膜分离技术
- 格式:doc
- 大小:25.50 KB
- 文档页数:1
膜分离技术膜分离技术是一种用于分离混合物的重要技术手段,广泛应用于饮用水处理、废水处理、生物制药等领域。
本文将对膜分离技术的原理、应用和发展进行详细介绍。
一、膜分离技术的原理膜分离技术利用选择性透过性的膜将混合物分离成两个或多个组分。
膜的选择性透过性是通过材料的物理和化学性质以及膜表面的特性来实现的。
常用的膜材料包括有机膜和无机膜。
1. 有机膜有机膜是以有机高分子材料为基础制成的膜,常见的有机膜包括聚醚酯膜、聚丙烯膜和聚乙烯膜等。
这些有机膜具有较好的弹性和韧性,适用于分离溶液中的有机物、溶剂或气体。
2. 无机膜无机膜是由陶瓷、金属等无机材料制成的膜,具有良好的化学稳定性和耐高温性。
无机膜适用于分离溶液中的无机盐、重金属离子以及高温下的气体分离。
膜分离技术的原理包括压力驱动、浓度差驱动和电场驱动等。
其中,压力驱动是最常用的膜分离方式。
通过施加压力,使溶液在膜上形成一定的压差,从而使溶质通过膜的选择性孔隙进入膜的另一侧,而溶剂则随之透过膜。
通过调节压力大小可以实现对溶质的分离。
二、膜分离技术的应用膜分离技术具有广泛的应用领域,如下列举几个常见的应用。
1. 饮用水处理膜分离技术可以有效地去除水中的悬浮物、细菌、病毒等有害物质,提高水的品质,保障人们的健康。
常见的饮用水处理工艺包括超滤、纳滤和反渗透等。
2. 废水处理膜分离技术可以将废水中的有机物、重金属离子、油脂等有害物质与水分离,使废水得到净化和回收利用。
废水处理中常采用的膜分离工艺有微滤、超滤和纳滤等。
3. 生物制药膜分离技术可以实现生物制药过程中的精细分离和纯化。
例如,在细胞培养过程中,可以通过膜分离技术将细胞和培养液分离,提取目标产物,保证产品的纯度和品质。
4. 气体分离膜分离技术在气体分离中也具有重要应用。
例如,可以利用膜分离技术将混合气体中的氮气与氧气分离,达到制取高纯度氧气的目的。
三、膜分离技术的发展随着科学技术的不断进步,膜分离技术也在不断发展和完善。
膜分离技术简介膜分离技术是一种通过膜进行物质分离和纯化的技术。
它广泛应用于制备纯化工业和生物制药中,其原理是利用特定的膜,通过选择性透过、排除或吸附的方式将混合物中的目标物质与其他组分分离开来。
膜分离技术具有高效、节能、环保等优点,因此在各个领域得到了广泛应用,并成为一个重要的物质分离技术。
原理膜分离技术的基本原理是利用膜的选择性透过性来实现分离。
根据分离机制的不同,膜分离技术可以分为几种不同的类型,包括微滤、超滤、纳滤、反渗透和气体分离等。
每种类型的膜分离技术都有其特定的分离机制和应用范围。
•微滤:微滤膜具有较大的孔径,一般用于分离固体颗粒和大分子物质,如悬浮固体和细菌等。
•超滤:超滤膜的孔径较小,可以分离分子量较大的物质,如蛋白质和胶体等。
•纳滤:纳滤膜的孔径更小,可以分离分子量更小的物质,如盐和有机物等。
•反渗透:反渗透膜是一种半透膜,其孔径非常小,可以有效地分离溶质和溶剂。
这种技术常被用于海水淡化和废水处理等领域。
•气体分离:气体分离膜是一种特殊的膜,可以分离不同气体的混合物。
这种技术在天然气加工和二氧化碳捕获等领域有广泛应用。
应用膜分离技术在许多领域都有广泛的应用。
以下是其中几个应用领域的简要介绍:生物制药在生物制药中,膜分离技术被广泛用于分离和纯化蛋白质、细胞因子和其他生物分子。
通过使用超滤和纳滤等技术,可以将目标蛋白质从细胞培养液中分离出来,并去除其他杂质。
这种技术不仅能够提高产品纯度,还可以减少后续步骤的处理量,提高生产效率。
医药膜分离技术在医药领域有着广泛的应用。
例如,在血液透析和血液净化中,通过使用半透膜将废物和多余的物质从血液中分离出来,达到治疗和净化的目的。
此外,膜分离技术还可以用于药物传递系统中,通过控制药物在膜上的透过性实现持续释放和控制释放。
环境工程膜分离技术在环境工程中的应用也非常广泛。
例如,在水处理中,可以使用反渗透膜将盐和有机物等溶质从海水或废水中分离出来,实现水的淡化和净化。
膜分离技术膜分离技术是一种重要的分离技术,通过膜将混合物中不同分子大小、形状、电荷和极性等特性的物质分离出来。
它广泛应用于各种领域,如环境保护、医药制造、食品加工、化学工业和电子行业等。
本文将介绍膜分离技术的工作原理、分类和应用,并探讨其未来的发展前景。
一、膜分离技术的基本原理膜分离技术利用膜作为分离介质,将混合物分离成两个或更多的组分,其中其中至少有一种组分通过膜而另一种组分不直接通过。
根据膜分离的机制可以分为以下三种类型:1、压力驱动膜分离技术压力驱动膜分离技术是指通过施加压力将混合物推动到膜上,以实现分离的技术。
膜的孔径大小、膜的材质和压力差均会影响分离效果。
该技术主要包括超滤、逆渗透和微滤等。
超滤是指利用孔径大小在10-100纳米的超滤膜去除溶液中的高分子物质。
逆渗透是利用高压驱动水通过0.1纳米左右的逆渗透膜,将混合物中的水增量分离出来,这是制取纯水的主要技术之一。
微滤是利用孔径在0.1-10微米的微滤膜去除悬浮物、细菌和微生物等。
2、电力驱动膜分离技术电力驱动膜分离技术是利用电场将混合物推动到膜上,实现分离的技术。
例如电渗析技术是利用电场和离子之间的电荷作用,将含有离子的溶液通过电场驱动到离子交换膜中,使得原来溶液中的阴离子和阳离子在两侧集中,最终通过两个极板分别收集。
3、扩散驱动膜分离技术扩散驱动膜分离技术是指利用分子间的扩散速率的大小差异,将混合物中的混合物分离的技术。
例如气体分离、液体浓缩和溶液析出等。
二、膜分离技术的分类根据膜的性质和分离机制的不同,可以将膜分离技术分为以下几种类型:1、纳滤技术纳滤技术是利用孔径在10-100纳米的纳滤膜,将分子大小在10-100纳米之间的物质分离出来。
纳滤技术主要应用于制备高分子材料、微电子器件制造和水处理等领域中。
2、超滤技术超滤技术是利用孔径在0.01-0.1微米之间的超滤膜,将分子大小在1000道100万道之间的物质分离出来。
超滤技术主要应用于蛋白质提取、水处理、生物制品制备和废水处理等领域中。
膜分离技术
膜分离技术是一种工业分离技术,它采用膜作为储存屏障,通过使用渗透压差净化原料中的有机或无机多相混合物,可以有效地模糊、拆分和重组溶解物。
它可以被广泛应用于食品加工、生物制药、水处理、化学和石油等多个领域。
膜分离技术是利用膜分离系统把有机或无机质流通过不同宽度的膜。
通过对溶解物浓度、压力差、分子大小等变量进行调节来调节该系统,让它们沿一个特定的方向通过膜,使其中一种或多种化合物转移到另一边。
1. 水处理:膜分离技术可以用于净化水,使其去除有机污染物、含盐水和重金属污染物,同时可以调节水的性质,以满足各种生产和生活的需求。
2. 生物制药:膜分离技术可以用于从生物材料中提取蛋白质、核酸和活性成分,纯化有效成分,获取高品质的生物制剂。
3. 家用膜分离:家用膜分离器可以用来过滤家里供水系统,去除杂质,比如水垢、硬水、有机污染物等,得到净化后的清洁饮用水。
4. 食品加工:膜分离技术可以用来分离、纯化油脂物质,提取及重组营养素和香料,净化乳制品中的杂质,同时保留有益成分。
三、特点
1. 精度高:膜分离技术的精度比其他类型的分离和提取技术更高,可以有效地清除杂质,比如细菌、细菌毒素等;
2. 无毒无害:膜是一种完全无毒无害的材料,无论是清洗过程还是使用过程都不会对人体产生任何不良影响;
3. 成本低廉:膜分离技术的成本比其他类型的分离和提取技术更低;
4. 操作方便:膜分离技术的操作简单,在不影响其性能的情况下,可调节宽度和厚度以适应不同的分离需求。
总之,膜分离技术具有精度高、无毒无害、成本低廉、操作方便等诸多优点,因此,它会被广泛应用于食品加工、生物制药、水处理、化学和石油等多个领域。
常用的膜分离方法
常用的膜分离方法包括以下六种:
1. 微滤(Microfiltration,简称MF):微滤是一种以机械筛网为基础的膜分离技术,其孔径大小为0.1-10微米。
微滤适用于去除悬浮物、细菌、真菌、酵母等微生物,同时也可以用于分离和浓缩溶液中的大分子物质。
2. 超滤(Ultrafiltration,简称UF):超滤是一种以半透膜为基础的膜分离技术,其孔径大小为0.001-0.01微米。
超滤适用于分离和浓缩溶液中的小分子物质,如水、氨基酸、葡萄糖等。
3. 纳滤(Nanofiltration,简称NF):纳滤是一种以半透膜为基础的膜分离技术,其孔径大小为0.001-0.01微米。
纳滤适用于分离和浓缩溶液中的小分子物质,如水、氨基酸、葡萄糖等。
4. 反渗透(Reverse Osmosis,简称RO):反渗透是一种以高压为推动力的膜分离技术,其孔径大小为0.0001-0.001微米。
反渗透适用于分离和浓缩溶液中的小分子物质,如水、氨基酸、葡萄糖等。
5. 正渗透(Forward Osmosis,简称FO):正渗透是一种以渗透压差为推动力的膜分离技术,其半透膜具有高渗透性能。
正渗透适用于分离和浓缩溶液中的小分子物质,如水、
氨基酸、葡萄糖等。
6. 膜渗析(Permeation):膜渗析是一种以半透膜为基础的膜分离技术,其孔径大小为0.0001-0.001微米。
膜渗析适用于分离和浓缩溶液中的小分子物质,如水、氨基酸、葡萄糖等。
膜分离技术膜分离技术是一种新型高效、精密分离技术,它是材料科学与介质分离技术的交叉结合,具有高效分离、设备简单、节能、常温操作、无污染等优点,广泛应用于工业领域,尤其在食品、医药、生化领域发展迅猛。
据统计,膜销售每年以10%~20%的速度增长,而最大的市场为生物医药市场。
一膜分离技术1.1原理膜分离技术是一种使用半透膜的分离方法,在常温下以膜两侧压力差或电位差为动力,对溶质和溶剂进行分离、浓缩、纯化。
膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。
现已应用的有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等技术,其中在食品、药学工业中常用的有微滤、超滤和反渗透种。
1.2特点膜分离技术具有如下特点, (1)膜分离过程不发生相变化,因此膜分离技术是一种节能技术;2)膜分离过程是在压力驱动下,在常温下进行分离,特别适合于对热敏感物质,如酶、果汁、某些药品的分离、浓缩、精制等。
(3)膜分离技术适用分离的范围极广,从微粒级到微生物菌体,甚至离子级都有其用武之地,关键在于选择不同的膜类型;(4)膜分离技术以压力差作为驱动力,因此采用装置简单,操作方便。
1.3分类超滤的截留相对分子质量在1000~10000之间,选择某一截留相对分子质量的膜可以将杂质与目标产物分离。
超滤技术在生化产品分离中应用最早、最为成熟,已广泛应用于各种生物制品的分离、浓缩。
纳滤膜具有纳米级孔径,截留相对分子质量为200~1000,能使溶剂、有机小分子和无机盐通过。
纳滤可以采用两种方式提取抗生素,一是用溶剂萃取抗生素后,萃取液用纳滤浓缩,可改善操作环境;二是对未经萃取的抗生素发酵液进行纳滤浓缩,除去水和无机盐,再用萃取剂萃取,可减少萃取剂用量。
微滤是发展最早、制备技术最成熟的膜形式之一,孔径在0.05~10um 之间,可以将细菌、微粒、亚微粒、胶团等不溶物除去,滤液纯净,国际上通称为绝对过滤。
膜分离技术膜分离技术是一种通过特殊材料的筛选作用,将混合物中的不同成分分离出来的一种分离技术。
该技术广泛应用于化工、制药、食品、环保等领域。
本文将对膜分离技术进行详细介绍。
一、膜分离技术概述膜分离技术是一种物理分离方法,它是利用膜对混合物进行分离、浓缩、纯化等过程。
通过膜的选择性渗透,可以将溶液中的化合物隔离出来,从而达到分离的目的。
膜分离技术相对于传统的分离技术,具有分离效率高、分离速度快、操作简单等优点。
二、膜分离技术的分类根据膜的性质和材质不同,膜分离技术可以分为以下几种类型:1. 逆渗透膜分离技术逆渗透膜分离技术是指利用一种半透膜,使水分子和溶质分子在压力作用下分别通过膜,从而实现水和溶质的分离。
逆渗透膜具有高的选择性,可对不同分子大小的物质具有不同的分离效果。
逆渗透膜广泛应用于饮用水处理、海水淡化、食品加工、医药制品等领域。
2. 超滤膜分离技术超滤膜分离技术是指利用具有一定孔径大小的多孔膜,用于从混合物中分离出溶质粒子。
超滤膜的分离效果与分子的大小、形状、电荷等因素有关。
超滤膜分离技术广泛应用于制浆造纸、制药、食品、环境保护等领域。
3. 离子交换膜分离技术离子交换膜分离技术是指利用离子交换膜,可实现离子的去除、富集和分离。
离子交换膜具有良好的化学稳定性和热稳定性,可对不同离子具有不同的吸附效果。
离子交换膜分离技术广泛应用于制药、化学工业、电子行业等领域。
4. 气体分离膜分离技术气体分离膜分离技术是指利用膜的选择性,将混合气体中的组分分离出来。
气体分离膜主要用于气体纯化和分离。
该技术被广泛应用于石油化工、石油天然气、空气分离等领域。
三、膜分离技术的应用1. 工业应用膜分离技术在工业上应用广泛,主要应用于纯化、浓缩、分离等领域。
例如,在糖果制造中,膜分离技术可用于果汁的浓缩和分离;在制药过程中,膜分离技术可用于分离纯化药品;在化工生产中,膜分离技术可用于溶液的分离和浓缩等。
2. 环境保护膜分离技术在环境保护中也有广泛的应用,主要用于污水的处理和饮用水的净化。
膜分离技术膜分离技术是材料科学和过程工程科学等诸多学科交叉结合、相互渗透而产生的新领域,是当代新型高效的共性技术,特别适合于现代工业对节能、低品位原材料再利用和消除环境污染的需要,成为实现经济可持续发展战略的重要组成部分。
膜分离技术推广应用的覆盖面在一定程度上反映一个国家过程工业,能源利用和环境保护的水平。
膜分离技术以选择性透过膜为分离介质。
在常温下以膜两侧压力差或电位差为动力,对溶质和溶剂进行分离、浓缩、纯化。
膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。
现已应用的有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体膜分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等技术。
膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、萃取、沉淀、混凝和离子交换等)相比较,其过程大多为无相变化,可以在常温下操作,具有能耗低、效率高、工艺简单、投资小和污染轻等优点。
1.微滤(MF)Microfiltration,其特点:对称细孔高分子膜,孔径0.03~10 nm,滤除≥50 nm的颗粒,以压力差为分离驱动力,透过物质:水、溶剂和溶解物,被截留物质:悬浮物、细菌和微粒子。
2.超滤(UF)Ultrafiltration,其特点:非对称结构的多孔膜,孔径l~20 nm,滤除5~100 nm的颗粒,以压力差为分离驱动力,透过物质:溶剂、离子和小分子,被截留物质:蛋白质、各类酶、细菌和乳胶。
3.纳滤(NF)Nanofiltration,其特点:1 nm的微孔结构,滤除相对分子质量在200~2000,以压力差为分离驱动力,透过物质:水、溶剂、相对分子质量<200,被截留物质:溶质、二价盐、糖和染料 (相对分子质量200~1000)。
4.反渗透(RO)Reverse Osmosis,其特点:带皮层的不对称膜、复合膜(<l nm),用于水溶液中溶解性盐的脱除,以压力差为分离驱动力,透过物质:水、溶剂,被截留物质:无机盐、糖类、氨基酸和BOD。
膜分离技术概念膜分离技术是指在分子水平上不同粒径分子的混合物在通过半透膜时,实现选择性分离的技术,半透膜又称分离膜或滤膜,膜壁布满小孔,膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)、反渗透膜(RO)。
膜分离是在20世纪初出现,20世纪60年代后迅速崛起的一门分离新技术。
膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,膜技术在食品加工、海水淡化、纯水、超纯水制备、医药、生物、环保等领域得到了较大规模的开发和应用。
常用的膜分离过程微滤(MF)又称微孔过滤,它属于精密过滤,其基本原理是筛孔分离过程。
膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1~1微米,故微滤膜能对大直径的菌体、悬浮固体等进行分离。
可作为一般料液的澄清、保安过滤、空气除菌。
超滤(UF)是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1000um分子量之间。
超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,超滤过程通常可以理解成与膜孔径大小相关的筛分过程。
通常截留分子量范围在1000~300000,故超滤膜能对大分子有机物(如蛋白质、细菌)、胶体、悬浮固体等进行分离,广泛应用于料液的澄清、大分子有机物的分离纯化、除热源。
纳滤(NF)是介于超滤与反渗透之间的一种膜分离技术,其截留分子量在80~1000的范围内,孔径为几纳米,因此称纳滤。
截留分子量范围在100~1000,故纳滤膜能对小分子有机物等与水、无机盐进行分离,实现脱盐与浓缩的同时进行。
反渗透(RO)反渗透是膜分离技术的一个重要组成部分,因具有产水水质高、运行成本低、无污染、操作方便运行可靠等诸多优点,而成为海水和苦咸水淡化,以及纯水制备的最节能、最简便的技术。
目前已广泛应用于医药、电子、化工、食品、海水淡化等诸多行业。
反渗透技术已成为现代工业中首选的水处理技术。
膜分离技术膜分离技术是材料科学和过程工程科学等诸多学科交叉结合、相互渗透而产生的新领域,是当代新型高效的共性技术,特别适合于现代工业对节能、低品位原材料再利用和消除环境污染的需要,成为实现经济可持续发展战略的重要组成部分。
膜分离技术推广应用的覆盖面在一定程度上反映一个国家过程工业,能源利用和环境保护的水平。
膜分离技术以选择性透过膜为分离介质。
在常温下以膜两侧压力差或电位差为动力,对溶质和溶剂进行分离、浓缩、纯化。
膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。
现已应用的有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体膜分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等技术。
膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、萃取、沉淀、混凝和离子交换等)相比较,其过程大多为无相变化,可以在常温下操作,具有能耗低、效率高、工艺简单、投资小和污染轻等优点。
1.微滤(MF)Microfiltration,其特点:对称细孔高分子膜,孔径0.03~10 nm,滤除≥50nm的颗粒,以压力差为分离驱动力,透过物质:水、溶剂和溶解物,被截留物质:悬浮物、细菌和微粒子。
2.超滤(UF)Ultrafiltration,其特点:非对称结构的多孔膜,孔径l~20nm,滤除5~100nm的颗粒,以压力差为分离驱动力,透过物质:溶剂、离子和小分子,被截留物质:蛋白质、各类酶、细菌和乳胶。
3.纳滤(NF)Nanofiltration,其特点:1nm的微孔结构,滤除相对分子质量在200~2000,以压力差为分离驱动力,透过物质:水、溶剂、相对分子质量<200,被截留物质:溶质、二价盐、糖和染料(相对分子质量200~1000)。
4.反渗透(RO)Reverse Osmosis,其特点:带皮层的不对称膜、复合膜(<l nm),用于水溶液中溶解性盐的脱除,以压力差为分离驱动力,透过物质:水、溶剂,被截留物质:无机盐、糖类、氨基酸和BOD。
膜分离技术
概念:膜分离技术由于具有常温下操作、无相态变化、高效节能、在生产过程中不产生污染等特点,因此在饮用水净化、工业用水处理,食品、饮料用水净化、除菌,生物活性物质回收、精制等方面得到广泛应用,并迅速推广到纺织、化工、电力、食品、冶金、石油、机械、生物、制药、发酵等各个领域。
分离膜因其独特的结构和性能,在环境保护和水资源再生方面异军突起,在环境工程,特别是废水处理和中水回用方面有着广泛的应用前景。
膜分离优点
1在常温下进行:有效成分损失极少,特别适用于热敏性物质,如抗生素等医药、果汁、酶、蛋白的分离与浓缩。
2无相态变化:保持原有的风味,能耗极低,其费用约为蒸发浓缩或冷冻浓缩的1/3-1/8。
3无化学变化:典型的物理分离过程,不用化学试剂和添加剂,产品不受污染。
4选择性好:可在分子级内进行物质分离,具有普遍滤材无法取代的卓越性能。
5适应性强:处理规模可大可小,可以连续也可以间隙进行,工艺简单,操作方便,易于自动化。
膜分离技术特点
膜分离与传统的分离技术(蒸馏、吸收、萃取、深冷分离等)相比, 具有以下特点:
(1)膜分离过程不发生相变化, 因此膜分离是一种节能技术(2)膜分离过程是在压力驱动下, 在常温下进行的分离过程,特别适合对热敏性物质,如酶、果汁、某些药品的分离浓缩、精制等.(3)膜分离通常是一个高效的分离过程, 其适用范围极广,从微粒级到微生物菌体, 甚至离子级等都有它的用武之地, 其关键在于选择不同的膜类型.(4)膜分离设备本身没有运动部件, 很少需要维护, 可靠度很高, 操作十分简单.(5)膜分离装置简单、分离效率高,而且可以直接插入已有的生产工艺流程,不需要对生产线进行大的改变.
膜分离原理
在膜分离过程中, 由于膜具有选择透过性, 当膜两侧存在某中推动力(如压力差, 浓度差, 电位差等) ,原料侧组分选择性地透过膜以达到分离提纯的目的. 其传递过程极为复杂, 通过多孔型的膜有孔模型、微孔扩散模型、优先吸附—毛细管流动模型; 通过非多孔膜的主要是溶解—扩散模型等. 因而不同的膜过程使用的膜不同, 推动力不同, 其传递机理也不同.
分类
(1) 微滤: 其膜孔径在0 . 05~2 . 0L m 之间, 所需压力为100kPa 左右, 适用于细菌、微粒等的分离.(2) 超滤: 以压力差为推动力, 膜孔径在0 . 001 5~0 . 02L m 之间, 所需压力为100~ 1 000 kPa 左右, 溶液脱大分子及大分子分级.(3) 纳滤: 以压力差为推动力, 膜孔径平均为2nm , 适用于从水溶液中分离除去小分子物质.(4) 反渗透:以压力差为推动力, 膜孔径小于0 . 002L m, 所需压力为0 . 1~10M Pa 左右, 适用于低分子无机物和水溶液的分离.(5) 渗析: 以浓度差为推动力, 适用于水溶液中无机盐和酸的脱出.(6)电渗析: 以电位差为推动力, 适用于从溶液中脱出或富集电解质的过程.
在食品工业中的应用
大多数膜分离过程中, 物质不发生相变, 分离系数较大, 操作温度在室温左右, 因而膜分离技术在食品加工领域有其独特的实用性. 整个分离过程在密闭系统中进行, 避免和减轻了热和氧对食品风味和营养成分的影响, 只需加压、输送和反复循环, 费用约为蒸发浓缩的1/2~1/5, 还有冷杀菌潜势. 目前膜分离技术已应用于乳制品、豆制品的加工、酶剂的提纯浓缩、果蔬汁的澄清及浓缩、天然色素等食品添加剂的分离浓缩及卵蛋白的浓缩等;。