第二章抽屉原理
- 格式:ppt
- 大小:1.47 MB
- 文档页数:3
第一抽屉原理原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能。
原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。
[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn 个物体,与题设不符,故不可能。
第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。
抽屉原理,又叫狄利克雷原则,它是一个重要而又基本的数学原理,应用它可以解决各种有趣的问题,并且常常能够得到令人惊奇的结果,许多看起来相当复杂,甚至无从下手的问题,利用它能很容易得到解决.那么,什么是抽屉原理呢?我们先从一个最简单的例子谈起.将三个苹果放到两只抽屉里,想一想,可能会有什么样的结果呢?要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么一只抽屉里放有三个苹果,而另一只抽屉里不放.这两种情况可用一句话概括:一定有一只抽屉里放入了两个或两个以上的苹果.虽然哪只抽屉里放入至少两个苹果我们无法断定,但这是无关紧要的,重要的是有这样一只抽屉放入了两个或两个以上的苹果.如果我们将上面问题做一下变动,例如不是将三个苹果放入两只抽屉里,而是将八个苹果放到七只抽屉里,我们不难发现,这八个苹果无论以怎样的方式放入抽屉,仍然一定会有一只抽屉里至少有两个苹果。
通过上面的分析,我们可以将上面问题中包含的基本原理写成下面的一般形式.抽屉原理(一):把多于几个的元素按任一确定的方式分成几个集合,那么一定至少有一个集合中,至少含有两个元素.应用抽屉原理来解题,首先要审题,即分清什么作为“元素”,什么作为“抽屉”;其次要根据题目的条件和结论,结合有关的数学知识,来设计抽屉,在应用抽屉原理解题时,正确地设计抽屉是解题的关键.例1 有红、黄、绿三种颜色的小球各四颗混放在一只盒子里,为了保证一次能取到两颗颜色相同的小球,一次至少要取几颗?A、3B、4C、5D、6分析:将三种不同的颜色看作三个抽屉,为了保证一次能取到两颗颜色相同的小球,即要求至少有两颗小球出自同一抽屉,因此一次至少要取4颗小球.例2 某班有30名学生,班里建立一个小书库,同学们可以任意借阅,问小书库中至少要有多少本书,才能保证至少有一个同学一次能至少借到两本书?A、28B、29C、30D、31分析:将30名同学看作30个“抽屉”,而将书看作“苹果”,根据抽屉原理,“苹果”数目要比“抽屉”数目大,才能保证至少有一个抽屉里有两个或两个以上的“苹果”,因此,小书库中至少要有31本书,才能保证至少有一位同学一次能借到两本或两本以上的图书。
数学广角《抽屉原理》教案第一章:引言1.1 教学目标让学生了解抽屉原理的基本概念和实际应用。
培养学生对数学问题的探究和思考能力。
1.2 教学内容抽屉原理的定义和基本思想。
抽屉原理在实际生活中的应用举例。
1.3 教学方法通过生活中的实例引入抽屉原理的概念。
引导学生通过小组讨论和思考,理解抽屉原理的基本思想。
1.4 教学评估观察学生在小组讨论中的参与程度和理解程度。
学生能够正确解释和应用抽屉原理解决问题。
第二章:抽屉原理的基本概念2.1 教学目标让学生理解抽屉原理的基本概念和数学表达式。
培养学生对数学概念的理解和记忆能力。
2.2 教学内容抽屉原理的数学表达式和证明过程。
抽屉原理在不同情况下的应用举例。
2.3 教学方法通过数学证明和例题来加深学生对抽屉原理的理解。
引导学生通过自主学习和合作交流,掌握抽屉原理的应用。
2.4 教学评估检查学生对抽屉原理数学表达式的记忆和理解。
学生能够运用抽屉原理解决简单的数学问题。
第三章:抽屉原理的实际应用3.1 教学目标让学生了解抽屉原理在实际生活中的应用。
培养学生将数学知识应用到实际问题中的能力。
3.2 教学内容抽屉原理在排序、分配和优化问题中的应用举例。
抽屉原理在其他学科和领域中的应用。
3.3 教学方法通过实际例子和问题解决引导学生了解抽屉原理的应用。
引导学生通过小组讨论和思考,探索抽屉原理在其他领域的应用。
3.4 教学评估观察学生在小组讨论中的参与程度和应用能力。
学生能够运用抽屉原理解决实际问题。
第四章:抽屉原理的综合应用4.1 教学目标让学生综合运用抽屉原理解决复杂的数学问题。
培养学生解决实际问题的能力和创新思维。
4.2 教学内容抽屉原理在复杂问题中的应用举例。
抽屉原理与其他数学知识的综合应用。
4.3 教学方法通过复杂问题和案例引导学生综合运用抽屉原理和其他知识。
引导学生通过自主学习和合作交流,探索抽屉原理的综合应用。
4.4 教学评估观察学生在解决问题中的参与程度和创新能力。
2.1抽屉原理(五篇范文)第一篇:2.1抽屉原理山东省济宁一中奥林匹克数学竞赛辅导讲义贾广素编写第二章几个重要的原理2.1 抽屉原理将10个苹果放在9个抽屉中,无论怎么放,一定会有一个抽屉里放了2个或更多的苹果,这个简单的事实就是抽屉原理.它是由德国数学家狄利克雷(Dirichlet)提出来的,因此也称为狄利克雷原理.如果将苹果换成信,鸽子或鞋,而把抽屉换成信筒,鸽笼或鞋盒,那么这个原理应然适用.它是许多存在性问题得以证明的理论依据,也是离散数学中的一个重要原理,把它推广到一般情形,就可以得到:抽屉原理如果将m个物品放入n个抽屉内,那么至少有一个抽屉的物品不少于l个,其中⎧mn|m⎪⎪nl=⎨(这里[x]表示不超过x的最大整数)⎪[m]+1n|m⎪⎩n【证明】当n|m时,若结论不真,则每个抽屉中至多有m-1个物品,那么n个抽屉中物n品的总数≤n(m-1)=m-n<m个,矛盾!nmm]<n⋅=m个,也矛盾!nn当n|m时,若结论不真,则n个抽屉中物品总数≤n⋅[有的参考书上给出了此定理的另外一种写法:如果将m个物品放入n个抽屉内,那么必有一个抽屉内至少有[m-1]+1个物品。
这是抽屉原理的不同的两种表现形式,其本质是一n样的。
另外,抽屉原理还有其它的几种形式的推广:推广1:如果将m个物体放入n个抽屉内,那么必有一个抽屉内的物品至多有[这是推广也叫做第二抽屉原理,证明如下:【证明】用反证法,如果每个抽屉内至少有[m]个。
nm]+1个物品,那么n个抽屉内的物品的总数n至少为n([mm]+1)>n⋅=m,这与n个抽屉内共有m个物品矛盾!nn推广2:无穷多个物品放入有限个抽屉中,则至少有一个抽屉中有无穷多个物品。
推广3:把m1+m2++mn-n+1个元素分成n类,则存在一个k,使得第k类至少有山东省济宁一中奥林匹克数学竞赛辅导讲义贾广素编写mk个元素。
推广2和推广3利用反证法,类似于述证法,不难得到其证明,这里我们不再一一赘述。
抽屉原理教学设计教案参考第一章:引言1.1 课程背景在本节课中,我们将学习一种重要的数学原理——抽屉原理。
抽屉原理在实际生活中有着广泛的应用,通过学习本节课,学生将能够理解并运用抽屉原理解决实际问题。
1.2 教学目标(1)了解抽屉原理的基本概念及其数学表达式。
(2)学会用抽屉原理分析问题、解决问题。
(3)培养学生的逻辑思维能力和解决实际问题的能力。
第二章:抽屉原理的基本概念2.1 抽屉原理的定义抽屉原理又称鸽巢原理,是指如果有n个抽屉和n+1个物品,至少有一个抽屉里至少有两个物品。
2.2 抽屉原理的数学表达式设n个抽屉分别为A1,A2,A3,……,An,m个物品分别为B1,B2,B3,……,Bm,如果每个物品都要放入这n个抽屉中,至少有一个抽屉里至少有两个物品,可以用数学表达式表示为:m ≥n + 1第三章:抽屉原理的应用3.1 整数拆分问题问题:将一个正整数n拆分成若干个正整数之和,这些正整数不重复,且拆分的方法最多有几种?分析:根据抽屉原理,我们可以把这个问题转化为求解n个正整数之和的最大可能值。
假设这n个正整数分别为a1,a2,a3,……,an,根据抽屉原理,我们有:n ≥a1 + a2 + a3 + …+ an我们需要找到一种拆分方式,使得这n个正整数之和最大,从而得到拆分的方法数。
3.2 分配问题问题:有n个人分配m个物品,每个人至少得到一件物品,分配的方法最多有几种?分析:同样地,我们可以利用抽屉原理解决这个问题。
设这n个人分别为A1,A2,A3,……,An,m个物品分别为B1,B2,B3,……,Bm,根据抽屉原理,我们有:m ≥n这意味着至少有一个物品要被分配给两个人,从而得到分配的方法数。
第四章:案例分析4.1 案例一:学校运动会报名问题:某学校举行运动会,共有n个班级,m个项目,每个班级至少有一个项目报名,报名的方法最多有几种?分析:根据抽屉原理,我们可以得到:m ≥n报名的方法最多有m种。