限,第三节函数的极限。
一、方案学时本小节分为两个局部,对于初学者来说有一定的难度,所以也就分为两个学时进展教学。
第一学时:自变量趋于有限值时函数的极限。
第二学时:自变量趋于无穷大时函数的极限。
〔本次教案主要说明第一学时的内容。
〕二、教材处理通过第一节关于函数根本知识的学习,以及高中时已经对函数极限有过一定的学习理解与铺垫,所以就要通过一些根本的例如,来一步步引导学生接触本节的内容,并进一步学习与研究。
来扩展同学们的知识面,并易于承受新内容。
三、教学目的知识和才能目的:1、通过教学过程培养学生的思维才能、运算才能、以及数学创新意识。
让你给同学们积极考虑、敢于提出自己的想法。
2、让同学们掌握一些本节教学中所涉及的技能技巧。
3、通过数学知识为载体,增强学生们的逻辑思维才能,进步学习的兴趣和才能。
传达出数学的人文价值。
四、教学难点和重点1、如何让学生较快的承受新的理念与知识,而改掉以前类似的学习中的定势与习惯性思维。
2、让学生们纯熟的运用书中所涉及的公式与理解一些重要的定理,从而更好的做题。
五、教学设计1、总体思路先通过在黑板上写一些以前学过的相关知识的例题,让同学们到黑板上去做。
然后,对题目做一些变形,就成了本小节所学的知识,此时,就要通过一步步的引导,让同学们呢理解步骤的方法技巧。
最后,就是先要学生们自己总结本节的内容与规律技巧,之后,再告诉同学们本节所需要重点掌握的知识。
2、教学过程〔1〕先让同学们大致看一下本小节内容,对本节内容有一定的理解。
〔4分钟〕设计说明:通过让同学们进展自主学习,对本小节内容有大志的理解,以便于学生更易于承受新知识。
〔2〕通过小例子让大家熟悉并初步认识一下极限的概念。
如:问题:当x无限接近于1的时候,函数f(x)=2x-1的取值。
解析:问题可转化成|f(x)-1|最小取值,因为|f(x)-1|可以无限变小,也就是无限趋近于0,所以当x无限接近于1的时候,函数f(x)=2x-1的取值就是0.〔5分钟〕设计说明:通过引导学生们的思维,带到新的内容,培养学生们的逻辑思维才能以及发撒思维才能。
大学高等数学教案(学生必备)第一章:函数与极限1.1 函数的概念与性质了解函数的定义及其几何意义掌握函数的性质,如单调性、奇偶性、周期性等1.2 极限的概念与性质理解极限的定义及其性质掌握极限的计算方法,如无穷小比较、夹逼定理、单调有界定理等1.3 函数的极限与连续性理解函数极限与无穷小的关系掌握函数的连续性及其判断方法第二章:导数与微分2.1 导数的概念与性质理解导数的定义及其几何意义掌握导数的性质,如线性、单调性、周期性等2.2 微分的概念与计算理解微分的定义及其计算公式掌握微分的应用,如求导、微分方程等2.3 导数的应用掌握导数在函数单调性、极值、最大值最小值问题中的应用了解导数在曲线的凹凸性、拐点问题中的应用第三章:积分与面积3.1 不定积分的概念与性质理解不定积分的定义及其性质掌握基本积分表及其计算方法3.2 定积分的概念与性质理解定积分的定义及其性质掌握定积分的计算方法,如牛顿-莱布尼茨公式、换元积分等3.3 积分的应用掌握积分在几何、物理、经济等领域的应用,如求面积、体积、弧长等第四章:微分方程4.1 微分方程的基本概念理解微分方程的定义及其解的概念掌握微分方程的分类方法4.2 常微分方程的解法掌握一阶微分方程的解法,如可分离变量法、齐次方程法等了解高阶微分方程的解法,如降阶法、常数变易法等4.3 微分方程的应用了解微分方程在物理、生物、工程等领域的应用实例第五章:级数5.1 级数的基本概念与性质理解级数的定义及其收敛性掌握级数的性质,如收敛级数的条件、级数的一致性等5.2 幂级数的概念与性质理解幂级数的定义及其收敛半径掌握幂级数的展开与应用,如泰勒公式、麦克劳林公式等5.3 傅里叶级数的概念与性质理解傅里叶级数的定义及其收敛性掌握傅里叶级数的使用方法及其应用大学高等数学教案(学生必备)第六章:多元函数微分法6.1 多元函数的概念与性质理解多元函数的定义及其几何意义掌握多元函数的性质,如偏导数、方向导数等6.2 偏导数的概念与计算理解偏导数的定义及其计算方法掌握偏导数的应用,如求偏导、偏导数的极限等6.3 多元函数的极值与最值掌握多元函数的极值及其判断方法了解多元函数的最值及其求法第七章:重积分7.1 二重积分的基础概念理解二重积分的定义及其性质掌握二重积分的计算方法,如对称性、换元积分等7.2 二重积分的应用掌握二重积分在几何、物理等领域的应用,如求质量、质心等7.3 三重积分的基础概念与应用理解三重积分的定义及其性质掌握三重积分的计算方法,如对称性、换元积分等第八章:向量分析8.1 向量的概念与运算理解向量的定义及其运算规则掌握向量的几何意义及其线性组合8.2 空间解析几何了解空间解析几何的基本概念,如坐标系、点、直线、平面等掌握空间解析几何的运算规则及其应用8.3 曲线与曲面的方程及其性质理解曲线与曲面的方程及其几何意义掌握曲线与曲面的性质,如切线、法线等第九章:常微分方程的应用9.1 常微分方程在物理中的应用了解常微分方程在力学、电磁学等领域的应用实例掌握常微分方程在物理问题中的解法及其应用9.2 常微分方程在生物中的应用了解常微分方程在生物、医学等领域的应用实例掌握常微分方程在生物问题中的解法及其应用9.3 常微分方程在经济中的应用了解常微分方程在经济学、金融学等领域的应用实例掌握常微分方程在经济问题中的解法及其应用第十章:数值计算方法10.1 数值计算方法的基本概念理解数值计算方法的定义及其目的掌握数值计算方法的分类及其优缺点10.2 数值微积分了解数值微积分的概念及其方法掌握数值微积分的计算及其应用10.3 常微分方程的数值解法了解常微分方程的数值解法及其方法掌握常微分方程的数值解法及其应用大学高等数学教案(学生必备)第十一章:概率论与数理统计11.1 概率论的基本概念理解概率、随机事件、样本空间等基本概念掌握概率的计算方法,如古典概率、条件概率、独立性等11.2 数理统计的基本概念理解统计量、样本、总体等基本概念掌握描述统计的方法,如均值、方差、标准差等11.3 概率分布与统计分布了解离散型随机变量的概率分布,如二项分布、泊松分布等掌握连续型随机变量的概率分布,如正态分布、指数分布等第十二章:线性代数12.1 矩阵的基本概念与运算理解矩阵的定义及其运算规则掌握矩阵的性质,如行列式、逆矩阵等12.2 线性方程组理解线性方程组的解法,如高斯消元法、矩阵的逆等掌握线性方程组的应用,如解空间、基变换等12.3 向量空间与线性变换了解向量空间的基本概念,如维数、基、子空间等掌握线性变换的定义及其性质第十三章:复变函数13.1 复数的基本概念与运算理解复数的定义及其运算规则掌握复数的性质,如模、辐角、共轭等13.2 复变函数的基本概念理解复变函数的定义及其几何意义掌握复变函数的性质,如解析性、奇偶性等13.3 复变函数的应用了解复变函数在数学、物理等领域的应用实例掌握复变函数在问题中的解法及其应用第十四章:实变函数14.1 实数的基本性质理解实数的完备性、有序性、连续性等基本性质掌握实数的运算规则及其性质的应用14.2 实函数的基本概念理解实函数的定义及其性质掌握实函数的极限、连续性、可导性等概念14.3 实函数的应用了解实函数在数学、物理等领域的应用实例掌握实函数在问题中的解法及其应用第十五章:常微分方程组15.1 微分方程组的基本概念理解微分方程组的定义及其解的概念掌握微分方程组的分类方法15.2 常微分方程组的解法掌握常微分方程组的解法,如变量分离法、矩阵法等了解高阶微分方程组的解法,如李雅普诺夫方法等15.3 微分方程组的应用了解微分方程组在物理、生物、工程等领域的应用实例掌握微分方程组在问题中的解法及其应用重点和难点解析重点:本教案中的重点内容包括函数与极限的概念与性质、导数与微分的计算及其应用、积分的计算与性质、微分方程的解法及其应用、级数的收敛性与性质等。
《高等数学》课程教案一、课程简介《高等数学》是工科、理科以及部分经济管理科学专业的一门基础课程。
通过本课程的学习,使学生掌握数学分析、线性代数、概率论等基本理论和方法,培养学生运用数学知识解决实际问题的能力。
二、教学目标1. 理解并掌握高等数学的基本概念、原理和方法。
2. 能够熟练运用高等数学知识解决实际问题。
3. 培养学生的逻辑思维能力和创新意识。
三、教学内容第一章:极限与连续1. 极限的概念与性质2. 函数的连续性3. 极限的运算法则4. 无穷小与无穷大5. 极限存在的条件第二章:导数与微分1. 导数的概念2. 基本导数公式3. 导数的运算法则4. 高阶导数5. 微分第三章:积分与不定积分1. 积分概念2. 基本积分公式3. 积分的运算法则4. 不定积分5. 定积分第四章:级数1. 数项级数概念2. 收敛性与发散性3. 级数的运算法则4. 幂级数5. 傅里叶级数第五章:常微分方程1. 微分方程的概念2. 一阶微分方程的解法3. 高阶微分方程4. 线性微分方程5. 微分方程的应用四、教学方法采用讲授、讨论、实践相结合的方法,引导学生主动探索、积极参与,培养学生的动手能力和创新能力。
五、教学评价1. 平时成绩:包括作业、小测、课堂表现等,占总评的40%。
2. 期中考试:测试学生对高等数学知识的掌握程度,占总评的30%。
3. 期末考试:全面测试学生的综合素质,占总评的30%。
六、多元函数微分学1. 多元函数的概念2. 多元函数的求导法则3. 偏导数4. 全微分5. 多元函数微分学在实际问题中的应用七、重积分1. 二重积分概念及性质2. 二重积分的计算3. 三重积分概念及性质4. 三重积分的计算5. 重积分的应用八、向量分析1. 空间解析几何基础2. 向量的概念及运算3. 空间向量的线性运算4. 空间向量的数量积与角积5. 空间向量的坐标运算及其应用九、常微分方程初步1. 微分方程的概念与分类2. 常微分方程的解法3. 常微分方程的数值解法4. 常微分方程的应用5. 常微分方程在工程与科学计算中的重要性十、线性代数的应用1. 线性方程组及其解法2. 矩阵的概念与运算3. 特征值与特征向量4. 二次型及其判定5. 线性代数在实际问题中的应用十一、概率论与数理统计1. 随机事件及其概率2. 随机变量及其分布3. 数学期望与方差4. 大数定律与中心极限定理5. 数理统计的基本方法十二、数学软件与应用1. MATLAB软件简介2. MATLAB在高等数学中的应用3. Mathematica软件简介4. Mathematica在高等数学中的应用5. 数学软件在实际问题中的应用教学方法:1. 通过案例分析、实际应用问题引导学生理解和掌握理论知识。
《高等数学教案》PPT课件第一章:导数与微分1.1 导数的概念引入导数的定义解释导数的几何意义举例说明导数的计算方法1.2 基本函数的导数计算常数函数、幂函数、指数函数、对数函数的导数总结常用函数的导数公式1.3 微分的概念与应用引入微分的定义解释微分的几何意义举例说明微分的计算方法介绍微分在实际问题中的应用第二章:积分与微分方程2.1 积分的概念引入积分的定义解释积分的几何意义举例说明积分的计算方法2.2 基本函数的积分计算常数函数、幂函数、指数函数、对数函数的积分总结常用函数的积分公式2.3 微分方程的概念与解法引入微分方程的定义解释微分方程的意义举例说明微分方程的解法介绍微分方程在实际问题中的应用第三章:级数与极限3.1 级数的概念引入级数的定义解释级数的收敛性与发散性举例说明级数的计算方法3.2 幂级数的概念与应用引入幂级数的定义解释幂级数的收敛区间与收敛半径举例说明幂级数的计算方法介绍幂级数在实际问题中的应用3.3 极限的概念与性质引入极限的定义解释极限的意义举例说明极限的计算方法介绍极限在实际问题中的应用第四章:向量与矩阵4.1 向量的概念与运算解释向量的几何意义举例说明向量的运算方法4.2 矩阵的概念与运算引入矩阵的定义解释矩阵的意义举例说明矩阵的运算方法4.3 向量空间与线性变换引入向量空间的概念解释线性变换的意义举例说明线性变换的性质介绍向量空间与线性变换在实际问题中的应用第五章:概率与统计5.1 概率的基本概念引入概率的定义解释概率的意义举例说明概率的计算方法5.2 随机变量的概念与分布引入随机变量的定义解释随机变量的意义举例说明随机变量的分布方法5.3 统计的基本概念与方法解释统计的意义举例说明统计的计算方法介绍统计在实际问题中的应用第六章:多变量微积分6.1 多元函数的概念引入多元函数的定义解释多元函数的意义举例说明多元函数的计算方法6.2 偏导数与全微分引入偏导数的定义解释偏导数的意义举例说明偏导数的计算方法介绍全微分的概念与应用6.3 多重积分的概念与应用引入多重积分的定义解释多重积分的意义举例说明多重积分的计算方法介绍多重积分在实际问题中的应用第七章:常微分方程7.1 常微分方程的概念引入常微分方程的定义解释常微分方程的意义举例说明常微分方程的解法7.2 线性微分方程与非线性微分方程引入线性微分方程与非线性微分方程的定义解释线性微分方程与非线性微分方程的区别与联系举例说明线性微分方程与非线性微分方程的解法7.3 常微分方程的应用介绍常微分方程在物理、工程等领域的应用举例说明常微分方程解决实际问题的方法第八章:数值计算方法8.1 数值计算方法的概念引入数值计算方法的定义解释数值计算方法的意义举例说明数值计算方法的计算过程8.2 数值积分与数值微分引入数值积分与数值微分的定义解释数值积分与数值微分的意义举例说明数值积分与数值微分的计算方法8.3 常微分方程的数值解法引入常微分方程的数值解法的定义解释常微分方程的数值解法的意义举例说明常微分方程的数值解法第九章:概率与统计(续)9.1 描述统计与推断统计引入描述统计与推断统计的定义解释描述统计与推断统计的意义举例说明描述统计与推断统计的方法9.2 假设检验与置信区间引入假设检验与置信区间的定义解释假设检验与置信区间的意义举例说明假设检验与置信区间的计算方法9.3 回归分析与相关分析引入回归分析与相关分析的定义解释回归分析与相关分析的意义举例说明回归分析与相关分析的方法第十章:高等数学在实际问题中的应用10.1 高等数学在物理学中的应用介绍高等数学在经典力学、电磁学等物理学领域中的应用举例说明高等数学解决物理学问题的方法10.2 高等数学在工程学中的应用介绍高等数学在土木工程、机械工程等工程领域中的应用举例说明高等数学解决工程学问题的方法10.3 高等数学在经济学、生物学等领域的应用介绍高等数学在经济学、生物学等领域中的应用举例说明高等数学解决经济学、生物学等领域问题的方法重点解析第一章:导数与微分重点:理解导数和微分的定义及其几何意义,掌握基本函数的导数和微分计算。
《高等数学教案》word版教案章节:一、函数与极限1.1 函数的概念与性质1.2 极限的定义与性质1.3 极限的计算1.4 无穷小与无穷大二、导数与微分2.1 导数的定义与计算2.2 微分的定义与计算2.3 导数的应用2.4 高阶导数与隐函数求导三、积分与不定积分3.1 积分的定义与性质3.2 不定积分的计算3.3 定积分的计算3.4 积分的应用四、定积分与微分方程4.1 定积分的应用4.2 微分方程的定义与解法4.3 常微分方程的解法4.4 线性微分方程的解法五、空间解析几何与向量5.1 空间解析几何的基本概念5.2 向量的定义与运算5.3 向量的坐标表示与运算5.4 空间解析几何的应用《高等数学教案》word版教案章节:六、多元函数与多元微分学6.1 多元函数的概念与性质6.2 多元函数的微分6.3 多元函数的偏导数6.4 多元函数的全微分七、重积分7.1 二重积分的定义与性质7.2 二重积分的计算7.3 三重积分的定义与性质7.4 三重积分的计算八、无穷级数8.1 无穷级数的概念与性质8.2 无穷级数的收敛性8.3 无穷级数的求和8.4 无穷级数的应用九、常微分方程9.1 常微分方程的基本概念9.2 常微分方程的解法9.3 线性常微分方程的解法9.4 常微分方程的应用十、向量分析10.1 空间向量的运算10.2 空间向量的坐标表示10.3 格林公式与高斯公式10.4 向量分析的应用《高等数学教案》word版教案章节:十一、常微分方程组11.1 微分方程组的概念11.2 微分方程组的解法11.3 常微分方程组的应用11.4 线性微分方程组的解法十二、偏微分方程12.1 偏微分方程的基本概念12.2 偏微分方程的解法12.3 偏微分方程的应用12.4 非线性偏微分方程的解法十三、数值分析13.1 数值分析的基本概念13.2 数值方法的误差分析13.3 数值求解常微分方程13.4 数值求解偏微分方程十四、概率论与数理统计14.1 随机事件与概率论基础14.2 随机变量的分布14.3 随机变量的数字特征14.4 数理统计的基本方法十五、线性代数初步15.1 矩阵的概念与运算15.2 线性方程组与矩阵的解法15.3 向量空间与线性变换15.4 特征值与特征向量重点和难点解析一、函数与极限重点:函数的概念与性质,极限的定义与性质,极限的计算,无穷小与无穷大。
《高等数学》教案第一章:函数与极限(18课时)第一节:映射与函数教学目的与要求:理解函数的概念,掌握函数的初等函数的性质及其图形,并会建立简单应用问题中的函数关系式。
教学重点(难点):理解复合函数及分段函数,反函数及隐函数的概念,基本初等函数的性质及其图形。
一、集合 1、集合概念具有某种特定性质的事物的总体叫做集合。
组成这个集合的事物称为该集合的元素。
表示方法:用A ,B ,C ,D 表示集合;用a ,b ,c ,d 表示集合中的元素。
1)},,,{321 a a a A = 2)}{P x x A 的性质=元素与集合的关系:A a ∉,A a ∈一个集合,若它只含有有限个元素,则称为有限集;不是有限集的集合称为无限集。
常见的数集:N ,Z ,Q ,R ,N +元素与集合的关系:A 、B 是两个集合,如果集合A 的元素都是集合B 的元素,则称A 是B 的子集,记作B A ⊂。
如果集合A 与集合B 互为子集,则称A 与B 相等,记作B A = 若作B A ⊂且B A ≠则称A 是B 的真子集。
全集I :A i ⊂I (I=1,2,3,……..)。
空集φ:A ⊂φ。
2、集合的运算并集B A ⋃:}A x |{x B A B x ∈∈=⋃或 交集B A ⋂:}A x |{x B A B x ∈∈=⋂且 差集B A \:}|{\B x A x x B A ∉∈=且补集(余集)CA :I \A集合的并、交、余运算满足下列法则:交换律:A B B A ⋃=⋃A B B A ⋂=⋂结合律:)()(C B A C B A ⋃⋃=⋃⋃,)()(C B A C B A ⋂⋂=⋂⋂分配律:)()()(C B C A C B A ⋂⋃⋂=⋂⋃,)()()(C B C A C B A ⋃⋂⋃=⋃⋂对偶律: (c c c B A B A =⋃)cc c B A B A ⋃=⋂)(笛卡儿积: A ×B }|),{(B y A x y x ∈∈=且 3、区间和邻域1)有限区间:开区间),(b a ,闭区间[]b a ,,半开半闭区间]()[b a b a ,,。