抽屉原理 (2)
- 格式:doc
- 大小:27.50 KB
- 文档页数:3
第30讲抽屉原理(2)讲义专题简析在抽屉原理的第二条原理中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。
例1、幼儿园里有120个小朋友,各种玩具有364件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?练习:1、一个幼儿园大班有40名小朋友,班里有各种玩具125件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16支铅笔放入三个笔盒内,至少有一个笔盒里的笔不少于6支。
这是为什么?3、把25个球最多放在几个盒子里,才能保证至少有一个盒子里有7个球?例2、布袋里有4种不同颜色的球,每种都有10个。
最少取出多少个球,才能保证其中一定有3个球的颜色一样?练习:1、布袋中有足够多的5种不同颜色的球。
最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白本块、10块蓝木块,它们的形状、大小都一样。
当你被蒙上眼去取出容器中的木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1~13点各有4张,还有两张王。
至少要取出几张牌,才能保证其中必有4张牌的点数相同?例3、某班共有46名学生,他们都参加了课外兴趣小组。
活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。
问班级中至少有几名学生参加的项目完全相同?练习:1、某班有37名学生,他们都订阅了《小主人报》《少年文艺》《小学生优秀作文》三种报刊中的一、二、三种。
其中至少有几名学生订的报刊相同?2、学校开办了绘画、笛子、足球和电脑四个课外学习班,每名学生最多可以参加两个(也可以不参加)。
某班有52名学生。
问至少有几名学生参加课外学习班的情况完全相同?3、库房里有一批篮球、排球、足球和铅球,每人任意搬运两个。
抽屉原理(二)把所有整数按照除以某个自然数m 的余数分为m 类,叫做m 的剩余类或同余类,用[0],表示. 每一个类含有无穷多个数,例如中含有[1]m −[1],[2],[3],...,[1]1,21m m ++3m 1,1+,,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n +1个自然数中,总有两个自然数的差是n 的倍数.1. 证明:任取8个自然数,必有两个数的差是7的倍数.2. 求证: 从47个正整数中,一定可以找到两个正整数的差是46的倍数.3. 求证: 存在正整数使得. i N47|111i "个4. 从任意13个自然数中,总可以找到若干个数,它们的和是13的倍数. 1213,,,a a a "5. 对于任意的五个自然数,证明其中必有3个数的和能被3整除.6. 任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数.7. 对于任意的11个整数,证明其中一定有6个数,它们的和能被6整除.8. 证明:17个整数中,必可找到5个数,这5个数之和为5的倍数.9. 任给12个整数,证明:其中必存在8个数,将它们用适当的运算符号连起来后运算的结果是3 465的倍数.10. 对任给的63个互异的正整数,试证:其中一定存在四个正整数,仅用减号,乘号和括号将它们适当地组合为一个算式,其结果是1984的倍数.1,,a a "6311. 试证明:在17个不同的正整数中,必定存在若干个正整数,仅用减号、乘号和括号可将它们组成一个算式,算式的结果是21879的倍数。
12. 郑老师和肖同学是足球迷,同时又对趣味数学题感兴趣. 一次在看足球比赛时,肖同学说:我知道红方有20名队员,编号恰好是1到20,,今天上场的11名队员中,一定有一名队员的号码是另一名队员号码的偶数倍。
郑老师听后点点头,接着说:我还知道红队上场队员中每四名队员中,必定有两名队员号码之差是3的倍数。
抽屉原理(二)【专题导引】在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。
【典型例题】【例1】幼儿园里有120个小朋友,各种玩具有364件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?【试一试】1、一个幼儿园大班有40名小朋友,班里有各种玩具125件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16支铅笔放入三个笔盒内,至少有一个笔盒里的笔不少于6支。
这是为什么?【例2】布袋里有4种不同颜色的球,每种都有10个。
最少取出多少个球,才能保证其中一定有3个球的颜色一样?【试一试】1、布袋中有足够多的5种不同颜色的球。
最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样,当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?【例3】某班共有46名学生,他们都参加了课外兴趣小组。
活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。
问班级中至少有几名学生参加的项目完全相同?【试一试】1、某班有37个学生,他们都订阅了《小主人报》、《少年文艺》、《小学生优秀作文》三种报刊中的一、二、三种。
其中至少有几位同学订的报刊相同?2、学校开办了绘画、笛子、足球和电脑四个课外学习班,每个学生最多可以参加两个(可以不参加)。
某班有52名同学,问至少有几名同学参加课外学习班的情况完全相同?【例4】从1至30中,至少要取出几个不同的数,才能保证其中一定有一个数是3的倍数?【试一试】1、在1,2,3,……,49,50中,至少要取出多少个不同的数,才能保证其中一定有一个数能被5整除?2、从1至120中,至少要取出几个不同的数才能保证其中一定有一个数是4的倍数?【﹡例5】将400张卡片分给若干名同学,每人都能分到,但都不超过11张,试证明:至少有七名同学得到的卡片的张数相同。
例1 ①求证:任意25个人中,至少有3个人的属相相同.②要想保证至少有5个人的属相相同,但不能保证有6个人属相相同,那么人的总数应在什么范围内?例2 放体育用品的仓库里有许多足球、排球和篮球.有66名同学来仓库拿球,要求每人至少拿1个球,至多拿2个球.问:至少有多少名同学所拿的球种类是完全一样的?例3 一副扑克牌,共54张,问:至少从中摸出多少张牌才能保证①至少有5张牌的花色相同;②四种花色的牌都有;③至少有3张牌是红桃。
例4 平面上给定17个点,如果任意三个点中总有两个点之间的距离小于1,证明:在这17个点中必有9个点可以落在同一半径为1的圆内。
例5 把1、2、3、…、10这十个数按任意顺序排成一圈,求证在这一圈数中一定有相邻的三个数之和不小于17。
例6 在边长为3米的正方形内,任意放入28个点,求证:必有4个点,以它们为顶点的四边形的面积不超过1平方米。
分析与解答根据题目的结论,考虑把这个大正方形分割成面积为1平方米的9个小正方形(如右图)。
例1 平面上有A、B、C、D、E、F六个点,其中没有三点共线,每两点之间任意选用红线或蓝线连接,求证:不管怎样连接,至少存在一个三边同色的三角形。
例2 从同一个小学毕业的同学之间的关系可以分为三个等级:关系密切、一般关系、毫无关系.请你证明在这个学校的17名校友中.至少有三个人,他们之间的关系是同一个等级的。
例3 用黑、白两种颜色把一个2×5(即2行5列)的长方形中的每个小方格都随意染一种颜色.证明:必有两列,它们的涂色方式完全相同。
例4 如果有一个3×n的方格阵列,每一列的三个方格都任意用红、黄、蓝、绿四色之三染成三种不同颜色,问n至少是多少时,才能保证至少有3列的染色方式完全相同。
例5 对一块3行7列的长方形阵列中的小方格的每一格任意染成黑色或白色,求证:在这个长方形中,一定有一个由小方格组成的长方形,它的四个角上的小方格同色。
例6 用黑、白两种颜色将一个5×5的长方形中的小方格随意染色.求证:在这个长方形中一定有一个由小方格组成的长方形,它的四个角上的小方格同色。
数论中的抽屉原理(组合)一、数论中的抽屉原理& 最不利原则——“和差倍”1. 题型(1)两数之和或两数之差是m(2)两数之和或两数之差是m的倍数2. 解题思路题型(1)根据题意构造抽屉题型(2)根据余数的特征进行分组,构造抽屉二、注意事项1. 相邻两数必互质。
题型一:根据题意构造抽屉1.从2、4、6、…、30这15个偶数中,至少选出多少个数,才能保证其中一定有两个数之和是34 .2.从1 ~ 11这11个自然数中,至少选出多少个数,才能保证其中一定有两个数之和是12 .3.从1 ~ 99这99个自然数中,最多选出多少个数,使得其中每两个数之和都不等于100?4.从1,2,3,4,5,6,7,8,9,10,11,12中最多能选出几个数,使得在选出的数中,每一个数都不是另一个数的2倍。
5.从1 ~ 21这21个自然数中,至少取出多少个数,才能保证其中必有两数的差等于4?6.从1 ~ 99这99个自然数中,最多可以取出多少个数,使得其中每两个数之差都不等于5?7.如果在1,2,… …,n中任取19个数,都可以保证其中必有两个数的差是6,那么n最大是多少?8.从1 ~ 50这50个自然数中,至少选出多少个数,才能保证其中必有两个数互质?题型二:根据余数构造抽屉1.在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除。
2.至少取几个数,才能保证一定有两个数的差是7的倍数?3. 1 ~ 17中,至少拿出多少个数才能保证:(1)里面一定有5的倍数?(2)一定有两个数的和是5的倍数?4. 1 ~ 35中,至少拿出多少个数才能保证一定有两个数的和是8的倍数?5.从1至17这17个自然数中取出若干个数,使其中任意两个数的和都不能被5整除.请问:最多能取出多少个数?6.任选7个不同的数,请说明:其中必有2个数的和或者差是10的倍数。
巩固练习1.从1 ~ 19这19个自然数中,至少取出多少个数,才能保证其中必有两数的差等于4?2.从1 ~ 19这19个自然数中,至少取出多少个数,才能保证其中必有两数的差是4的倍数?3.从1 ~ 25这25个自然数中,至少取出多少个数,才能保证其中必有两数的和是6的倍数?4.从1至30这30个自然数中取出若干个数,使其中任意两个数的和都不能被7整除.请问:最多能取出多少个数?5.在任意的五个自然数中,是否其中必有三个数的和是3的倍数?。
第12讲抽屉原理(二)同步练习:1.新年晚会上,老师让每位同学从一个装有许多玻璃球的口袋中摸出两个球,这些球给人的手感相同,只有红、黄、白、蓝、绿五色之分(摸时,看不到颜色),结果发现总有两人取的球相同,由此可知,参加取球的至少有多少人?【答案】16人【解析】两个球的颜色只有15种可能:同色有5种,异色有2510=C 种.由抽屉原理,参加取球的至少有16人.2.一个袋子中有三种不同颜色的球共20个,其中红球7个,黄球5个,绿球8个.现在阿奇闭着眼睛从中取球,要保证有一种颜色的球不少于4个,则至少要取出多少个球才能满足要求?如果还要保证另一种颜色的球不少于3个,则最少要取出多少个球?【答案】10,13【解析】最不利情况下,每种颜色取3个,然后再取1个肯定可以满足要求,所以至少取10个;最不利情况下,把绿球取完,剩下2种颜色每种2个,此时再取1个就满足要求,至少取13个3.口袋中有三种颜色的筷子各10根,那么,(相同颜色的两根筷子为一双)(1)至少取多少根才能保证三种颜色都取到?(2)至少取多少根才能保证有两双颜色不同的筷子?(3)至少取多少根才能保证有两双颜色相同的筷子?【答案】(1)21,(2)13,(3)10【解析】(1)最坏的情况是取完两种颜色,再取1根就满足要求.至少要取102121⨯+=根.(2)最欢的情况是取完一种颜色10根,另两种颜色各1根,再取1根就满足要求.1012113+⨯+=根.(3)两双颜色相同的筷子是4只,最坏的情况是每种颜色取3只,再取一根就满足要求.33110⨯+=根.4.自制的一副玩具牌共计52张(含4种牌:红桃,红方、黑桃、黑梅.每种牌都有1点、2点、…、13点牌各一张).洗好后背面朝上放好.一次至少抽取________张牌,才能保证其中必定有2张牌的点数和颜色都相同.如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取________张牌.【答案】(1)27(2)37【解析】可取红,黑色的1,2,3,4,5,6,7,8,9,10,11,12,13点各2张,共13226⨯=(张),那么再取一张牌,必定和其中某一张牌的点数相同,于是就有2张牌点数和颜色都相同,这是最坏的情况,因此至少要取27张牌,必须保证有2张牌点数,颜色都相同.(2)有以下的搭配:(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13)因而可以取1、3、4、6、7、9、10、12、13这9个数,四种花色的牌都取,9×4=36(张)牌,其中没有3张牌的点数是相邻的.此时取任意1张牌,必然会出现3张牌是相邻的因此,要取37张牌.5.有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?【答案】能【解析】根据奇偶性:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数.先用列表法进行搭配.由于题目只要求判断两堆水果的个数关系,因此可以从水果个数的奇、偶性上来考虑抽屉的设计.对于每堆水果中的苹果、桔子的个数分别都有奇数与偶数两种可能,所以每堆水果中苹果、桔子个数的搭配就有4种情形:(奇,奇),(奇,偶),(偶,奇),(偶,偶),其中括号中的第一个字表示苹果数的奇偶性,第二个字表示桔子数的奇偶性.将这4种情形看成4个抽屉,现有5堆水果,根据抽屉原理可知,这5堆水果里至少有2堆属于上述4种情形的同一种情形.由于奇数加奇数为偶数,偶数加偶数仍为偶数,所以在同一个抽屉中的两堆水果,其苹果的总数与桔子的总数都是偶数.6.将全体自然数按照它们个位数字可分为10类:个位数字是1的为第1类,个位数字是2的为第2类,…,个位数字是9的为第9类,个位数字是0的为第10类.(1)任意取出6个互不同类的自然数,其中一定有2个数的和是10的倍数吗?(2)任意取出7个互不同类的自然数,其中一定有2个数的和是10的倍数吗?如果一定,请简要说明理由;如果不一定,请举出一个反例.【答案】见解析【解析】(1)不一定有.例如1、2、3、4、5、10这6个数中,任意两个数的和都不是10的倍数.(2)一定有.将第1类与第9类合并,第2类与第8类合并,第3类与第7类合并,第4类与第6类合并,制造出4个抽屉;把第5类、第10类分别看作1个抽屉,共6个抽屉.任意7个互不同类的自然数,放到这6个抽屉中,至少有1个抽屉里放2个数.因为7个数互不同类,所以后两个抽屉中每个都不可能放两个数.当两个互不同类的数放到前4个抽屉的任何一个里面时,它们的和一定是10的倍数7.从1,2,3,4,…,1994这些自然数中,最多可以取_______个数,能使这些数中任意两个数的差都不等于9.【答案】999【解析】法1:把1994个数每18个分成一组,最后14个数也成一组,共分成111组.即1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;19,20,21,22,23,24,25,26,27,28,29,30,……,35,36;…………………1963,1964,…,1979,1980;1981,1982, (1994)每一组中取前9个数,共取出9111999⨯=(个)数,这些数中任两个的差都不等于9.因此,最多可以取999个数.法2:构造公差为9的9个数列(除以9的余数){}1,10,19,28,,1990 ,共计222个数{}2,11,20,29,,1991 ,共计222个数{}3,12,21,30,,1992 ,共计222个数{}4,13,22,31,,1993 ,共计222个数{}5,14,23,32,,1994 ,共计222个数{}6,15,24,33,,1986 ,共计221个数{}7,16,25,34,,1987 ,共计221个数{}8,17,26,35,,1988 ,共计221个数{}9,18,27,36,,1989 ,共计221个数每个数列相邻两项的差是9,因此,要使取出的数中,每两个的差不等于9,每个数列中不能取相邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取1119999⨯=个数.8.如图,能否在8行8列的方格表的每一个空格中分别填上1,2,3这三个数,使得各行各列及对角线上8个数的和互不相同?并说明理由.【答案】见解析【解析】从问题入手:因为问的是和,所以就从和的种类入手.由1,2,3组成的和中最小为818⨯=,最大的为8324⨯=,8~24中共有17种结果,而8行8列加上对角线共有18个和,根据抽屉原理,必有两和是相同的,所以此题不能满足要求.9.在100张卡片上不重复地编上1~100,至少要随意抽出几张卡片才能保证所抽出的卡片上的数之乘积可被12整除?【答案】68【解析】21223=⨯,因为3的倍数有100333⎡⎤=⎢⎥⎣⎦个,所以不是3的倍数的数一共有1003367-=(个),抽取这67个数无法保证乘积是3的倍数,但是如果抽取68个数,则必定存在一个数是3的倍数,又因为奇数只有50个,所以抽取的偶数至少有18个,可以保证乘积是4的倍数,从而可以保证乘积是12的倍数.于是最少要抽取68个数(即:68张卡片)才可以保证结果.10.某商店举行抽奖活动,在箱子里放有红色、蓝色、黄色小球各100个,若50个同色小球可以换一个布偶,80个同色小球可以换一个零食包,85个同色小球可以换一个模型.每个小球只能换一次奖.小明去抽奖,每次只能从箱子中不放回地随机抽取一个小球,他最少需要抽取__________次才能保证他可以换到每种奖品各一个.【答案】259【解析】①抽光两种颜色,此时再抽50次即保证可以换到,共需250次;②抽光一种颜色,剩下两种各抽79次,此时再抽一次才可换到,共需259次;③每种各84次,此时再抽一次才可换到,共需253次;综上,需要259次才能保证.深化练习11.现有211名同学和四种不同的巧克力.每种巧克力的数量都超过633颗.规定每名同学最多拿三颗巧克力,也可以不拿.若按照巧克力的种类和数量都是否相同分组,则人数最多的一组至少有________名同学.【答案】7【解析】每一名学生可以拿:括号内为该情况发生有几种情况.1,一个不拿(1种情况);2,拿四种糖果中任意一个(4种情况);3.拿两个,都是同种糖果(4种情况);4.拿两个且不同的糖果,随机的(6种情况);5.拿三个,都相同(4种情况);6.拿三个,两个相同(12种情况);7.拿三个都不同的糖果(4种情况);所以一个同学所取的不同种类共有1+4+4+6+4+12+4=35种情况;因为每一种糖都超过633颗,所以第五种情况能够出现,3×211=633,足够分.所以其他六种情况也能够发生.所以,要让最多的那组人数最少就是:211÷35=6…1(余数1);即最多的一组最少为6+1=7人.12.证明:任意给定一个正整数n ,一定可以将它乘以适当的整数,使得乘积是完全由0和7组成的数.【答案】见解析【解析】考虑如下1+n 个数:7,77,777,……,777 位n ,1777+ 位n ,这1+n 个数除以n 的余数只能为0,1,2,……,1-n 中之一,共n 种情况,根据抽屉原理,其中必有两个数除以n 的余数相同,不妨设为777 位p 和777 位q (>p q ),那么()777777777000--= 位位位位p q p q q 是n 的倍数,所以n 乘以适当的整数,可以得到形式为()777000- 位位p q q 的数,即由0和7组成的数.13.上体育课时,21名男、女学生排成3行7列的队形做操.老师是否总能从队形中划出一个长方形,使得站在这个长方形4个角上的学生或者都是男生,或者都是女生?如果能,请说明理由;如果不能,请举出实例.【答案】见解析【解析】因为只有男生或女生两种情况,所以第1行的7个位置中至少有4个位置同性别.为了确定起见,不妨设前4个位置同是男生,如果第二行的前4个位置有2名男生,那么4个角同是男生的情况已经存在,所以我们假定第二行的前4个位置中至少有3名女生,不妨假定前3个是女生.又第三行的前3个位置中至少有2个位置是同性别学生,当是2名男生时与第一行构成一个四角同性别的矩形,当有2名女生时与第二行构成四角同性别的矩形.所以,不论如何,总能从队形中划出一个长方形,使得站在这个长方形4个角上的学生同性别.问题得证.14.8位小朋友围着一张圆桌坐下,在每位小朋友面前都放着一张纸条,上面分别写着这8位小朋友的名字.开始时,每位小朋友发现自己面前所对的纸条上写的都不是自己的名字,请证明:经过适当转动圆桌,一定能使至少两位小朋友恰好对准自己的名字.【答案】见解析【解析】沿顺时针方向转动圆桌,每次转动一格,使每位小朋友恰好对准桌面上的字条,经过8次转动后,桌面又回到原来的位置.在这个转动的过程中,每位小朋友恰好对准桌面上写有自己名字的字条一次,我们把每位小朋友与自己名字相对的情况看作“苹果”,共有8只“苹果”.另一方面,由于开始时每个小朋友都不与自己名字相对,所以小朋友与自己名字相对的情况只发生在7次转动中,这样7次转动(即7个“抽屉”)将产生8位小朋友对准自己名字的情况,由抽屉原理可知,至少在某一次转动后,有两个或两个以上的小朋友对准自己的名字.15.任意给定2008个自然数,证明:其中必有若干个自然数,和是2008的倍数(单独一个数也当做和).【答案】见解析【解析】把这2008个数先排成一行:1a ,2a ,3a ,……,2008a ,第1个数为1a ;前2个数的和为12+a a ;前3个数的和为123++a a a ;……前2008个数的和为122008+++ a a a .如果这2008个和中有一个是2008的倍数,那么问题已经解决;如果这2008个和中没有2008的倍数,那么它们除以2008的余数只能为1,2,……,2007之一,根据抽屉原理,必有两个和除以2008的余数相同,那么它们的差(仍然是1a ,2a ,3a ,……,2008a 中若干个数的和)是2008的倍数.所以结论成立.。
第30讲抽屉原理(二)一、知识要点在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。
二、精讲精练【例题1】幼儿园里有120个小朋友,各种玩具有364件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?把120个小朋友看做是120个抽屉,把玩具件数看做是元素。
则364=120×3+4,4<120。
根据抽屉原理的第(2)条规则:如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。
可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。
练习1:1、一个幼儿园大班有40个小朋友,班里有各种玩具125件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。
这是为什么?3、把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球?【例题2】布袋里有4种不同颜色的球,每种都有10个。
最少取出多少个球,才能保证其中一定有3个球的颜色一样?把4种不同颜色看做4个抽屉,把布袋中的球看做元素。
根据抽屉原理第(2)条,要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。
即2×4+1=9(个)球。
列算式为(3—1)×4+1=9(个)练习2:1、布袋里有组都多的5种不同颜色的球。
最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。
当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。
抽屉原理
教学内容:教材第70、71页的例1、例2
教学目标:
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
2、会用“抽屉原理”解决简单的实际问题。
3、通过操作发展学生的类推能力,形成比较抽象的数学思维。
教学重点:认识“抽屉原理”。
教学难点:灵活运用“抽屉原理”解决实际问题。
教学方法:小组合作,自主探究。
教学准备:若干根小棒,4个纸杯。
教学过程:
一、创设情境,导入新知
老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。
师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。
二、自主学习,初步感知
(一)出示例1:4枝铅笔,3个文具盒。
1、观察猜测
猜猜把4枝铅笔放进3个文具盒中会存在什么样的结果?
2、自主探究
(1)提出猜想:“不管怎么放,总有一个文具盒里至少放进2枝铅笔”。
(2)小组合作操作验证:请拿出铅笔和文具盒小组合作摆一摆、放一放。
(3)交流讨论,汇报。
可能如下:
第一种:枚举法。
用实物摆一摆,把所有的摆放结果都罗列出来。
第二种:假设法。
如果每个文具盒中只放1枝铅笔,最多放3枝。
剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进枝同一个文具盒。
第三种:数的分解。
把4分解成三个数,共有四种情况,(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。
(4)、比较优化。
请学生继续思考:如果把5枝铅笔放进4个文具盒,结果是否一样呢?把100
枝铅笔放进99个盒子里呢?怎样解释这一现象?
师:为什么不采用枚举法来验证呢?
数据较小时可以采用枚举法,也可用假设法直接思考,而当数据较大时,用假设法思考比较简单。
3、引导发现
只要放的铅笔数比盒子的数量多1[3] ,不管怎么放,总有一个盒子里至少放进2枝铅笔。
(二)出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书?7本书会怎样呢?9本呢?
1、学生尝试自已探究。
2、交流探究的结果,可能如下:
1)枚举法。
共有3种情况。
在任何一种结果中,总有一个抽屉至少放进3本书
2)假设法。
把5本书“平均分成2份”,5÷2=2…1,如果每个抽屉放进2本书,还剩下1本。
把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。
由此可见,把5本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进3本书。
同样,7÷2=3…1把7本书放进放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进4本书。
9÷2=4…1把9本书放进放进2个抽屉中,有一个抽屉里至少放进5本书。
3、观察发现
学生讨论交流,发现“总有一个抽屉里至少有几本”只要用“商+1”就可以得到。
4、介绍原理。
师:同学们,你们知道吗?你们的这一发现,在数学里被称之为“抽屉原理”,也叫做“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称为“狄利克雷原理”。
这一原理在解决实际问题中有着广泛的应用,可以用它来解决很多有趣的问题呢。
三、应用原理,解决问题
完成教材第72页“做一做”第1题
四、全课总结,回归生活
1、通过今天的学习你有什么收获?
2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?。