【聚合物加工原理 精】聚合物加工绪论
- 格式:pptx
- 大小:6.02 MB
- 文档页数:5
聚合物加工原理聚合物是一种常见的材料,广泛用于各个领域,如塑料制品、纺织品、医用材料等。
聚合物加工是将聚合物材料通过热、力、机械等加工方式,将其改变为需要的形状和结构的过程。
本文将介绍聚合物加工的原理及常见的加工方法。
一、聚合物本质上是由大量单体分子通过共价键连接而成的高分子化合物。
聚合物加工的原理是通过加热和加压来改变聚合物分子链的排列方式,从而改变聚合物的形状和性能。
聚合物材料通常以树脂的形态存在,树脂在加工过程中会经历熔融、流动、固化等阶段。
在加工中,将聚合物树脂加热到足够的温度使其熔化,然后将熔化的聚合物注入模具中,通过机械力或其他手段使其形成所需的形状,随后冷却固化。
聚合物加工的主要原理包括:1. 熔融:将聚合物加热至其熔点以上,使其转变为可流动的液体状态。
在熔融状态下,聚合物分子链之间的相互作用力减弱,分子链可以通过流动重新排列。
2. 流动:将熔融的聚合物注入到模具中,通过施加压力或其他力量使其形成所需的形状。
在流动过程中,聚合物分子链在施加的力下发生位移和变形。
3. 固化:冷却并固化聚合物,将其固定在所需的形状和结构中。
聚合物冷却后,分子链重新排列,形成固态结构,从而保持所需的形状。
二、聚合物加工方法聚合物加工有多种方法,常见的包括注塑、挤出、吹塑、压延、成型等。
1. 注塑:注塑是将熔融状态的聚合物注入到模具中,通过压力使其填充模腔并冷却固化。
注塑广泛应用于塑料制品的生产,如塑料盒、塑料椅等。
2. 挤出:挤出是将熔融的聚合物通过挤压机挤出成连续的均匀断面形状,然后通过冷却固化。
挤出常用于生产塑料管材、薄膜等。
3. 吹塑:吹塑是将熔融的聚合物注入到模具中,在模具内吹气使其膨胀成空心形状,并冷却固化。
吹塑常用于生产塑料瓶、塑料容器等。
4. 压延:压延是将熔融的聚合物放置在两个辊子之间,通过压力使其变薄并冷却固化。
压延广泛应用于塑料薄膜的制备。
5. 成型:成型是将熔融的聚合物材料倒入开放式模具中,通过压力或其他手段使其形成所需的形状,并冷却固化。
第一章 聚合物加工的理论基础加工性:聚合物加工是将聚合物转变成实用材料或制品的一种工程技术。
可挤压性:指聚合物通过挤压作用形变时获得形状和保持形变的能力。
熔融指数:用定温下2180克重物挤出时10分钟内聚合物从出料孔挤出的重量(克)来表示,其数值称为熔融指数(MI 或MFI )。
可模塑性:材料在温度和压力作用下形变和在模具中模制成型的能力。
可纺性:聚合物材料通过加工形成连续的固态纤维的能力。
可延性:无定形或半结晶固体聚合物在一个方向或二个方向上受到压延或拉伸时变形的能力第二章 聚合物的流变性质宾汉液体:当τ>τy 时,液体表现出与牛顿流体相似的复合型流体。
表观粘度:由于假塑性流体的粘度随γ′和σ而变化,所以人们用流动曲线上某一点的σ与γ′的比值,来表示在某一值时的粘度,这种粘度称为表观粘度,用ηa 表示指数定律:切力变稀:表观粘度随剪切速率增大而降低切力变稠:剪切作用使液体中有新的结构形成,引起阻力增加,表观粘度增大,并伴有体积膨大触变性液体(摇溶性流体):定温下表观粘度随剪切持续时间增加而降低的液体。
震凝性液体(反触变性液体):表观粘度随剪切时间的增加而增大的液体。
热塑性和热固性聚合物流变行为的比较:影响聚合物流变行为的主要因素:一、温度对粘度的影响当T 处于粘流温度以上不宽的温度范围内时:T 升高, η呈指数方式降低。
二、压力对粘度的影响在压力变化很小时,体积收缩不大,自由体积变化小,粘度变化也不大。
事实上,一种聚合物在正常的加工温度范围内,增加压力对粘度的影响和降低温度的影响有相似性。
这种在加工过程中通过改变压力或温度,都能获得同样的粘度变化效应称∙===n n n K dt d K dr dv K γγτ)()(∙-∙∙∙===1n n a K K γγγγτη为压力—温度等效性。
三、粘度对剪切速率或剪切力的依赖性当剪切速率增加时,大多数聚合物熔体的粘度下降,但不同种类的聚合物对剪切速率的敏感性有差别四、聚合物结构因素和组成对粘度的影响I.聚合物的链柔性柔性大,缠结多,解缠难,非牛顿性强,γ敏感性强;刚性大,η对T的敏感性强,升高T有利于加工。
聚合物成型加工原理聚合物成型加工是一种通过加工工艺将原料转化为所需形状的方法。
在这个过程中,聚合物材料会经历一系列的物理和化学变化,最终形成我们所需要的成型产品。
本文将介绍聚合物成型加工的原理,包括热塑性聚合物和热固性聚合物的成型原理,以及常见的成型方法。
热塑性聚合物是一类在一定温度范围内可软化、可塑性较好的聚合物材料。
在成型加工过程中,热塑性聚合物首先需要加热至其软化温度,然后通过模具或挤出机等设备将其加工成所需形状。
热塑性聚合物的成型原理主要是利用温度的变化来改变材料的物理状态,从而实现加工成型。
常见的热塑性聚合物成型方法包括注塑、挤出、吹塑等。
而热固性聚合物则是一类在加工过程中通过化学反应形成三维网络结构的聚合物材料。
在成型加工过程中,热固性聚合物首先需要在一定温度下发生固化反应,形成不可逆的化学键,然后再进行成型加工。
热固性聚合物的成型原理主要是利用化学反应来实现材料的固化和成型。
常见的热固性聚合物成型方法包括压缩成型、注塑成型等。
除了热塑性和热固性聚合物的成型原理外,还有一些其他的成型方法,如挤压成型、发泡成型、旋转成型等。
这些成型方法都是根据聚合物材料的特性和加工要求来选择的,每种方法都有其独特的成型原理和适用范围。
总的来说,聚合物成型加工的原理是通过控制温度、压力、化学反应等因素,将聚合物材料加工成所需形状的过程。
不同类型的聚合物材料和不同的成型方法都有其特定的成型原理,只有深入理解这些原理,才能更好地掌握聚合物成型加工技术,实现高质量的成型产品。
在实际应用中,我们需要根据具体的产品要求和材料特性来选择合适的成型方法,并且合理控制加工参数,以确保成型产品的质量和性能。
同时,还需要不断探索和创新,不断改进成型工艺,以适应不断变化的市场需求和技术发展。
通过深入研究聚合物成型加工的原理,不断提高我们的技术水平和创新能力,为聚合物成型加工行业的发展做出贡献。
聚合物成型加工原理聚合物成型加工是一种将熔融或软化的聚合物通过模具加工成所需形状的工艺过程。
在现代工业生产中,聚合物成型加工已经成为了一种非常重要的生产方式,广泛应用于塑料制品、橡胶制品、纤维制品等领域。
本文将重点介绍聚合物成型加工的原理及相关知识。
首先,聚合物成型加工的原理是基于聚合物材料的熔融特性。
通常情况下,聚合物材料在一定温度范围内会软化甚至熔化,这为其加工提供了可能。
在加工过程中,首先需要将固态的聚合物颗粒或块状材料加热至其软化或熔化温度,然后通过模具或挤出机等设备将其塑造成所需的形状。
这种加工方式可以实现对聚合物材料的成型和加工,生产出各种塑料制品、橡胶制品等。
其次,聚合物成型加工的原理还涉及到模具设计和成型工艺。
模具设计是影响成型加工质量和效率的关键因素之一。
不同形状、尺寸和结构的制品需要设计不同的模具,而模具的设计又需要考虑到材料的流动性、收缩率、成型压力等因素。
另外,成型工艺也是影响成型加工质量的重要因素,包括加热温度、冷却速度、压力控制等。
通过合理的模具设计和成型工艺,可以实现对聚合物材料的精确成型,确保制品的质量和稳定性。
最后,聚合物成型加工的原理还包括了原料的选择和配比。
不同的聚合物材料具有不同的熔化温度、流动性和硬度,因此在成型加工前需要对原料进行选择和配比。
通常情况下,原料的选择需要考虑到制品的使用环境、机械性能要求、成本等因素,以及原料的熔化特性和流动性。
通过合理的原料选择和配比,可以有效地控制成型加工过程中的材料流动性和成型质量。
综上所述,聚合物成型加工的原理涉及到聚合物材料的熔化特性、模具设计和成型工艺、原料选择和配比等多个方面。
通过对这些原理的深入理解和掌握,可以实现对聚合物材料的精确成型,生产出高质量的塑料制品、橡胶制品等。
同时,也可以为相关行业的技术改进和产品创新提供重要的理论支持和技术指导。
希望本文所介绍的内容能够对聚合物成型加工的相关人员有所帮助,促进该领域的发展和进步。
高分子材料加工工程过去、现在、未来四川大学高分子科学与工程学院1838年,A.Parker制备出了第一种人造塑料——硝酸纤维素,并在1862年伦敦的国际展览会上展出。
当时,人们希望该材料能替代象牙一类的天然材料,被称为Parkesine。
1840年,Goodyear和Hancock针对天然橡胶开发了“硫化”工序,达到消除粘性增加弹性的目的。
通过加入硫磺粉末在橡胶本体中产生了额外的化学键,从而使得天然橡胶性能发生改变。
1851年,硬质橡胶实现商品化。
1870年,纽约的J.Hyatt在高温高压下制备了低硝酸含量的硝酸纤维素,俗称赛璐珞,并申请了专利。
它是第一种具有商业价值的聚合物,也是在1907年Bakeland开发出酚醛塑料前唯一的商品塑料。
而由苯酚和甲醛反应制得酚醛塑料则是最古老的真正意义上的合成聚合物。
高分子的过去、现在和未来在Staudinger的理论出现之前,科学界对橡胶和其他分子量很高的材料的本质认识一直是不清楚的。
对19世纪的大多数研究学者来说,分子量超过10,000g/mol的物质似乎是难以置信的,他们把这类物质同由小分子稳定悬浮液构成的胶体系统混为一谈。
Staudinger否定了这些物质是有机胶体的观点。
他假定那些高分子量的物质,即聚合物,是由共价键形成的真实大分子,并在其大分子理论中阐明了聚合物由长链构成,链中单体(或结构单元)通过共价键彼此连接。
较高的分子量和大分子长链特征决定了聚合物独特的性能。
尽管一开始他的假设并不为大多数科学家所认可,但最终这种解释得到了合理的实验证实,为工业化学家们的工作提供了有力的指导,从而使得聚合物的种类迅猛地增长。
1953年,Staudinger被授予诺贝尔奖。
现在人们都已非常清楚:塑料以及橡胶、纤维素、DNA等很多物质都是大分子。
是钢的体积产量的2~3倍法国西德乐公司的DLC高效成型机正在成型的塑料瓶日精ASB公司的DLC高效成型机塑料管材的智能铺设精确厚度控制多层复合膜吹塑成型高分子材料工程未来发展热点高效化高速化精密化WP 公司的远程控制WP 公司的远程控制36吨/小时产量的设备36吨/小时产量的设备可注射万分之一克的精密注射机可注射万分之一克的精密注射机聚合物加工的概念聚合物加工(Polymer Processing)是将聚合物物料转变为实用制品的各种工艺和工程。