《聚合物加工原理》PPT课件
- 格式:ppt
- 大小:5.06 MB
- 文档页数:229
聚合物流体在加工过程中的受力比较复杂,因此相对应的应变也比较复杂,其实际的应变往往是二种或多种简单应变的叠加,然而以剪切应力造成的剪切应变起主要作用。
拉伸应力造成的拉伸应变也有相当重要的作用,而静压力对流体流动性质的作用主要体现在对粘度的影响上。
聚合物流体(熔融状聚合物和聚合物溶液或悬浮液)的流变性质主要表现为粘度的变化,根据粘度与应力或应变速率的关系,可将流体分为以下两类:牛顿流体和非牛顿流体。
拉伸流动:质点速度沿着流动方向发生变化;剪切流动:质点速度仅沿着与流动方向垂直的方向发生变化。
由边界的运动而产生的流动,如运转滚筒表面对流体的剪切摩擦而产生流动,即为拖曳流动。
而边界固定,由外压力作用于流体而产生的流动,称为压力流动。
聚合物熔体注射成型时,在流道内的流动属于压力梯度引起的压力流动。
聚合物在挤出机螺槽中的流动为另一种剪切流动,即拖曳流动。
对于小分子流体该粘度为常数,称为牛顿粘度。
而对于聚合物流体,由于大分子的长链结构和缠结,剪切力和剪切速率不成比例,流体的剪切粘度不是常数,依赖于剪切作用。
具有这种行为的流体称为非牛顿流体,非牛顿流体的粘度定义为非牛顿粘度或表观粘度。
切力变稀原因(假塑性流体)假塑性流体的粘度随剪切应力或剪切速率的增加而下降的原因与流体分子的结构有关。
对聚合物熔体来说,造成粘度下降的原因在于其中大分子彼此之间的缠结。
当缠结的大分子承受应力时,其缠结点就会被解开,同时还沿着流动的方向规则排列,因此就降低了粘度。
缠结点被解开和大分子规则排列的程度是随应力的增加而加大的。
对聚合物溶液来说,当它承受应力时,原来由溶剂化作用而被封闭在粒子或大分子盘绕空穴内的小分子就会被挤出,这样,粒子或盘绕大分子的有效直径即随应力的增加而相应地缩小,从而使流体粘度下降。
因为粘度大小与粒子或大分子的平均大小成正比,但不一定是线性关系。
切力变稠原因(膨胀性流体):当悬浮液处于静态时,体系中由固体粒子构成的空隙最小,其中流体只能勉强充满这些空间。
1.什么是聚合物的力学三态,各自的特点是什么?各适用于什么加工方法?玻璃态、高弹态和粘流态称为聚合物的力学三态。
玻璃态:内能大,弹性模量大。
高分子主链键长、键角只能发生微小变化,形变很小,不能进行大变形的成型,主要进行冷加工,车、钻、锉、切螺纹。
高弹态:内能降低,弹性模量较低。
外力作用,分子主链发生运动,变形能力增大,形变可部分恢复,可进行大变形成型加工,可进行压延、中空成型、热成型。
粘流态:外力作用,整个分子链都可以运动,材料会发生持续变形,形变不可逆,可进行挤出、注射。
2、影响聚合物粘度的因素分别有哪些?对于高聚物熔体来说,影响粘度的因素有许多,应力、应变速率、温度、压力、分子参数和结构、相对分子质量分布、支化和添加剂等。
但归结起来有两个方面:(1)熔体内的自由体积因素,自由体积- 粘度ˉ(2)大分子长链间的缠结,凡能减少缠结作用因素,都能加速分子运动,粘度ˉ3、压力流动、收敛流动、拖拽流动的定义及各自常见发生场合。
压力流动:在简单的形状管道中因受压力作用而产生的流动。
<受力:压力、剪切力>;聚合物成型时在管内的流动多属于压力梯度引起的剪切流动。
如注射时流道内熔体的流动。
收敛流动:在截面积逐渐减小的流道中的流动。
<受力:压力、剪切力、拉伸力>;多发生在在锥形管或其他截面积逐渐变小的管道中。
拖拽流动:在具有部分动件的流道中的流动。
<受力:拉伸力、剪切力>,如在挤出机螺槽中的聚合物流动以及线缆包覆物生产口模中。
4、根据物料的变化特征可将螺杆分为几个阶段,它们各自的作用是什么?加料段(Ⅰ)、压缩段(Ⅱ)、均化段(Ⅲ)加料段(Ⅰ)作用:将料斗供给的料送往压缩段,塑料在移动过程中一般保持固体状态由于受热而部分熔化。
压缩段(Ⅱ)作用:压实物料,使物料由固体转化为熔体,并排除物料中的空气。
均化段(计量段)的作用:是将熔融物料,定容(定量)定压地送入机头使其在口模中成型。