高一数学幂函数及函数奇偶性
- 格式:pdf
- 大小:1.68 MB
- 文档页数:9
高中数学题:简单的幂函数与函数的奇偶性一、幂函数的定义例1、已知函数是幂函数,求m的值。
分析:由幂函数的定义可知,只有形如的函数才是幂函数,故本题前的系数且,由此可解。
解:令及,可解得:m=2。
例2、当时,幂函数是减函数,则实数m的值为。
解答:依题意,。
又因为函数在时为减函数,故,故m=-1应舍去,从而m=2。
二、判断函数的奇偶性一般地,判断函数的奇偶性首先应确认函数的定义域关于原点对称,然后再根据f(x)和f(-x)的关系进行判断,若相等,则为偶函数;若相反,则为奇函数。
也可以根据图像的对称性来判断:若图像关于原点对称,则为奇函数;若图像关于y轴对称,则为偶函数。
例3、判断函数的奇偶性。
解答:因为函数的定义域是{x|x≠1},关于原点不对称,所以该函数为非奇非偶函数。
若将此函数先化简得到f(x)= - x,则极易得到该函数是奇函数这样一个错误的结论;另外,本题最后的结论是该函数是非奇非偶函数,不可以说成“不具有奇偶性”。
例4、判断函数的奇偶性。
解答:分段函数的奇偶性的判断是一个难点,要注意分段进行判断,并要注意是将f(-x)和哪个区间上的f(x)进行比较。
三、复合函数的奇偶性复合函数y=f[g(x)]的奇偶性可以这样判断:当内外函数均为奇函数时,复合函数是奇函数;当内外函数中有一个是偶函数,而另一个函数无论是奇函数或偶函数,复合函数均为偶函数。
例5、判断函数的奇偶性。
解答:设,则g(x)是偶函数;又因为可视为的复合函数,故为偶函数。
四、利用函数的奇偶性解题例6、已知函数是奇函数,当x>0时,;求当x<0时的解析式。
解答:例7、试探究是否存在实数,使得函数是奇函数?若存在,求出实数,并证明函数是奇函数;若不存在,请说明理由。
解答:函数的定义域是(-1,1),若函数是奇函数,必有f(0)=0,解得,易证这是一个奇函数。
若奇函数在x=0时有意义,则必有f(0)=0。
五、幂函数的图像例8、函数的图像是()解答:由是偶函数,排除B、C;又当0<x<1时,>x,故选D。
高一数学知识点:幂函数知识点_知识点总结在高一数学的学习中,幂函数是一个重要的知识点。
它不仅在数学理论中有着关键的地位,也在解决实际问题中发挥着重要作用。
接下来,让我们一起深入了解幂函数的相关知识。
一、幂函数的定义一般地,形如\(y =x^α\)(\(α\)为常数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
这里需要注意的是,\(α\)可以是有理数,也可以是无理数。
例如,\(y = x^2\),\(y = x^{\frac{1}{2}}\),\(y = x^{ 1}\)等都是幂函数。
二、幂函数的图像幂函数的图像因其指数\(α\)的不同而具有不同的特征。
当\(α > 0\)时:1、\(α > 1\)函数\(y =x^α\)在\(0, +∞)\)上单调递增,且增长速度越来越快;在\((∞, 0)\)上函数无定义。
其图像类似于“一撇”,经过点\((1, 1)\)和\((0, 0)\)。
2、\(0 <α < 1\)函数\(y =x^α\)在\(0, +∞)\)上单调递增,且增长速度越来越慢;在\((∞,0)\)上函数无定义。
其图像类似于“上凸”的曲线,经过点\((1, 1)\)和\((0, 0)\)。
当\(α < 0\)时:函数\(y =x^α\)在\((0, +∞)\)上单调递减,且曲线向\(x\)轴、\(y\)轴无限接近,但永不相交。
在\((∞, 0)\)上函数无定义。
其图像类似于“下凸”的曲线,经过点\((1, 1)\)。
特别地,当\(α = 0\)时,函数\(y = x^0 = 1\)(\(x ≠0\)),是一条平行于\(x\)轴的直线(去掉点\((0, 1)\))。
三、幂函数的性质1、定义域幂函数的定义域与其指数\(α\)有关。
当\(α\)为正整数时,定义域为\(R\);当\(α\)为分数时,要考虑分母的奇偶性以及根号下式子的非负性来确定定义域。
2、值域幂函数的值域也与指数\(α\)有关。
幂函数的特点与变化规律幂函数是高中数学中常见的一类函数,它的数学表达式为y=x^n,其中x代表自变量,n代表指数。
在本文中,我们将探讨幂函数的特点以及其在图像上的变化规律。
一、幂函数的特点:1. 定义域和值域:幂函数的定义域是实数集,值域则取决于指数n 的奇偶性。
当指数n为奇数时,幂函数的值域也是实数集;当指数n 为偶数且大于0时,幂函数的值域是非负实数集[0,+∞)。
2. 奇偶性:当指数n为奇数时,幂函数关于原点对称,即f(-x)=-f(x);而当指数n为偶数时,幂函数关于y轴对称,即f(-x)=f(x)。
3. 单调性:当指数n大于0时,幂函数为严格递增函数或严格递减函数,具体取决于n的正负性。
当n大于0时,幂函数递增;当n小于0时,幂函数递减。
4. 零点与渐近线:幂函数的零点为x=0,当n大于0时,幂函数图像与x轴交于(0, 0)点;当n小于0时,幂函数图像不与x轴交于任何点。
当n大于0时,幂函数没有水平渐近线;当n小于0时,幂函数有y=0作为水平渐近线。
5. 二次导数:幂函数的二次导数为f''(x) = n(n-1)x^(n-2)。
根据二次导数的正负性,可以进一步研究幂函数的凹凸性。
二、幂函数在图像上的变化规律:1. 当n为正偶数时,幂函数的图像呈现开口向上的U形曲线。
随着指数n的增大,曲线越陡峭。
2. 当n为负偶数时,幂函数的图像呈现开口向下的倒U形曲线。
随着指数n的增大,曲线越平缓。
3. 当n为正奇数时,幂函数的图像从第三象限穿过原点,向第一象限递增。
曲线整体呈现右上方倾斜的趋势。
4. 当n为负奇数时,幂函数的图像从第二象限穿过原点,向第四象限递减。
曲线整体呈现左下方倾斜的趋势。
总结:通过对幂函数的特点和变化规律的探讨,我们可以清楚地看到幂函数图像的特征。
幂函数的指数n决定了函数的奇偶性、单调性、零点和渐近线等属性。
同时,幂函数在图像上的变化规律也随指数n的不同而有所差异。
高中数学-必修一4.1幂函数-知识点1、幂函数:y=x a(a是定值).特征:①系数为1 ,且
只有1 项,②指数为常数,底数为自变量。
2、幂函数的图像,掌握两步法作图。
第一步:画出幂函数在第一象限的图像,如右图所示;
第二步:根据函数的奇偶性来确定剩余部分图像,需分类讨论:(1)当a是整数时
①若a是奇数②若a是偶数
y是奇函数,图像关于原点对称,另一半在第三象限。
y是偶函数,图像关于y轴对称,另一半在第二象限。
(2)当a是分数时,假定a=n/m(n/m是最简分数)
①n和m都是奇数②n是偶数,m是奇数③n是奇数,m是偶数
y是奇函数,图像关于原点对称,另一半在第三象限. y是偶函数,图像关于y轴
对称,另一半在第二象限.
x<0时函数无意义,y是非奇
非偶函数,y轴左侧无图像.
3、幂函数的性质
(1)必过点必过点(1,1);若a>0,还必过(0,0)。
(2)单调性
①a>0时,在第一象限严格增。
②a<0时,在第一象限严格减。
(3)平移的规律左加右减,上加下减。
(4)定义域a<0时,x不能取0,a为分数且分母是偶数时,x不能取负。
(5)值域(0,+∞)必取,0和(-∞,0)是否能取可结合图像来判断。
4、不同幂函数的指数大小的判断:在(0,1)上,指大图低(指数越大,图像越靠近x轴);在(1,+∞)时,指大图高(指数越大,图像越远离x轴)。
5、比较幂函数值大小的方法:指数相同,底数不同,根据增减性去比较。
小初高个性化辅导,助你提升学习力! 1。
高一必修一幂函数的知识点高一必修一:幂函数的知识点高一数学课程中,幂函数是一个重要的学习内容。
幂函数是一种常见的函数形式,在生活和工作中有广泛的应用。
幂函数的研究是数学中的重要课题,掌握了幂函数的知识,对于理解数学的其他分支,如微积分等,具有重要的意义。
本文将重点介绍高一必修一中幂函数的知识点,帮助同学们更好地理解和应用幂函数。
一、幂函数的定义和性质幂函数是形如y = ax^n (a ≠ 0, n为整数)的函数,其中a称为底数,n称为指数。
幂函数的图象一般呈现出曲线的形式,其性质包括:1. 定义域和值域:当指数n为正整数时,定义域为全体实数集,值域为(0, +∞);当指数n为负整数时,定义域为非零实数集,值域为(0, +∞)与(-∞, 0)的并集,并具有一至多个零点;当指数n为零时,定义域为整个实数集,值域为{1}。
2. 奇偶性:当指数n为奇数时,幂函数关于y轴对称;当指数n为偶数时,幂函数关于原点对称。
3. 单调性:当指数n为正数时,幂函数在整个定义域上是递增的;当指数n为负数时,幂函数在定义域的两侧是递减的。
4. 极限性质:当x无限趋近于正无穷时,幂函数的值也趋近于正无穷;当x无限趋近于负无穷时,幂函数的值的符号取决于指数的奇偶性。
二、幂函数与图像的关系幂函数的图像是通过对幂函数的底数进行相同倍数的拉伸或压缩得到的。
具体来说,我们可以通过以下几个方面了解幂函数与图像的关系。
1. 底数a的变化对图像的影响:当底数a大于1时,幂函数的图像被压缩,曲线变得更陡峭;当底数a小于1时,幂函数的图像被拉伸,曲线变得更平缓。
2. 指数n的变化对图像的影响:当指数n为正数时,幂函数的图像在y轴上方增长,形成上升的曲线;当指数n为负数时,幂函数的图像在y轴下方增长,形成下降的曲线。
3. 圆形与直线的比较:幂函数的图像与圆的曲线相似,但在其特定区间内,幂函数的图像会出现与直线相切的情况,这时幂函数的曲线呈现出直线的性质。
高一函数知识点总结归纳高中数学的学习难度主要在于概念的深入和方法的抽象。
高一是数学学习的起步阶段,更是重中之重。
今天小编在这给大家整理了高一函数知识点总结,接下来随着小编一起来看看吧!高一函数知识点总结1高一数学函数知识点归纳1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。
2、函数定义域的解题思路:⑴ 若x处于分母位置,则分母x不能为0。
⑵ 偶次方根的被开方数不小于0。
⑶ 对数式的真数必须大于0。
⑷ 指数对数式的底,不得为1,且必须大于0。
⑸ 指数为0时,底数不得为0。
⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。
⑺ 实际问题中的函数的定义域还要保证实际问题有意义。
3、相同函数⑴ 表达式相同:与表示自变量和函数值的字母无关。
⑵ 定义域一致,对应法则一致。
4、函数值域的求法⑴ 观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。
⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。
⑶ 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。
⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。
5、函数图像的变换⑴ 平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。
⑵ 伸缩变换:在x前加上系数。
⑶ 对称变换:高中阶段不作要求。
6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y 与之对应,那么就称对应f:A→B为从集合A到集合B的映射。
⑴ 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。
高中数学幂函数的性质总结最新8篇幂函数知识点总结篇一1、幂函数解析式的右端是个幂的形式。
幂的底数是自变量,指数是常数,可以为任何实数;与指数函数的`形式正好相反。
2、幂函数的图像和性质比较复杂,高考只要求掌握指数为1、2、3、-1、时幂函数的图像和性质。
3、了解其它幂函数的图像和性质,主要有:①当自变量为正数时,幂函数的图像都在第一象限。
指数为负数的幂函数都是过点(1,1)的减函数,以坐标轴为渐近线,指数越小越靠近x轴。
指数为正数的幂函数都是过原点和(1,1)的增函数;在 x=1的右侧指数越大越远离 x 轴。
②幂函数的定义域可以根据幂的意义去求出:要么是x≥0,要么是关于原点对称。
前者只在第一象限有图像;后者一定具有奇偶性,利用对称性可以画出二或三象限的图像。
注意第四象限绝对不会有图像。
③定义域关于原点对称的幂函数一定具有奇偶性。
当指数是偶数或分子是偶数的分数时是偶函数;否则是奇函数。
4、幂函数奇偶性的一般规律:⑴指数是偶数的幂函数是偶函数。
⑵指数是奇数的幂函数是奇函数。
⑶指数是分母为偶数的分数时,定义域 x>0或x≥0,没有奇偶性。
⑷指数是分子为偶数的分数时,幂函数是偶函数。
⑸指数是分子分母为奇数的分数时,幂函数是奇数函数。
幂函数知识点总结篇二掌握幂函数的内部规律及本质是学好幂函数的关键所在,下面是整理的幂函数公式大全,希望对广大朋友有所帮助。
定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
数学高考知识点幂函数数学高考知识点:幂函数幂函数是高考数学中非常重要的一个知识点,它是指形如y=x^a的函数,其中a是一个实数。
在高考中,幂函数常常会与其他函数进行比较或者求解方程等相关问题,因此熟练掌握幂函数的性质和应用是非常重要的。
一、幂函数的性质1. 幂函数的定义域:幂函数y=x^a的定义域是所有使得x^a有意义的实数x。
2. 幂函数的奇偶性:当指数a为偶数时,幂函数具有关于y轴的对称性,即f(-x) = f(x)。
当指数a为奇数时,幂函数关于原点对称,即f(-x) = -f(x)。
3. 幂函数的单调性:当指数a大于0时,幂函数在定义域上是递增的;当指数a小于0时,幂函数在定义域上是递减的。
4. 幂函数的图像:幂函数的图像呈现出如下特点:当a>1时,幂函数在∞处增加,0处取到最小值;当0<a<1时,幂函数在∞处减小,0处取到最大值;当a<0时,幂函数在定义域上是奇函数,图像关于原点对称。
二、幂函数的应用1. 幂函数与对数函数的关系:幂函数和对数函数是互为反函数的,即y=x^a和y=loga(x)是一对反函数。
这一性质在解决指数方程和对数方程时非常有用。
2. 幂函数的极限:对于幂函数y=x^a,当x趋近于正无穷时,幂函数趋近于正无穷;当x趋近于负无穷时,幂函数趋近于零。
这一性质在求解极限时常常会被用到。
3. 幂函数的应用:幂函数在物理学、生物学、经济学等领域具有广泛的应用。
例如,在物理学中,速度和加速度的计算常常涉及到幂函数的运算。
三、幂函数在高考中的常见题型解析1. 求解方程:高考经常出现要求解幂函数方程的题目,在解这类问题时,我们可以利用幂函数和对数函数互为反函数的特性,将幂函数方程转化为对数方程进行求解。
2. 判断性质:高考中会出现判断幂函数性质的题目,例如给出一个函数的图像,要求判断该函数的奇偶性、单调性等。
在解这类问题时,我们需要运用幂函数的性质和图像特点进行分析。
幂函数与函数的概念函数是数学中非常重要的概念,它描述了两个集合之间的对应关系。
而幂函数是一类特殊的函数,它的自变量为底数,因变量为指数。
本文将重点探讨幂函数和其他常见函数的不同之处,以及幂函数的性质和应用。
一、幂函数的定义和性质幂函数是形如y = x^a的函数,其中x为自变量,a为常数,y为因变量。
幂函数中的指数可以是整数、分数或者实数,但当指数为0时,函数将变为常函数1。
不同指数的幂函数呈现出不同的特征。
1. 整数指数的幂函数:当指数为正整数a时,幂函数将呈现出不断增长的趋势。
例如,y = x^2表示抛物线,在x轴右侧永远为正,并且随着x的增大而增大。
而当指数为负整数时,幂函数将会变成反比例函数,即随着x的增大而减小。
2. 分数指数的幂函数:当指数为分数时,幂函数的图像将会出现不同的形状。
例如,y =x^(1/2)表示平方根函数,其图像为非负的抛物线,随着x的增大而增大,但增长速度逐渐减缓。
类似地,指数为倒数、立方等分数时,幂函数的图像也会有所不同。
3. 实数指数的幂函数:当指数为实数时,幂函数的图像将更加多样化。
在指数为实数且底数为正数时,幂函数的图像将呈现出类似指数函数的特点,即随着x的增大而迅速增大或减小。
而当底数为负数时,幂函数则具有奇偶性的变化。
二、幂函数的应用幂函数在自然科学、经济学等领域中有着广泛的应用。
以下是其中几个重要的应用:1. 物理学中的功率函数:功率函数是幂函数的一种特殊情况,其中指数为常数。
在物理学中,功率函数常用于描述功率与时间、功率与速度等之间的关系。
2. 经济学中的收益函数:在经济学中,幂函数用来描述生产函数中的产出与投入之间的关系。
例如,某种产品的产量与投入的关系可以通过幂函数来表示,对经济决策有一定的指导意义。
3. 生物学中的生长模型:幂函数也被广泛用于描述生物体的生长模型。
例如,细菌的繁殖、植物的生长等都可以使用幂函数来描述,从而帮助我们更好地理解和研究生物的生长规律。