抽屉原理2
- 格式:ppt
- 大小:1.60 MB
- 文档页数:29
抽屉原理(二)把所有整数按照除以某个自然数m 的余数分为m 类,叫做m 的剩余类或同余类,用[0],表示. 每一个类含有无穷多个数,例如中含有[1]m −[1],[2],[3],...,[1]1,21m m ++3m 1,1+,,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n +1个自然数中,总有两个自然数的差是n 的倍数.1. 证明:任取8个自然数,必有两个数的差是7的倍数.2. 求证: 从47个正整数中,一定可以找到两个正整数的差是46的倍数.3. 求证: 存在正整数使得. i N47|111i "个4. 从任意13个自然数中,总可以找到若干个数,它们的和是13的倍数. 1213,,,a a a "5. 对于任意的五个自然数,证明其中必有3个数的和能被3整除.6. 任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数.7. 对于任意的11个整数,证明其中一定有6个数,它们的和能被6整除.8. 证明:17个整数中,必可找到5个数,这5个数之和为5的倍数.9. 任给12个整数,证明:其中必存在8个数,将它们用适当的运算符号连起来后运算的结果是3 465的倍数.10. 对任给的63个互异的正整数,试证:其中一定存在四个正整数,仅用减号,乘号和括号将它们适当地组合为一个算式,其结果是1984的倍数.1,,a a "6311. 试证明:在17个不同的正整数中,必定存在若干个正整数,仅用减号、乘号和括号可将它们组成一个算式,算式的结果是21879的倍数。
12. 郑老师和肖同学是足球迷,同时又对趣味数学题感兴趣. 一次在看足球比赛时,肖同学说:我知道红方有20名队员,编号恰好是1到20,,今天上场的11名队员中,一定有一名队员的号码是另一名队员号码的偶数倍。
郑老师听后点点头,接着说:我还知道红队上场队员中每四名队员中,必定有两名队员号码之差是3的倍数。
抽屉原理2
抽屉原理,又称为鸽巢原理,是数学中的一个基本原理,它指出如果有n个物体放进m个抽屉,其中n大于m,那么至少有一个抽屉里面至少有两个物体。
这个原理在实际生活中也有着广泛的应用,不仅在数学领域,也在计算机科学、生活中的整理和分类等方面都有着重要的作用。
抽屉原理的第二个版本是指对于有限个抽屉的情况下,如果抽屉的数量小于待放入物品的数量,那么至少有一个抽屉里面放入的物品数量是相同的。
这个原理在实际生活中也有着广泛的应用。
比如,在一个班级里,如果有11个学生,而只有10个座位,那么至少有一个座位上会有两个学生。
这个原理也可以应用于生活中的其他方方面面,比如在购物时,如果有8个苹果要放进7个袋子里,那么至少有一个袋子里会有两个苹果。
抽屉原理2的应用不仅仅局限于数学和生活中,它也在计算机科学中有着重要的应用。
比如在数据结构中,如果有n个数据要放入m个存储空间,其中n大于m,那么至少有一个存储空间里面会有两个数据。
这个原理在算法设计和优化中有着重要的作用,可以帮助我们更好地理解和设计算法。
抽屉原理2的应用还可以延伸到生活中的整理和分类。
在家里收纳物品时,如果物品的数量大于收纳空间的数量,那么就需要合理地利用抽屉原理2,将物品进行分类整理,以便更好地利用有限的空间。
这样不仅可以让家里看起来更加整洁,也可以更方便地找到需要的物品。
总之,抽屉原理2在数学、计算机科学和生活中都有着重要的应用。
它帮助我们更好地理解和处理问题,让我们在面对大量数据和有限资源时能够更加合理地进行分类和整理。
通过合理地利用抽屉原理2,我们可以更好地提高工作效率,提高空间利用率,让生活变得更加有序和高效。
第30讲抽屉原理(二)一、知识要点在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。
二、精讲精练【例题1】幼儿园里有120个小朋友,各种玩具有364件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?把120个小朋友看做是120个抽屉,把玩具件数看做是元素。
则364=120×3+4,4<120。
根据抽屉原理的第(2)条规则:如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。
可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。
练习1:1、一个幼儿园大班有40个小朋友,班里有各种玩具125件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。
这是为什么?3、把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球?【例题2】布袋里有4种不同颜色的球,每种都有10个。
最少取出多少个球,才能保证其中一定有3个球的颜色一样?把4种不同颜色看做4个抽屉,把布袋中的球看做元素。
根据抽屉原理第(2)条,要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。
即2×4+1=9(个)球。
列算式为(3—1)×4+1=9(个)练习2:1、布袋里有组都多的5种不同颜色的球。
最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。
当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。
抽屉原理(二)这一讲我们讲抽屉原理的另一种情况。
先看一个例子:如果将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子.道理很简单。
如果每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子。
剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子。
这个例子所体现的数学思想,就是下面的抽屉原理2.抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。
说明这一原理是不难的.假定这n个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m件,这样,n个抽屉中可放物品的总数就不会超过m×n件。
这与多于m×n件物品的假设相矛盾。
这说明一开始的假定不能成立.所以至少有一个抽屉中物品的件数不少于m+1。
从最不利原则也可以说明抽屉原理2。
为了使抽屉中的物品不少于(m+1)件,最不利的情况就是n个抽屉中每个都放入m件物品,共放入(m×n)件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m+1)件物品。
这就说明了抽屉原理2。
不难看出,当m=1时,抽屉原理2就转化为抽屉原理1。
即抽屉原理2是抽屉原理1的推广.例1某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?分析与解:将40名小朋友看成40个抽屉.今有玩具122件,122=3×40+2.应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。
也就是说,至少会有一个小朋友得到4件或4件以上的玩具。
例2一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。
问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?分析与解:将1,2,3,4四种号码看成4个抽屉。
要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。
第30讲抽屉原理(2)讲义专题简析在抽屉原理的第二条原理中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。
例1、幼儿园里有120个小朋友,各种玩具有364件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?练习:1、一个幼儿园大班有40名小朋友,班里有各种玩具125件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16支铅笔放入三个笔盒内,至少有一个笔盒里的笔不少于6支。
这是为什么?3、把25个球最多放在几个盒子里,才能保证至少有一个盒子里有7个球?例2、布袋里有4种不同颜色的球,每种都有10个。
最少取出多少个球,才能保证其中一定有3个球的颜色一样?练习:1、布袋中有足够多的5种不同颜色的球。
最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白本块、10块蓝木块,它们的形状、大小都一样。
当你被蒙上眼去取出容器中的木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1~13点各有4张,还有两张王。
至少要取出几张牌,才能保证其中必有4张牌的点数相同?例3、某班共有46名学生,他们都参加了课外兴趣小组。
活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。
问班级中至少有几名学生参加的项目完全相同?练习:1、某班有37名学生,他们都订阅了《小主人报》《少年文艺》《小学生优秀作文》三种报刊中的一、二、三种。
其中至少有几名学生订的报刊相同?2、学校开办了绘画、笛子、足球和电脑四个课外学习班,每名学生最多可以参加两个(也可以不参加)。
某班有52名学生。
问至少有几名学生参加课外学习班的情况完全相同?3、库房里有一批篮球、排球、足球和铅球,每人任意搬运两个。
抽屉原理(二)
例1把一个长方形画成3行9列共27个小方格,然后用红、蓝铅笔任意将每个小方格涂上红色或蓝色。
是否一定有两列小方格涂色的方式相同?
例2在任意的四个自然数中,是否总能找到两个数,它们的差是3的倍数?
例3 从1,3,5,7,…,47,49这25个奇数中至少任意取出多少个数,才能保证有两个数的和是52。
例4在下图所示的8行8列的方格表中,每个空格分别填上1,2,3这三个数字中的任一个,使得每行、每列及两条对角线上的各个数字的和互不相等,能不能做到?
例5用1,2,3,4这4个数字任意写出一个10000位数,从这个10000位数中任意截取相邻的4个数字,可以组成许许多多的四位数。
这些四位数中至少有多少个是相同的?习题:
1、任取8个自然数,必有两个数的差是7的倍数。
2、从1、2、
3、
4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。
3、从一列数1,5,9,13,…,93,97中,任取14个数.证明:其中必有两个数的和等于102.
4、一个小组共有13名同学,其中至少有2名同学同一个月过生日。
为什么?
5、在前10个自然数中,至少取多少个数,才能保证其中有两个数的和是10?
6、右图是一个5行5
列的方格表,能否在每个方格中分别填上1,2,3中的一个数,使得每行、每列及两条对角线上的五个方格中的数字之和互不相同?。
抽屉原理(二)教学内容:教科书第72、73页及相关的练习。
教学目标:1、让学生进一步了解抽屉原理的有关知识,并解决简单的实际问题。
2、通过观察、思考和讨论,培养学生的分析、推理、归纳等能力和解决实际问题的能力。
3、通过创设问题情境,体验数学与生活的联系,感受数学的魅力,激发学生学习数学的热情。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学具准备:每组都有相应数量的盒子、铅笔、书。
教学过程:一、创设情境,引入新课。
1、口算。
6 -3.7 -2.3 1/5+0.8 1÷1/2 -1/2÷10.6÷10 12÷0.1 1.2×0.52 、师:刚刚我们大家分别从这一前一后两扇门进入教室,你们能否知道其中较多人进入的门至少通过了几人呢?61÷2=30…1(人)师:同学们上节课的知识掌握得不错,今天再进一步研究抽屉原理,下面分小组开展活动。
二、活动探究,深入了解。
1、摸球活动。
(抽屉原理的逆思考问题)师:这个活动是,盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有两个同色,最少要摸出几个球?大家先猜一猜。
(学生猜测)师:答案有多种,这样吧,你们分组活动探索一下。
(用预先准备好的学具实际操作,讨论后汇报。
)板书:摸出两个球,有三种可能:两红、两蓝、一红一蓝。
摸出三个球,有四种可能:三红、两红一蓝、一红两蓝、三蓝。
……师:同学们分析得对,注意到球是以颜色区分的。
所以把颜色看作抽屉,大家再想想,解决这个问题是否有规律可循?学生讨论交流,师归纳总结。
板书结论:只要摸出的球比球的颜色种数至少多1,就能保证有两个球同色。
或者说:只要物体数比抽屉数至少多1,就能保证有一个抽屉至少放两个物体。
2、研究规律。
师:如果盒子里有蓝、红、黄球各6个,至少从盒子里摸出几个球?才能保证有两个球是同色的。
抽屉原理(2)抽屉原则(2)如果把m×n+k(k大于等于1小于n)东西放入n个抽屉中,那么必定有一个抽屉里至少有 m+1件东西。
或:如果把n件东西放入到m个抽屉中,则至少有一个抽屉里有m分之n个或 m分之n再加1个东西。
学习例题例1.今年入学的一年级新生中,有181人是1993年出生的,这些新生中,至少有多少人是1993年的同一个月出生的?例2.某区中学生人数是11000人,其中必有多少人是同年同月同日生的?(中学生的年龄为11~20岁)例3.某旅游团一行50人,随意游览甲、乙、丙三地,规定每人至少去一处,最多去三处游览,那么至少有多少人游览的地方完全相同?例4.一副扑克牌(除去大、小王),有四种花色,每种花色都有13张牌。
现在把扑克牌洗匀,那么至少要从中抽出多少张牌,才能保证有4张牌同一花色?例5.六(2)班的同学参加一次数学考试。
满分为100分,全班最低分是75分。
每人得分都是整数,并且班上至少有3人得分相同。
那么,六(2)班至少有多少名同学?例6.袋子里有4种不同颜色的小球,每次摸出两个,要保证有10次所摸的结果是一样的的,至少要摸多少次?例7.任意1002个整数中,必有两个整数,它们的和或差是2000的倍数。
例8.有20×20的小方格组成的大正方形。
把数字1~9任意填入各个方格中。
图中有许许多多的“田”字形,把每个“田”字形中的4个数相加,得到一个和数。
在这许许多多的和数中,至少有多少个相同?思考与练习1.参加数学竞赛的210名同学中,至少有多少名同学是同一个月出生的?2.在62个人中,能否找到至少有6个人的属相相同?3.一副扑克牌共有54张,至少从中取出多少张牌,才能保证其中必有3种花色(大王、小王不算花色)?4.六年级(1)班的40名学生中,年龄最大的是13岁,最小的是11岁。
其中必有多少名学生是同年同月出生的?5.(1)有红、黄、蓝、白4色小球各10个,混合放在一个暗盒里。