北师大版2.4 二次函数的应用(1)教案
- 格式:doc
- 大小:64.50 KB
- 文档页数:3
“二次函数的应用(1)”教学设计一、教学目标1.经历求最大面积问题的探索过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,增强解决问题的能力.二、教学分析重点:利用二次函数求图形最大面积.难点:从现实问题中建立二次函数模型.三、教学过程【例1】如图2-8,在一个直角三角形内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上.(1)如果设矩形的一边AB =x m ,那么AD 边的长度如何表示?(2)设矩形的面积为y ,当x 取何值时,y 的值最大?最大值是多少?图2-8解:(1)∵四边形ABCD 是矩形,∴AB =DC ,DC ∥AN .∵AN =40m ,AM =30m ,AB =x m ,∴CD =x m .∵CD ∥AN , ∴AMDM AN DC =. ∴303040AD x -=. ∴m 4330⎪⎭⎫ ⎝⎛-=x AD . (2)x x x x y 304343302+-=⎪⎭⎫ ⎝⎛-=,∴()30020432+--=x y . ∴当x =20时,面积有最大值,y max =300m 2.思考:设矩形AD =x m ,能否求出最大面积?自己尝试一下.【变式】在上面的问题中,如果把矩形改为如图2-9所示的位置,其他条件不变,那么矩形的最大面积是多少?你是怎样知道的?图2-9解:由勾股定理知,MN =50m ,∵△ONM 中MN 边上的高是24m ,设AD =x m ,AB=a m ,∴AD ∥MN ,△OAD ∽△ONM . ∴242450AB x -=,x x a 2425122+-=. ∴2251224x x a x y -=⋅=()3002525122+--=x (0<x <50). 因此,当x =25时,y 最大=300.∴最大面积y 为300m 2.【例2】某建筑物的窗户如图2-10所示,它的上半部分是半圆,下半部分是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m .当x 等于多少时,窗户通过的光线最多?(结果精确到 0.01m )此时,窗户的面积是多少?(结果精确到 0.01m 2)图2-10解:∵1547=++x y x π,∴4715x x y π--=. ∵150<<x ,且1547150<--<x x π, ∴48.10<<x .设窗户的面积是S m 2,则.562251415272152747152212212222+⎪⎭⎫ ⎝⎛--=+-=--⋅+=+=x x x x x x x xy x S πππ ∴当07.11415≈=x 时,02.456225≈=最大S . 因此,当x 约为1.07m 时,窗户通过的光线最多.此时,窗户的面积约为4.02m 2【小结】解决几何图形面积的最值问题的基本步骤1.确定面积的变化与哪些量的变化有关;2.利用图形的面积与这些变量之间的关系建立二次函数的模型;3.利用二次函数的性质以及自变量的取值范围确定面积的最大值或最小值.【习题】1.一根铝合金型材长为6m ,用它制作一个“日”字形窗户的框架ABCD (如图),如果恰好用完整条铝合金型材,那么AB ,AD 分别为多少米时,窗户的面积最大?第1题2.如图,小亮父亲想用长为80m 的栅栏,再借助房屋的外墙围成一个矩形羊圈ABCD ,已知房屋外墙长50m ,设矩形ABCD 的边AB =x m ,面积为S m 2.(1)写出S 与x 之间的关系式,并指出x 的取值范围;(2)当AB ,BC 分别为多少时,羊圈的面积最大?最大面积是多少?第2题四、板书设计二次函数的应用(1)求面积的最值问题:1.所求图形的形状,2.设一条边为x,用x表示其他求面积所需的量,3.写出面积关于边长的函数,4.用公式法或配方法求出这一最大值.。
二次函数的应用【教学目标】知识与技能:1.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值.过程与方法:1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力.2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力.情感与态度:1.经历探究长方形和窗户透光最大面积问题的过程,获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格.3.进一步体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力.【教学重难点】重点:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大面积问题.难点:把实际问题转化成函数模型.【教学过程】一、创设情境,引入新知(放幻灯片2、3、4)1.(1)请用长20米的篱笆设计一个矩形的菜园.(2)怎样设计才能使矩形菜园的面积最大?设计意图:通过学生所熟悉的图形,引入新课,使学生初步了解解决最大面积问题的一般思路.2.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,求围成花圃的最大面积 .设计意图:在上一个问题的基础上对问题情境进行变化,增大难度,同时板书解题过程,让学生明确规范的书写过程.二、探究新知(放幻灯片5、6、7)探究一:如图,在一个直角三角形的内部画一个矩形ABCD ,其中AB 和AD 分别在两直角边上,AN=40m ,AM=30m.(1)设矩形的一边AB=xm,那么AD 边的长度如何表示?(2)设矩形的面积为2ym ,当x 取何值时,y 的最大值是多少?探究二:在上一个问题中,如果把矩形改为如图所示的位置,其顶点A 和点D 分别在两直角边上,BC 在斜边上.其它条件不变,那么矩形的最大面积是多少?探究三:如图,已知△ABC 是一等腰三角形铁板余料,AB=AC=20cm,BC=24cm.若在△ABC 上截出一矩形零件DEFG,使得EF 在BC 上,点D 、G分别在边AB 、AC 上.问矩形DEFG 的最大面积是多少?设计意图:通过由学生讨论怎样用直角三角形剪出一个最大面积的矩形入手,由学生动手画出两种方法,和同学一起从问题中抽象出二次函数的模型,并求其最值,同时通过两种情况的分析,训练学生的发散思维能力,关键是教会学生方法,也是这类问题的难点所在,即怎样设未知数,怎样转化为我们熟悉的数学问题.在此基础上对变式三进行探究,进而总结此类题型,得出解决问题的一般方法.MND C B A PM N D C BF G E D CB A三、例题讲解(放幻灯片8、9)某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m.(1)用含x的代数式表示;(2)当x等于多少时,窗户通过的光线最多? (结果精确到0.01m)此时,窗户的面积是多少? (结果精确到0.01m2)归纳总结:二次函数应用的思路设计意图:让学生进一步经历解决最值问题的过程,明确解决这类问题的一般步骤.七、课堂练习八、课堂小结(放幻灯片10)【作业布置】。
北师大版九年级数学下册:2.4《二次函数的应用》说课稿一. 教材分析北师大版九年级数学下册2.4《二次函数的应用》这一节主要介绍了二次函数在实际生活中的应用,通过学习,学生能够理解二次函数在实际生活中的意义,掌握二次函数解决实际问题的方法。
教材通过实例引导学生利用二次函数解决实际问题,培养学生的数学应用能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。
但学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数问题,因此,在教学过程中,教师需要引导学生将实际问题抽象为二次函数模型,并运用二次函数的知识解决实际问题。
三. 说教学目标1.让学生理解二次函数在实际生活中的应用,体会数学与生活的联系。
2.培养学生将实际问题转化为二次函数模型,并运用二次函数解决实际问题的能力。
3.提高学生的数学思维能力,培养学生的数学素养。
四. 说教学重难点1.教学重点:让学生掌握二次函数解决实际问题的方法,培养学生的数学应用能力。
2.教学难点:如何引导学生将实际问题转化为二次函数模型,并运用二次函数的知识解决实际问题。
五.说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中发现数学问题,运用数学知识解决实际问题。
2.利用多媒体教学手段,展示二次函数在实际生活中的应用实例,增强学生的直观感受。
3.采用小组合作学习的方式,让学生在讨论中思考,培养学生的团队合作能力。
六. 说教学过程1.导入:通过展示一些实际问题,如抛物线形的物体运动、最大利润问题等,引导学生发现这些问题都可以用二次函数来解决,激发学生的学习兴趣。
2.新课导入:介绍二次函数在实际生活中的应用,引导学生理解二次函数的实际意义。
3.实例讲解:通过具体实例,讲解如何将实际问题转化为二次函数模型,并运用二次函数解决实际问题。
4.课堂练习:让学生尝试解决一些实际问题,巩固所学知识。
5.总结提升:引导学生总结二次函数解决实际问题的方法,提高学生的数学应用能力。
2.4.1 二次函数的应用一、教学目标1.掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.2.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.二、课时安排1课时三、教学重点掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.四、教学难点运用二次函数的知识解决实际问题.五、教学过程(一)导入新课引导学生把握二次函数的最值求法:(1)最大值:(2)最小值:(二)讲授新课活动1:小组合作如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上.(1)设矩形的一边AB=xm,那么AD 边的长度如何表示?(2)设矩形的面积为ym 2,当x 取何值时,y 的值最大?最大值是多少?解:()31AD bm,b x 30.4==-+设易得 ()2332(30)3044y xb x x x x ==-+=-+()2320300.4x =--+ 24:20,300.24b ac b x y a a-=-===最大值或用公式当时 活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:4715.y x x ++π=由 157.4x x y --π=得 2215722()242x x x x S xy x π--ππ=+=+窗户面积 271522x x =-+ 2715225().21456x =--+ 2b 154ac b 225x 1.07,s 4.02.2a 144a 56-=-=≈==≈最大值当时 即当x≈1.07m 时,窗户通过的光线最多.此时窗户的面积为4.02m 2.(四)归纳小结“最大面积” 问题解决的基本思路:1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.(五)随堂检测1.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm2.2.用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.3.学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.(1)要使铺设白色地面砖的面积为5 200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如图铺设白色地面砖的费用为每平方米30元,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多少?4.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式.(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12y,要使△DEF为等腰三角形,m的值应为多少?m5.如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x ,面积为y .(1)求y 与x 的函数关系式,并求出自变量x 的取值范围.(2)生物园的面积能否达到210平方米?说明理由.【答案】1.12.52. 根据题意可得:等腰三角形的直角边为2x m 矩形的一边长是2xm,其邻边长为((20422x1022x,2-+=-(121022222S x x x x ⎡⎤=•-++⎣⎦所以该金属框围成的面积 30202,.322x ==-+当时金属框围成的图形面积最大 )((()2x 602m ,1022103210210m .=--+⨯-=此时矩形的一边长为另一边长为 )2S 3002002m .=-最大3.解: (1)设矩形广场四角的小正方形的边长为x 米,根据题意得4x 2+(100-2x )(80-2x )=5 200,整理,得x 2-45x +350=0,解得:x 1=35,x 2=10,经检验x 1=35,x 2=10均适合题意,所以,要使铺设白色地面砖的面积为5 200平方米,则矩形广场四角的小正方形的边长为35米或者10米.(2)设铺设矩形广场地面的总费用为y 元,广场四角的小正方形的边长为x 米,则 y =30[4x 2+(100-2x)(80-2x)]+20[2x(100-2x)+2x(80-2x)]即y =80x 2-3 600x +240 000,配方,得y =80(x -22.5)2+199 500.当x =22.5时,y 的值最小,最小值为199 500.所以当矩形广场四角的小正方形的边长为22.5米时,铺设矩形广场地面的总费用最少,最少费用为199 500元.4. ⑴在矩形ABCD 中,∠B=∠C=90°,∴在Rt△BFE 中, ∠1+∠BFE=90°,又∵EF⊥DE, ∴∠1+∠2=90°,∴∠2=∠BFE,∴Rt△BFE∽Rt△CED, ∴BF BE CE CD =, ∴8y x x m-= 即28x x y m -=.⑵当m=8时,28,8x x y -=化成顶点式: ()21428y x =--+ (3)由12y m =,及28x x y m-=得关于x 的方程: 28120x x -+=,得1226x x ==,.∵△DEF 中∠FED 是直角,∴要使△DEF 是等腰三角形,则只能是EF=ED ,此时, Rt△BFE≌Rt△CED.∴当EC=2时,m=CD=BE=6;当EC=6时,m=CD=BE=2.即△DEF为等腰三角形,m的值应为6或2.5. 解:(1)依题意,得y=(40-2x)x.∴y=-2x2+40x.x的取值范围是0< x <20.(2)当y=210时,由(1)可得,-2x2+40x=210.即x2-20x+105=0.∵ a=1,b=-20,c=105,∴2--⨯⨯<(20)411050,∴此方程无实数根,即生物园的面积不能达到210平方米.六.板书设计2.4.1二次函数的应用探究:例题:“最大面积” 问题解决的基本思路:1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.2.4.2二次函数的应用一、教学目标1.经历探索T恤衫销售过程中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,感受数学的应用价值.2.掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.二、课时安排1课时三、教学重点运用二次函数的知识求出实际问题的最大值、最小值.四、教学难点运用二次函数的知识求出实际问题的最大值、最小值.五、教学过程(一)导入新课某超市有一种商品,进价为2元,据市场调查,销售单价是13元时,平均每天销售量是50件,而销售价每降低1元,平均每天就可以多售出10件. 若设降价后售价为x元,每天利润为y元,则y与x之间的函数关系是怎样的?(二)讲授新课活动1:小组合作二次函数y=a(x-h)2+k(a 0),顶点坐标为(h,k),则①当a>0时,y有最小值k;②当a<0时,y有最大值k【探究】某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助分析,销售单价是多少时,可以获利最多?【解析】设销售单价为x (x≤13.5)元,那么销售量可以表示为: 件;每件T恤衫的利润为: 元;所获总利润可以表示为: 元;即y=-200x 2+3 700x-8 000=-200(x-9.25)2+9 112.5∴当销售单价为 元时,可以获得最大利润,最大利润是 元.活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题2.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x 元(x 为10的整数倍).(1)设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围.(2)设宾馆一天的利润为w 元,求w 与x 的函数关系式.(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?【解析】(1)y=50-10x ; (2)w=(180+x-20)y=(180+x-20)(50-10x )=2x 34x 8 000.10-++ (3)因为w=2x 34x 8 000,10-++ 所以x=b -2a=170时,w 有最大值,而170>160,故由函数性质知,x=160时,利润最大,此时订房数y=50- 10x =34,此时的利润为10 880元.例题3 某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1 500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?【解析】(1)设每千克应涨价x元,列方程,得(5+x)(200-10x)=1 500,解得x1=10,x2=5.因为要顾客得到实惠,5<10,所以x=5. 答:每千克应涨价5元.(2)设商场每天获得的利润为y元,则根据题意,得y=( x +5)(200-10x)= -10x2+150x+1 000,当x=1507.522(10)ba-=-=⨯-时,y有最大值.因此,这种水果每千克涨价7.5元,能使商场获利最多(四)归纳小结“何时获得最大利润” 问题解决的基本思路.1.根据实际问题列出二次函数关系式.2.根据二次函数的最值问题求出最大利润(五)随堂检测1.某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-(x-2)2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米2.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5 000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次性购买100个以上,则购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3 500元/个.乙商家一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1,y2与x之间的函数关系式.(2)若市政府投资140万元,最多能购买多少个太阳能路灯?3.桃河公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在距离OA 1m处达到最大高度2.25m.如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?4.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似地看作一次函数:(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)【答案】1. 【解析】选A. 抛物线的顶点坐标为(2,4),所以水喷出的最大高度是4米.2. 【解析】(1)由题意可知,当x ≤100时,购买一个需5 000元,故y 1=5 000x当x>100时,因为购买个数每增加一个,其价格减少10元但售价不得低于3 500元/个,所以x ≤ 5 000 3 50010025010-+= 即100<x≤250时,购买一个需5 000-10(x-100)元,故y 1=6 000x-10x 2;当x>250时,购买一个需3 500元,故y 1=3 500x;21 5 000x,y 6 000x 10x ,3 500x,⎧⎪=-⎨⎪⎩所以 0x 100100x 250x 250≤≤<≤> 2500080%4000.y x x =⨯=(2) 当0≤x ≤100时,y 1=5 000x ≤500 000<1 400 000;当100<x ≤250时,y 1=6 000x -10x 2=-10(x -300)2+900 000<1 400 000;∴由35001400000x = 得到x=400由40001400000x = 得到350400x =<故选择甲商家,最多能购买400个太阳能路灯3.【解析】建立如图所示的坐标系,根据题意,得,点A(0,1.25),顶点B(1,2.25).设抛物线的表达式为y=a(x-h)2+k,由待定系数法可求得抛物线表达式为:y=-(x-1)2+2.25. 当y=0时,得点C(2.5,0);同理,点D(-2.5,0).根据对称性,那么水池的半径至少要2.5m,才能使喷出的水流不致落到池外.4.解析:(1)由题意,得:w = (x -20)·y=(x -20)·(-10x+500)=-10x 2+700x-10 000 当352b x a=-=时,w 有最大值. 答:当销售单价定为35元时,每月可获得最大利润.(2)由题意,得21070010 000 2 000.x x -+-=解这个方程,得x 1 = 30,x 2 = 40.答:李明想要每月获得2 000元的利润,销售单价应定为30元或40元.(3)∵10a =-<0∴抛物线开口向下.∴当30≤x≤40时,w≥2 000.∵x≤32,∴当30≤x≤32时,w≥2 000. 设成本为P (元),由题意,得P=20(-10x+500)=-200x+10 000, ∵k=-200<0,∴P 随x 的增大而减小.∴当x = 32时,P 最小=3 600.答:想要每月获得的利润不低于2 000元,每月的成本最少需要3 600元.六.板书设计2.4.2二次函数的应用探究:例题2:例题3:“何时获得最大利润” 问题解决的基本思路.1.根据实际问题列出二次函数关系式;2.根据二次函数的最值问题求出最大利润.。
2.4 二次函数的应用 - 九年级下册数学教案(北师大版)一、教学目标1.理解二次函数的实际应用场景;2.掌握二次函数的图像特征及其对应的实际含义;3.能够解决与二次函数有关的实际问题。
二、教学重点1.二次函数图像的特征理解;2.实际问题与二次函数的联系。
三、教学难点1.运用二次函数解决实际问题;2.分析实际问题与二次函数图像之间的关系。
四、教学方法1.探究法:通过展示实际生活中的问题,引导学生理解二次函数的应用;2.讲解结合实例:通过教师讲解二次函数的图像特征和实际应用问题,帮助学生全面理解知识点;3.引导学生完成练习:通过练习题的完成,巩固学生对二次函数应用的掌握。
五、教学过程1. 导入(5分钟)教师通过提出一个简单的实际问题,引导学生思考二次函数的应用场景。
例如:某个物体从地面上抛出,其高度与时间的关系是什么样的?学生可以先自由发挥,然后与同桌讨论,最后集体讨论。
2. 概念讲解(15分钟)教师针对二次函数的应用场景,介绍二次函数的基本概念,包括函数的定义、二次函数的一般形式以及二次函数的图像特征。
教师通过绘制函数图像和给出具体实例,帮助学生理解二次函数的图像特征。
3. 实际问题解决(25分钟)教师给出一些实际问题,让学生运用所学的二次函数知识解决。
例如:问题一:小明在一年前购买了一块地,当时的价格是每平方米2000元。
经过一年的发展,该地区的房价每年以4%的比例上涨,请问一年后该地的房价是多少?问题二:某校图书馆每天新增的书籍数量满足二次函数y = 2x^2 + 3x + 5(x表示天数,y表示新增的书籍数量),请问第10天图书馆新增了多少书籍?学生在解决问题的过程中,需要分析问题,确定自变量和因变量,并运用二次函数的相关知识进行解答。
4. 练习与巩固(15分钟)教师让学生独立完成一些练习题,巩固所学知识。
例如:练习题一:已知二次函数图像上的两个点的坐标分别为(1,4)和(2,9),求该二次函数的函数表达式。
2024北师大版数学九年级下册2.4.1《二次函数的应用》教学设计1一. 教材分析《二次函数的应用》是北师大版数学九年级下册第2.4.1节的内容,本节课主要让学生了解二次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
教材通过生活实例引入二次函数的应用,让学生感受数学与生活的紧密联系,提高学习兴趣。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。
但在实际应用二次函数解决生活中的问题时,部分学生可能会感到困难。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生解决问题的能力。
三. 教学目标1.理解二次函数在实际生活中的应用,体会数学与生活的紧密联系。
2.掌握二次函数解决实际问题的方法,提高运用数学知识解决实际问题的能力。
3.培养学生的合作交流意识,提高学生的动手操作能力。
四. 教学重难点1.重点:二次函数在实际生活中的应用。
2.难点:如何将实际问题转化为二次函数模型,并求解。
五. 教学方法1.情境教学法:通过生活实例引入二次函数的应用,激发学生的学习兴趣。
2.合作学习法:分组讨论,引导学生主动探究二次函数解决实际问题的方法。
3.动手操作法:让学生亲自动手操作,加深对二次函数应用的理解。
六. 教学准备1.教师准备相关的生活实例,用于引入二次函数的应用。
2.准备练习题,用于巩固所学知识。
3.准备教学课件,辅助讲解和展示。
七. 教学过程1.导入(5分钟)教师通过展示生活实例,如抛物线形拱桥的跨度、篮球投篮的最佳角度等,引导学生思考这些实际问题是否可以转化为二次函数模型。
让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(10分钟)教师讲解二次函数在实际生活中的应用,如抛物线形拱桥的跨度公式、篮球投篮的最佳角度等。
引导学生理解这些实际问题是如何转化为二次函数模型的,并掌握求解方法。
3.操练(10分钟)学生分组讨论,选取一个实际问题,尝试将其转化为二次函数模型,并求解。
北师大版九年级数学下册:第二章 2.4.1《二次函数的应用》精品说课稿一. 教材分析北师大版九年级数学下册第二章《二次函数的应用》是学生在学习了二次函数的图象与性质的基础上进行的一节实践活动课。
本节课通过实例让学生了解二次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
教材中给出了两个实例:制作轴对称图案和确定顶点式二次函数的图象,教师可以在此基础上进行拓展,让学生更好地理解二次函数的应用。
二. 学情分析九年级的学生已经掌握了二次函数的基本知识,对二次函数的图象与性质有了初步的了解。
但学生在应用二次函数解决实际问题时,往往因为不能将实际问题与数学知识很好地结合起来而遇到困难。
因此,在教学过程中,教师需要引导学生将实际问题转化为数学问题,培养学生运用二次函数解决实际问题的能力。
三. 说教学目标1.让学生了解二次函数在实际生活中的应用,培养学生的应用意识。
2.使学生掌握利用二次函数解决实际问题的方法,提高学生的数学素养。
3.培养学生合作学习、交流分享的习惯,增强学生的团队意识。
四. 说教学重难点1.教学重点:让学生了解二次函数在实际生活中的应用,培养学生运用二次函数解决实际问题的能力。
2.教学难点:如何将实际问题转化为数学问题,如何利用二次函数解决实际问题。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探究二次函数在实际生活中的应用。
2.利用多媒体课件展示实例,直观地展示二次函数的图象与性质。
3.学生进行小组讨论,培养学生合作学习的能力。
4.教师进行适时点拨,帮助学生突破思维瓶颈。
六. 说教学过程1.导入新课:通过展示生活中的实例,引发学生对二次函数应用的思考,激发学生的学习兴趣。
2.探究新知:让学生自主探究教材中的实例,理解二次函数在实际生活中的应用。
3.小组讨论:让学生分组讨论,分享各自的想法,培养学生的合作意识。
4.教师讲解:针对学生的讨论,教师进行讲解,引导学生正确运用二次函数解决实际问题。
2019-2020学年九年级数学下册 2.4 二次函数的应用教学案北师大版2.4.1 二次函数的应用(1)班级 姓名 2015年____月 日教学目标 1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力.2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力.重点 分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大(小)面积问题.难点分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大(小)面积问题.一 、复习巩固1、求下列二次函数的顶点坐标,并说明y 随x 的变化情况:2、用三种不同方法求3(30)4y x x =-的最大值。
二 、探求新知例1.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB 为x 米,面积为S 平方米.(1)求S 与x 的函数关系式及自变量的取值范围;(2)当x 取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,求围成花圃的最大面积 .“二次函数应用”的思路:1.理解问题; x x y x x y 321)2(14)1(22+-=--=(配方法) (公式法)2.分析问题中的变量和常量,以及它们之间的关系;3.用数学的方式表示出它们之间的关系;4.运用数学知识求解;5.检验结果的合理性, 给出问题的解答.三、例题讲解红色一本通 P33 T2四、课堂训练红色一本通P33 T3 P33 T4~T7五、课后作业1、红色一本通P35 P36。
2、预习下一课时。
六 小结(教学反思)第二章 二次函数2.4.2 二次函数的应用(2)制作人:陈海庆班级 姓名 2015年____月 日教学目标 1、经历探索T 恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.重点 能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值。
北师大版数学九年级下册2.4《二次函数应用》说课稿1一. 教材分析北师大版数学九年级下册2.4《二次函数应用》这一节的内容,是在学生已经掌握了二次函数的图像和性质的基础上进行授课的。
本节课的主要内容是让学生学会如何运用二次函数解决实际问题,提高学生运用数学知识解决实际问题的能力。
教材通过引入实际问题,引导学生运用二次函数的知识进行解答,培养学生的数学应用意识。
二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的概念和性质有了初步的了解。
但是,学生在解决实际问题时,往往不知道如何将实际问题转化为数学问题,运用二次函数进行解答。
因此,在教学过程中,教师需要引导学生将实际问题与数学知识相结合,提高学生的数学应用能力。
三. 说教学目标1.知识与技能目标:让学生掌握二次函数在实际问题中的应用方法,提高学生运用二次函数解决实际问题的能力。
2.过程与方法目标:通过解决实际问题,培养学生将实际问题转化为数学问题,运用二次函数进行解答的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生学习数学的积极性。
四. 说教学重难点1.教学重点:让学生掌握二次函数在实际问题中的应用方法。
2.教学难点:如何引导学生将实际问题转化为数学问题,运用二次函数进行解答。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过解决实际问题,学会运用二次函数进行解答。
2.教学手段:利用多媒体课件,展示实际问题,引导学生进行思考和解答。
六. 说教学过程1.导入新课:通过展示一个实际问题,引发学生的思考,引出本节课的主题。
2.讲解新课:引导学生将实际问题转化为数学问题,运用二次函数进行解答。
在此过程中,教师要注意讲解二次函数在实际问题中的应用方法。
3.巩固新课:通过一些练习题,让学生巩固所学知识,提高运用二次函数解决实际问题的能力。
4.课堂小结:对本节课的内容进行总结,让学生明确二次函数在实际问题中的应用方法。
二次函数地应用(1)教学目标:1、经历数学建模地基本过程。
2、会运用二次函数求实际问题中地最大值或最小值。
3、体会二次函数是一类最优化问题地重要数学模型,感受数学地应用价值。
教学重点和难点:重点:二次函数在最优化问题中地应用。
难点:例1是从现实问题中建立二次函数模型,学生较难理解。
教学设计:一、创设情境、提出问题出示引例(将作业题第3题作为引例)给你长8m地铝合金条,设问:①你能用它制成一矩形窗框吗?②怎样设计,窗框地透光面积最大?2③如何验证?二、观察分析,研究问题演示动画,引导学生观察、思考、发现:当矩形地一边变化时,另一边和面积也随之改变。
深入探究如设矩形地一边长为x 米,则另一边长为(4-x)米,再设面积为ym 2,则它们地函数关系式为x x y 42ox x 4040x 并当x =2时(属于40x 范围)即当设计为正方形时,面积最大=4(m 2)引导学生总结,确定问题地解决方法:在一些涉及到变量地最大值或最小值地应用问题中,可以考虑利用二次函数最值方面地性质去解决。
步骤:第一步设自变量;第二步建立函数地解析式;第三步确定自变量地取值范围;第四步根据顶点坐标公式或配方法求出最大值或最小值(在自变量地取值范围内)。
三、例练应用,解决问题在上面地矩形中加上一条与宽平行地线段,出示图形设问:用长为8m地铝合金条制成如图形状地矩形窗框,问窗框地宽和高各是多少米时,窗户地透光面积最大?最大面积是多少?引导学生分析,板书解题过程。
变式(即课本例1):现在用长为8米地铝合金条制成如图所示地窗框(把矩形地窗框改为上部分是由4个全等扇形组成地半圆,下部分是矩形),那么如何设计使窗框地透光面积最大?(结果精确到0.01米)练习:课本作业题第4题四、知识整理,形成系统这节课学习了用什么知识解决哪类问题?解决问题地一般步骤是什么?应注意哪些问题?学到了哪些思考问题地方法?五、布置作业:作业本4。
二次函数的应用【教学内容】二次函数的应用(一)【教学目标】知识与技能掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.过程与方法学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题情感、态度与价值观在探究活动中,体验二次函数知识在实际生活中的应用。
【教学重难点】重点:本节的重点是应用二次函数解决图形有关的最值问题,准确把握条件列出二次函数表达式,并根据限制条件或二次函数顶点式求出最大(或最小)值。
难点:由图中找到二次函数表达式是本节的难点,它常用的有三角形相似,对应线段成比例,面积公式等,应用这些等式往往可以找到二次函数的表达式.【导学过程】【知识回顾】确定下列二次函数的对称轴和顶点坐标:⑴y=3x2一6x +7 ⑵ y=-2 x2一12x +8【情景导入】把二次函数表达式化为顶点式后,可以求出函数的最大(或最小)值。
下面我们来看它在实际生活中的应用吧!【新知探究】探究一、例1、如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.(1).设矩形的一边AB=xcm,那么AD边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?探究二、结合例1中应用的相似形知识列出二次函数表达式,并求出最大(最小)值。
1、如图⑴,在Rt△ABC中,AC=3cm,BC=4cm,四边形CFDE为矩形,其中CF、CE在两直角边上,设矩形的一边CF=xcm.当x取何值时,矩形ECFD的面积最大?最大是多少?2、如图⑵,在Rt△ABC中,作一个长方形DEGF,其中FG边在斜边上,AC=3cm,BC=4cm,那么长方形DEGF的面积最大是多少?3、如图⑶,已知△ABC,矩形GDEF的DE边在BC边上.G、F分别在AB、AC边上,BC=5cm,S△ABC为30cm2,AH为△ABC在BC边上的高,求△ABC的内接长方形的最大面积.探究三:例2、某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?变式练习:某建筑物窗户如图所示,它的上半部是半圆,下半部是矩形.制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户透过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?【知识梳理】本节课我们学习如何列出二次函数表达式,并根据条件求出函数最大(或最小)值。
北师大版九年级数学下册:2.4《二次函数的应用》教案一. 教材分析北师大版九年级数学下册第2.4节《二次函数的应用》主要介绍了二次函数在实际生活中的应用,包括二次函数图像的识别和利用二次函数解决实际问题。
这部分内容是学生在学习了二次函数的性质和图像后,对二次函数知识的进一步拓展,使学生能够将所学知识应用到实际生活中,提高解决实际问题的能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识和图像,对二次函数有一定的理解。
但学生在解决实际问题时,可能会对将理论知识和实际问题相结合感到困难。
因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解二次函数在实际生活中的应用;2.学会利用二次函数解决实际问题;3.提高学生的数学应用能力。
四. 教学重难点1.二次函数在实际生活中的应用;2.利用二次函数解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生思考;通过案例分析,使学生理解二次函数在实际生活中的应用;通过小组合作,让学生在讨论中解决问题,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的案例和问题;2.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)通过一个实际问题引出二次函数的应用,例如:一个农场计划种植两种作物,种植面积为固定的10亩。
如果种植苹果树,每亩收益为2000元;如果种植梨树,每亩收益为3000元。
请问如何分配种植苹果树和梨树的面积,才能使总收益最大?2.呈现(10分钟)呈现教材中的案例,让学生了解二次函数在实际生活中的应用。
例如,教材中有一个关于抛物线形跳板的问题,通过二次函数来求解跳板的长度。
3.操练(10分钟)让学生根据教材中的案例,尝试解决实际问题。
例如,教材中有一个关于二次函数图像的问题,让学生根据图像信息,求解相关参数。
4.巩固(10分钟)通过小组合作,让学生解决一些实际问题。
北师大版九年级数学下册:2.4《二次函数的应用》说课稿1一. 教材分析北师大版九年级数学下册2.4《二次函数的应用》这一节主要介绍了二次函数在实际生活中的应用。
教材通过具体案例,让学生了解二次函数在解决实际问题中的重要性,培养学生的数学应用意识。
内容主要包括:二次函数图像与实际问题相结合,利用二次函数解决最值问题,以及利用二次函数解决生活中的其他问题。
二. 学情分析九年级的学生已经学习了二次函数的基本概念、图像和性质,对二次函数有了初步的认识。
但学生在解决实际问题中的应用能力还有待提高。
因此,在教学过程中,教师要注重引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。
三. 说教学目标1.知识与技能:使学生掌握二次函数在实际问题中的应用,学会利用二次函数解决最值问题和生活中的其他问题。
2.过程与方法:通过案例分析,培养学生将数学知识应用于实际问题的能力,提高学生的数学素养。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新意识和实践能力。
四. 说教学重难点1.教学重点:二次函数在实际问题中的应用,如何利用二次函数解决最值问题和生活中的其他问题。
2.教学难点:如何引导学生将二次函数与实际问题相结合,提高学生的数学应用能力。
五. 说教学方法与手段1.教学方法:采用案例分析法、问题驱动法、合作学习法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、教学道具等辅助教学,提高课堂教学效果。
六. 说教学过程1.导入新课:通过一个生活中的实际问题,引发学生对二次函数应用的兴趣。
2.案例分析:选取几个典型的实际问题,引导学生运用二次函数进行分析,探讨解决方法。
3.方法提炼:总结二次函数在实际问题中的应用规律,引导学生学会解决类似问题。
4.实践环节:让学生分组讨论,选取自己感兴趣的实际问题,运用二次函数进行解决。
5.成果展示:各小组汇报自己的研究成果,其他小组进行评价、交流。
6.总结提升:对本节课的内容进行总结,强调二次函数在实际问题中的应用价值。
2024北师大版数学九年级下册2.4.1《二次函数的应用》教案1一. 教材分析《二次函数的应用》是北师大版数学九年级下册第2章第4节的内容,本节课主要让学生了解二次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
教材通过生活中的实例,引导学生认识二次函数的图像和性质,进而解决一些实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了二次函数的图像和性质,能够熟练地求解二次方程。
但将二次函数应用于实际问题中,解决生活中的问题,对学生来说还较为陌生。
因此,在教学过程中,教师需要通过生动的实例,引导学生将理论知识与实际问题相结合,提高学生解决实际问题的能力。
三. 教学目标1.让学生了解二次函数在实际生活中的应用,培养学生的数学应用意识。
2.引导学生运用二次函数的知识解决实际问题,提高学生的数学素养。
3.通过对实际问题的探讨,培养学生合作交流、解决问题的能力。
四. 教学重难点1.重点:二次函数在实际生活中的应用。
2.难点:如何将实际问题转化为二次函数模型,并运用二次函数的知识解决。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生了解二次函数的应用。
2.问题驱动法:提出实际问题,激发学生探究兴趣,引导学生主动解决问题。
3.合作交流法:鼓励学生分组讨论,共同探讨问题的解决方法。
六. 教学准备1.准备相关的实际问题,如购物、面积、高度等问题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备教案和教学课件。
七. 教学过程1.导入(5分钟)利用生活中的实例,如购物时发现商品打折,引导学生思考如何利用二次函数解决实际问题。
2.呈现(10分钟)呈现一系列实际问题,如购物、面积、高度等问题,让学生尝试运用二次函数的知识解决。
3.操练(10分钟)学生分组讨论,共同探讨问题的解决方法。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对每组问题,选取代表性的解法进行讲解,巩固学生对二次函数应用的理解。
北师大版九年级数学下册:2.4《二次函数的应用——何时利润最大》教案一. 教材分析《二次函数的应用——何时利润最大》这一节内容,主要让学生了解二次函数在实际生活中的应用,学会利用二次函数解决实际问题。
通过本节课的学习,学生能够掌握二次函数在利润最大化问题中的应用,提高他们运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。
但是,将二次函数应用于实际问题中,求解利润最大值,可能对学生来说较为复杂。
因此,在教学过程中,教师需要引导学生将实际问题转化为数学问题,利用已学的二次函数知识进行求解。
三. 教学目标1.让学生了解二次函数在实际生活中的应用,体会数学与生活的紧密联系。
2.培养学生运用二次函数解决实际问题的能力。
3.提高学生分析问题、解决问题的能力。
四. 教学重难点1.重点:二次函数在实际问题中的应用,求解利润最大值。
2.难点:将实际问题转化为数学问题,利用二次函数求解利润最大值。
五. 教学方法1.情境教学法:通过生活实例,引导学生感受二次函数在实际问题中的应用。
2.启发式教学法:引导学生主动思考,分析问题,解决问题。
3.小组合作学习:让学生在小组内讨论、交流,共同解决问题。
六. 教学准备1.教学课件:制作课件,展示二次函数在实际问题中的应用。
2.练习题:准备一些相关的练习题,让学生在课堂上进行操练。
七. 教学过程1.导入(5分钟)利用生活实例,如一家企业的利润与销售量之间的关系,引出二次函数在实际问题中的应用。
让学生感受数学与生活的紧密联系。
2.呈现(10分钟)呈现一个具体的利润最大化问题,如一家企业的利润与生产成本、销售价格之间的关系。
引导学生将实际问题转化为数学问题,列出二次函数的表达式。
3.操练(10分钟)让学生在小组内讨论、交流,共同解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成一些类似的练习题,巩固所学知识。
北师大版九年级数学下册:2.4《二次函数的应用》教学设计一. 教材分析《二次函数的应用》是北师大版九年级数学下册第2.4节的内容。
这部分内容主要介绍了二次函数在实际生活中的应用,通过具体实例使学生了解二次函数在实际问题中的重要性。
教材内容安排合理,由浅入深,环环相扣,有利于学生掌握二次函数的应用方法。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。
但将二次函数应用于实际问题中,解决实际问题,对学生来说还是一个新的领域。
因此,在教学过程中,要注重引导学生将理论知识与实际问题相结合,提高学生解决实际问题的能力。
三. 教学目标1.知识与技能:使学生掌握二次函数在实际问题中的应用方法,能够将二次函数知识应用于解决实际问题。
2.过程与方法:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极向上的学习态度。
四. 教学重难点1.重点:二次函数在实际问题中的应用方法。
2.难点:如何将实际问题转化为二次函数模型,并求解。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置实际问题,引导学生主动探究,合作解决问题,提高学生运用二次函数解决实际问题的能力。
六. 教学准备1.准备相关的实际问题,如生产成本问题、最大利润问题等。
2.准备多媒体教学设备,如投影仪、计算机等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如抛物线形的物体运动、生产成本问题等,引导学生思考这些问题与二次函数的关系。
2.呈现(10分钟)呈现一个具体的实际问题,如最大利润问题,引导学生将其转化为二次函数模型。
讲解如何根据实际问题设定二次函数的参数,并求解。
3.操练(10分钟)学生分组讨论,每组选取一个实际问题,尝试将其转化为二次函数模型,并求解。
教师巡回指导,解答学生遇到的问题。
4.巩固(10分钟)选取几组学生的解题结果,进行讲解和分析,总结解决实际问题的方法和技巧。
北师大版九年级数学下册:2.4《二次函数的应用》教学设计1一. 教材分析《二次函数的应用》是北师大版九年级数学下册第2章“函数、方程与不等式”的第4节内容。
本节课的主要内容是让学生掌握二次函数在实际生活中的应用,学会用二次函数解决实际问题。
教材通过丰富的例题和练习题,帮助学生理解和掌握二次函数的应用。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。
但学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数问题。
因此,在教学过程中,教师需要引导学生将实际问题与二次函数联系起来,提高学生的数学应用能力。
三. 教学目标1.知识与技能:使学生掌握二次函数在实际生活中的应用,学会用二次函数解决实际问题。
2.过程与方法:通过解决实际问题,培养学生将现实问题转化为数学问题的能力,提高学生的数学建模能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学思维,使学生感受到数学在生活中的重要性。
四. 教学重难点1.重点:二次函数在实际生活中的应用。
2.难点:如何将实际问题转化为二次函数问题,以及如何利用二次函数解决实际问题。
五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握二次函数的应用。
同时,运用讨论法、案例分析法等教学方法,提高学生的参与度和积极性。
六. 教学准备1.教材:《北师大版九年级数学下册》。
2.教学课件:根据教学内容制作的课件。
3.练习题:针对本节课内容设计的练习题。
4.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用生活中的实际问题,如抛物线形的跳板,引导学生思考如何用数学模型来描述这个问题。
让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(15分钟)呈现教材中的例题,讲解二次函数在实际生活中的应用。
通过例题,让学生了解如何将实际问题转化为二次函数问题,以及如何利用二次函数解决实际问题。
课题:2.4.1二次函数的应用教学目标:1.经历探究矩形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值.3. 积极参加数学活动,发展解决问题的能力,体会数学的应用价值,从而增强数学学习信心,体验成功的乐趣.教学重点与难点:重点:分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.难点:利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.教学过程:一、创设情境,引出问题如图,在一个直角三角形的内部作一个长方形ABCD,其中AB和AD 分别在两直角边上.(1)设长方形的一边AB=x m,那么AD边的长度如何表示?(2)设长方形的面积为y m2,当x取何值时,y的值最大?最大值是多少?处理方式:以问题串的形式引导学生思考,让学生思考并回答以上问题,在集体交流时,对于学生给出的正确答案给予肯定,不足之处给予纠正.(1)要求AD边的长度,即求BC边的长度,而BC是△EBC中的一边,因此可以用三角形相似求出BC.由△EBC∽△EAF,得EB BCEA AF=即404030x BC-=.所以AD=BC=34(40-x).(2)要求面积y的最大值,即求函数y=AB·AD=x·34(40-x)的最大值,就转化为数学问题了.要求学生讨论写出步骤.(1)∵BC∥AD,∴△EBC∽△EAF.∴EB BC EA AF=.又AB=x,BE=40-x,∴404030x BC-=.∴BC =34(40-x). ∴AD =BC =34(40-x)=30-34x . (2)y =AB ·AD =x(30-34x)=-34x 2+30x =-34(x 2-40x +400-400) =-34(x 2-40x +400)+300 =-34(x -20)2+300. 当x =20时,y 最大=300.即当x 取20m 时,y 的值最大,最大值是300m 2.设计意图:通过师生分析交流,让学生经历用含x 的代数式表示矩形的另一边,变三个变量为两个变量,为建立二次函数模型做好铺垫,也让学生体会数形结合时表示线段的重要意义.此问是解决整个实际问题的关键之处,也是难点所在,让学生在充分交流的基础上,回忆起运用三角形相似解决问题. 二、尝试成功,探究创新活动内容:如果我们将这个问题再进行变式:如图,在一个直角三角形的内部作一个矩形ABCD ,其中点A 和点D 分别在两直角边上,BC 在斜边上.(1)设矩形的一边BC=xm ,那么AB 边的长度如何表示? (2)设矩形的面积为y m 2,当x 取何值,y 的最大值是多少?处理方式:以问题串的形式引导学生思考,让学生思考并回答以上问题,在集体交流时,对于学生给出的正确答案给予肯定,不足之处给予纠正设计意图:有了前面两题作基础,这个问题可以留给学生课下自己解决,作为练习.解决问题的基本思路一样,只是用到了对应高之比等于相似比,这是此题的难点,本题既加深了旧知的复习应用,又在比较中总结表示线段的多种方法,让学生体会到类比解题,又在同中找异.三、例题讲解,学以致用窗户是一幢建筑最重要的标志之一,我们每个人的家里都有窗户,我们小时候还经常爬在窗户前数星星,下面我们来看一个和窗户有关的问题:40m30mD NOABCM某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m .当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?处理方式:x 为半圆的半径,也是矩形的较长边,因此x 与半圆面积和矩形面积都有关系.要求透过窗户的光线最多,也就是求矩形和半圆的面积之和最大,即2xy +2πx 2最大,而由于4y +4x +3x +πx=7x +4y +πx=15,所以y =1574x x π--.面积S =12πx 2+2xy =12πx 2+2x ·1574x x π--=12πx 2+(157)2x x x π--=-3.5x 2+7.5x ,这时已经转化为数学问题即二次函数了,只要化为顶点式或代入顶点坐标公式中即可.解:∵7x +4y +πx=15, ∴y =1574x xπ--.设窗户的面积是S(m 2),则 S =12πx 2+2xy =12πx 2+2x ·1574x x π-- =12πx 2+(157)2x x x π-- =-3.5x 2+7.5x =-3.5(x 2-157x) =-3.5(x -1514)2+1575392. ∴当x =1514≈1.07时, S 最大=1575392≈4.02. 即当x ≈1.07m 时,S 最大≈4.02m 2,此时,窗户通过的光线最多.设计意图:把数学问题变式到实际生活问题,让学生运用数学知识到日常生活中,体会用数学的过程,由矩形面积变式到复合型面积,拓展了思维,以不变应万变,通过本题的训练让学生进一步体会利用二次函数解决最大面积问题的方法、过程.四、巩固提升 展示自我 活动内容:1. 用6米长的木料做成“目”字形的框架,设框架的宽为x 米,框架的面积为S 平方米,当x = 米时,S 最大?S 最大 = 平方米.B AD C GE F H 2.如图,矩形ABCD 中,AB = 3,BC = 1,点E 、F 、G 、H 分别在AB 、BC 、CD 、DA 上,设EB = BF = GD = DH = x ,则四边形EFGH 的最大面积为 .3.如图,△ABC 中,BC = 4 cm ,AC = 23cm ,∠C = 60°.在BC 边上有一动点P ,过P 作PD ∥AB 交AC 于点D ,问:点P 在何处时,△APD 的面积最大?最大面积是多少?处理方式:学先让学生思考,完成练习后,再用课件展示图例,并统计学生答题情况.学生根据答案进行纠错.设计意图:通过这三道题目对学生的掌握情况进行反馈,发现学生在解决这类问题是存在的不足之处,如果学生感觉到困难,可以进行小组讨论或者教师加以引导点拨.五、总结概括,整理知识本节课我们学习了用二次函数知识解决最大面积问题,增强了应用意识,获得了利用数学方法解决实际问题的经验,并进一步感受了数学模型思想和数学的应用价值.1.请你总结一下解决这类问题的基本思路及要注意的问题. 2.本节课,你最深的感受是什么?3.在这节课学习过程中,你还有什么疑问没有解决?处理方式:由学生进行课堂小结,要给学生充足的时间进行思考,得出结论后,再进行集体交流和课件展示.设计意图:通过复习,让学生学会把知识系统化,加深对知识的理解和掌握,同时,培养学生有条理的进行思考,以形成完整知识结构,培养归纳概括能力和语言表达能力.评价自己的学习表现,有利于学生看到自己的优点和不足,以及今后改正的方向,同时也有助于学习习惯的培养.六、达标测试,反馈纠正A 组:1.如图,在矩形ABCD 中,AB=m (m 是大于0的常数),BC=8,E 为线段BC 上的动点(不与B ,C 重合).连接DE ,作EF ⊥DE ,EF 与线段BA 交于点F ,设CE=x ,BF=y . (1)求y 关于x 的函数关系式.(2)若m=8,求x 为何值时,y 的值最大,最大值是多少?(3)若 要使△DEF 为等腰三角形,m 的值应为多少?BA PDC12y m第2题B组:2如图,阴平中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x,面积为y.(1)求y与x的函数关系式,并求出自变量x的取值范围.(2)生物园的面积能否达到210平方米?说明理由.处理方式:学生在学案上做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:分层设练,使学生知识、技能螺旋式的上升,也是一种思维与能力的训练.七、布置作业,落实目标课本习题P47第2题板书设计:中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6 B.8 C.14 D.16【答案】C【解析】根据根与系数的关系得到x1+x2=2,x1•x2=-5,再变形x12+x22得到(x1+x2)2-2x1•x2,然后利用代入计算即可.【详解】∵一元二次方程x2-2x-5=0的两根是x1、x2,∴x1+x2=2,x1•x2=-5,∴x12+x22=(x1+x2)2-2x1•x2=22-2×(-5)=1.故选C.【点睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-ba,x1•x2=ca.2.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D【答案】C【解析】试题解析:A、由监测点A监测P时,函数值y随t的增大先减少再增大.故选项A错误;B、由监测点B监测P时,函数值y随t的增大而增大,故选项B错误;C、由监测点C监测P时,函数值y随t的增大先减小再增大,然后再减小,选项C正确;D、由监测点D监测P时,函数值y随t的增大而减小,选项D错误.故选C.3.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)【答案】D【解析】设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.4.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;当x=1时,y<0,即a+b+c<0,则②错误;根据对称轴可得:-=-,则b=3a,根据a<0,b<0可得:a>b;则③正确;根据函数与x轴有两个交点可得:-4ac>0,则④正确.故选C.【点睛】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.5.下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查【答案】D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.由此,对各选项进行辨析即可.【详解】A 、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;B 、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;C 、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;D 、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确; 故选D . 【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( ) A .2 B .8C .﹣2D .﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx ,将点A (3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x ,将B (m ,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A . 考点:一次函数图象上点的坐标特征. 7.一、单选题如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .125【答案】B【解析】根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理即可求得CE 2+CF 2=EF 2,进而可求出CE 2+CF 2的值.【详解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=12∠ACB,∠ACF=12∠ACD,即∠ECF=12(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=1.故选:B.【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.8.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°【答案】B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,9.下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个【答案】D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形; 故选D .10.如图,AB 是⊙O 的直径,点E 为BC 的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( )A .1B .32C .3D .23【答案】C【解析】连接AE ,OD ,OE .∵AB 是直径, ∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°. ∵OA=OD .∴△AOD 是等边三角形.∴∠A=60°. 又∵点E 为BC 的中点,∠AED=90°,∴AB=AC . ∴△ABC 是等边三角形,∴△EDC 是等边三角形,且边长是△ABC 边长的一半23∴∠BOE=∠EOD=60°,∴BE 和弦BE 围成的部分的面积=DE 和弦DE 围成的部分的面积. ∴阴影部分的面积=EDC 1S =23=32∆⋅C . 二、填空题(本题包括8个小题)11.已知二次函数21y ax bx c =++与一次函数()20y kx m k =+≠的图象相交于点()2,4A -,()8,2.B 如图所示,则能使12y y >成立的x 的取值范围是______.【答案】x<-2或x>1【解析】试题分析:根据函数图象可得:当12y y 时,x <-2或x >1.考点:函数图象的性质 12.已知xy=3,那么y x x y x y______ . 【答案】±3 【解析】分析:先化简,再分同正或同负两种情况作答.详解:因为xy=3,所以x 、y 同号,于是原式=22xy xy x y x y x yxy xy x y当x>0,y>0时,原式xy xy 3当x<0,y<0时,原式=(xy xy -3故原式=±3点睛:本题考查的是二次根式的化简求值,能够正确的判断出化简过程中被开方数底数的符号是解答此题的关键.13.因式分解:3a 2-6a+3=________.【答案】3(a -1)2【解析】先提公因式,再套用完全平方公式.【详解】解:3a 2-6a+3=3(a 2-2a+1)=3(a-1)2.【点睛】考点:提公因式法与公式法的综合运用.14.已知x=2是一元二次方程x 2﹣2mx+4=0的一个解, 则m 的值为 .【答案】1.【解析】试题分析:直接把x=1代入已知方程就得到关于m 的方程,再解此方程即可.试题解析:∵x=1是一元二次方程x 1-1mx+4=0的一个解,∴4-4m+4=0,∴m=1.考点:一元二次方程的解.15.如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,∠A=22.5°,OC=4,CD 的长为________.【答案】42 【解析】试题分析:因为OC=OA ,所以∠ACO=22.5A ∠=︒,所以∠AOC=45°,又直径AB 垂直于弦CD ,4OC =,所以CE=22,所以CD=2CE=42.考点:1.解直角三角形、2.垂径定理.16.当x = __________时,二次函数226y x x =-+ 有最小值___________.【答案】1 5【解析】二次函数配方,得:2(1)5y x =-+,所以,当x =1时,y 有最小值5,故答案为1,5.17.如图,CE 是▱ABCD 的边AB 的垂直平分线,垂足为点O ,CE 与DA 的延长线交于点E .连接AC ,BE ,DO ,DO 与AC 交于点F ,则下列结论:①四边形ACBE 是菱形;②∠ACD =∠BAE ;③AF :BE =2:1;④S 四边形AFOE :S △COD =2:1.其中正确的结论有_____.(填写所有正确结论的序号)【答案】①②④.【解析】根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可. 【详解】∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵EC垂直平分AB,∴OA=OB=12AB=12DC,CD⊥CE,∵OA∥DC,∴EA EO OAED EC CD===12,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四边形ACBE是平行四边形,∵AB⊥EC,∴四边形ACBE是菱形,故①正确,∵∠DCE=90°,DA=AE,∴AC=AD=AE,∴∠ACD=∠ADC=∠BAE,故②正确,∵OA∥CD,∴AF OA1 CF CD2==,∴AF AF1AC BE3==,故③错误,设△AOF的面积为a,则△OFC的面积为2a,△CDF的面积为4a,△AOC的面积=△AOE的面积=1a,∴四边形AFOE的面积为4a,△ODC的面积为6a∴S四边形AFOE:S△COD=2:1.故④正确.故答案是:①②④.【点睛】此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.18.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n 次的运算结果是____________(用含字母x 和n 的代数式表示). 【答案】2(21)1n n x x -+ 【解析】试题分析:根据题意得121x y x =+;2431x y x =+;3871x y x =+;根据以上规律可得:n y =2(21)1n n x x -+. 考点:规律题.三、解答题(本题包括8个小题)19.在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC (顶点是网格线交点的三角形)的顶点A 、C 的坐标分别是(-4,6)、(-1,4);请在图中的网格平面内建立平面直角坐标系;请画出△ABC关于x 轴对称的△A 1B 1C 1;请在y 轴上求作一点P ,使△PB 1C 的周长最小,并直接写出点P 的坐标.【答案】(1)(2)见解析;(3)P (0,2).【解析】分析:(1)根据A ,C 两点的坐标即可建立平面直角坐标系.(2)分别作各点关于x 轴的对称点,依次连接即可.(3)作点C 关于y 轴的对称点C′,连接B 1C′交y 轴于点P ,即为所求.详解:(1)(2)如图所示:(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,则点P即为所求.设直线B1C′的解析式为y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴224k bk b-+=-⎧⎨+=⎩,解得:22kb=⎧⎨=⎩,∴直线AB2的解析式为:y=2x+2,∴当x=0时,y=2,∴P(0,2).点睛:本题主要考查轴对称图形的绘制和轴对称的应用.20.如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.求证:△ADE≌△BFE;若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.【答案】(1)见解析;(1)见解析.【解析】(1)由全等三角形的判定定理AAS证得结论.(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.【详解】解:(1)证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF.∴∠1=∠1.∵点E是AB边的中点,∴AE=BE,∵在△ADE与△BFE中,12DEA FEB AE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如图,连接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.21.给定关于x的二次函数y=kx2﹣4kx+3(k≠0),当该二次函数与x轴只有一个公共点时,求k的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:①与y轴的交点不变;②对称轴不变;③一定经过两个定点;请判断以上结论是否正确,并说明理由.【答案】(1)32(2)1(3)①②③【解析】(1)由抛物线与x轴只有一个交点,可知△=0;(2)由抛物线与x轴有两个交点且AB=2,可知A、B坐标,代入解析式,可得k值;(3)通过解析式求出对称轴,与y轴交点,并根据系数的关系得出判断.【详解】(1)∵二次函数y=kx2﹣4kx+3与x轴只有一个公共点,∴关于x的方程kx2﹣4kx+3=0有两个相等的实数根,∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,解得:k1=0,k2=32,k≠0,∴k=32;(2)∵AB=2,抛物线对称轴为x=2,∴A、B点坐标为(1,0),(3,0),将(1,0)代入解析式,可得k=1,(3)①∵当x=0时,y=3,∴二次函数图象与y轴的交点为(0,3),①正确;②∵抛物线的对称轴为x=2,∴抛物线的对称轴不变,②正确;③二次函数y=kx2﹣4kx+3=k(x2﹣4x)+3,将其看成y关于k的一次函数,令k的系数为0,即x2﹣4x=0,解得:x1=0,x2=4,∴抛物线一定经过两个定点(0,3)和(4,3),③正确.综上可知:正确的结论有①②③.【点睛】本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题.22.如图,两座建筑物的水平距离BC为60m.从C点测得A点的仰角α为53° ,从A点测得D点的俯角β为37° ,求两座建筑物的高度(参考数据:34334 37,3737, 53453?35) 55453 sin cos tan sin cos tan ≈≈≈≈≈≈,,,【答案】建筑物AB 的高度为80m .建筑物CD 的高度为35m .【解析】分析:过点D 作DE ⊥AB 于于E ,则DE=BC=60m .在Rt △ABC 中,求出AB .在Rt △ADE 中求出AE 即可解决问题.详解:过点D 作DE ⊥AB 于于E ,则DE=BC=60m ,在Rt △ABC 中,tan53°=60AB AB BC ∴,=43,∴AB=80(m ). 在Rt △ADE 中,tan37°=34AE DE ∴,=60AE ,∴AE=45(m ), ∴BE=CD=AB ﹣AE=35(m ).答:两座建筑物的高度分别为80m 和35m .点睛:本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.如图,一次函数y =kx+b 与反比例函数y =6x(x >0)的图象交于A (m ,6), B (3,n )两点.求一次函数关系式;根据图象直接写出kx+b ﹣6x >0的x 的取值范围;求△AOB 的面积.【答案】(1)y =-2x +1 ;(2)1<x <2 ;(2)△AOB 的面积为1 .【解析】试题分析:(1)首先根据A (m ,6),B (2,n )两点在反比例函数y=6x(x >0)的图象上,求出m ,n 的值各是多少;然后求出一次函数的解析式,再根据一元二次不等式的求法,求出x 的取值范围即可.(2)由-2x+1-6x<0,求出x的取值范围即可.(2)首先分别求出C点、D点的坐标的坐标各是多少;然后根据三角形的面积的求法,求出△AOB的面积是多少即可.试题解析:(1)∵A(m,6),B(2,n)两点在反比例函数y=6x(x>0)的图象上,∴6=6m,63n=,解得m=1,n=2,∴A(1,6),B(2,2),∵A(1,6),B(2,2)在一次函数y=kx+b的图象上,∴6{32 k bk b++==,解得2 {8kb-==,∴y=-2x+1.(2)由-2x+1-6x<0,解得0<x<1或x>2.(2)当x=0时,y=-2×0+1=1,∴C点的坐标是(0,1);当y=0时,0=-2x+1,解得x=4,∴D点的坐标是(4,0);∴S△AOB=12×4×1-12×1×1-12×4×2=16-4-4=1.24.如图,AB为⊙O的直径,点E在⊙O,C为弧BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.试判断直线CD与⊙O的位置关系,并说明理由若AD=2,O的半径.【答案】(1)直线CD 与⊙O 相切;(2)⊙O 的半径为1.1.【解析】(1)相切,连接OC ,∵C 为BE 的中点,∴∠1=∠2,∵OA=OC ,∴∠1=∠ACO ,∴∠2=∠ACO ,∴AD ∥OC ,∵CD ⊥AD ,∴OC ⊥CD ,∴直线CD 与⊙O 相切;(2)连接CE ,∵AD=2,AC=6,∵∠ADC=90°,∴CD=22AC AD -=2,∵CD 是⊙O 的切线,∴2CD =AD•DE ,∴DE=1,∴CE=22CD DE +=3,∵C 为BE 的中点,∴BC=CE=3,∵AB 为⊙O 的直径,∴∠ACB=90°,∴AB=22AC BC +=2.∴半径为1.125.两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA 在x 轴上,已知∠COD=∠OAB=90°,OC=2,反比例函数y=k x 的图象经过点B .求k 的值.把△OCD 沿射线OB 移动,当点D 落在y=k x图象上时,求点D 经过的路径长.【答案】(1)k=2;(2)点D 6【解析】(1)根据题意求得点B 的坐标,再代入k y x=求得k 值即可; (2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB ,过D′作D′E ⊥x 轴于点E ,交DC 于点F ,设CD 交y 轴于点M (如图),根据已知条件可求得点D 的坐标为(﹣1,1),设D′横坐标为t ,则OE=MF=t ,即可得D′(t ,t+2),由此可得t (t+2)=2,解方程求得t 值,利用勾股定理求得DD′的长,即可得点D经过的路径长.【详解】(1)∵△AOB和△COD为全等三的等腰直角三角形,OC=2,∴AB=OA=OC=OD=2,∴点B坐标为(2,2),代入kyx=得k=2;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,∵2AOB=∠COM=45°,∴OM=MC=MD=1,∴D坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,∴D′F=DF=t+1,∴D′E=D′F+EF=t+2,∴D′(t,t+2),∵D′在反比例函数图象上,∴t(t+2)=2,解得31或t=31(舍去),∴D′31,3+1),∴22(311)(311)6-+++-=,即点D6【点睛】本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.26.如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D 处,在D 处测得点A 的仰角为45°,求建筑物AB 的高度.【答案】(3【解析】解:设建筑物AB 的高度为x 米在Rt △ABD 中,∠ADB=45°∴AB=DB=x∴BC=DB+CD= x+60在Rt △ABC 中,∠ACB=30°,∴tan ∠ACB=ABCB ∴tan 3060xx ︒=+ 360xx =+∴x=30+30∴建筑物AB 的高度为(30+30)米中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.33B.55C.233D.255【答案】D【解析】过B点作BD⊥AC,如图,由勾股定理得,AB=221310+=,AD=222222+=,cosA=ADAB=2210=255,故选D.2.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x-1)=1035 C.12x(x+1)=1035 D.12x(x-1)=1035【答案】B【解析】试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.∵全班有x名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x(x-1)=1.故选B考点:由实际问题抽象出一元二次方程.3.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t<B.t>C.t≤D.t≥【答案】B【解析】将一次函数解析式代入到反比例函数解析式中,整理得出x2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解.【详解】由题意可得:﹣x+2=,所以x2﹣2x+1﹣6t=0,∵两函数图象有两个交点,且两交点横坐标的积为负数,∴解不等式组,得t>.故选:B.点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.4.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=42,则△CEF的面积是()A.22B.2C.32D.42【答案】A【解析】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=42,∴AG=22AB BG-=2,∴AE=2AG=4;∴S△ABE=12AE•BG=1442822⨯⨯=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=14S△ABE=22.故选A.【点睛】本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.5.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)【答案】A【解析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.6.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定【答案】D【解析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【点睛】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1③<<为随机事件.7.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以。
第二章二次函数
2.4 二次函数的应用(1)
一、知识点
1.利用二次函数求几何图形面积最大值的基本思路.
2.求几何图形面积的常见方法.
二、教学目标
知识与技能:
能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值.
过程与方法:
1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力.
2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力.
情感与态度:
1.经历探究长方形和窗户透光最大面积问题的过程,获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.
2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格.
3.进一步体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力.
三、重点与难点
重点:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大面积问题.
难点:把实际问题转化成函数模型.
四、创设情境,引入新知(放幻灯片2、3、4)
1.(1)请用长20米的篱笆设计一个矩形的菜园.
(2)怎样设计才能使矩形菜园的面积最大?
设计意图:通过学生所熟悉的图形,引入新课,使学生初步了解解决最大面积问题的一般思路.
2.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的
宽AB为x米,面积为S平方米.
(1)求S与x的函数关系式及自变量的取值范围;
(2)当x取何值时所围成的花圃面积最大,最大值是多少?
(3)若墙的最大可用长度为8米,求围成花圃的最大面积 .
设计意图:在上一个问题的基础上对问题情境进行变化,增大难度,同时板书解题过程,让学生明确规范的书写过程.
五、探究新知(放幻灯片5、6、7)
探究一:如图,在一个直角三角形的内部画一个矩形ABCD ,其中AB 和AD 分别在两直角边上,AN=40m ,AM=30m.
(1)设矩形的一边AB=x m,那么AD 边的长度如何表示? (2)设矩形的面积为2ym ,当x 取何值时,y 的最大值是多少?
探究二:在上一个问题中,如果把矩形改为如图所示的位置,其顶点A 和点D 分别在两直角边上,BC 在斜边上.其它条件不变,那么矩形的最大面积是多少?
探究三:如图,已知△ABC 是一等腰三角形铁板余料,AB=AC=20cm, BC=24cm.若在△ABC 上截出一矩形零件DEFG,使得EF 在BC 上,点D 、G 分别在边AB 、AC 上.问矩形DEFG 的最大面积是多少?
设计意图:通过由学生讨论怎样用直角三角形剪出一个最大面积的矩形入手,由学生动手画出两种方法,和同学一起从问题中抽象出二次函数的模型,并求其最值,同时通过两种情况的分析,训练学生的发散思维能力,关键是教会学生方法,也是这类问题的难点所在,即怎样设未知数,怎样转化为我们熟悉的数学问题.在此基础上对变式三进行探究,进而总结此类题型,得出解决问题的一般方法.
M N
D
C
B
A
P
M
N
D C
B
A
F
G
E D
C
B
A
六、例题讲解(放幻灯片8、9)
某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m.
(1)用含x的代数式表示;
(2)当x等于多少时,窗户通过的光线最多? (结果精确到0.01m)此时,窗户的面积是多少? (结果精确到0.01m2)
归纳总结:二次函数应用的思路
设计意图:让学生进一步经历解决最值问题的过程,明确解决这类问题的一般步骤.
七、课堂练习
八、课堂小结(放幻灯片10)
九、课后作业。