模拟电子电路实验报告
- 格式:docx
- 大小:120.33 KB
- 文档页数:12
模拟电路实验报告模拟电路实验报告引言:模拟电路是电子工程中的重要组成部分,通过对电子元件的组合和连接,可以实现信号的放大、滤波、调节等功能。
本次实验旨在通过实际操作,加深对模拟电路原理的理解,并掌握相关实验技巧。
实验一:放大电路在本实验中,我们使用了一个基本的放大电路,包括一个电压源、一个输入信号源、一个放大器和一个输出负载。
实验的目的是研究放大器的放大倍数和频率响应。
实验过程中,我们首先将输入信号源连接到放大器的输入端,然后将输出负载连接到放大器的输出端。
接下来,我们调节电压源的输出电压,观察输出信号的变化情况。
通过改变输入信号的频率,我们可以观察到放大器的频率响应。
实验结果显示,当输入信号的幅度较小的时候,放大器的输出信号与输入信号基本一致,放大倍数接近1。
然而,当输入信号的幅度较大时,放大器的输出信号会出现失真。
此外,我们还发现放大器的频率响应在不同的频率下有所差异,频率越高,放大倍数越小。
实验二:滤波电路滤波电路是模拟电路中常用的一种电路,通过选择性地通过或阻断特定频率的信号,实现对信号的滤波处理。
本实验旨在研究RC滤波电路的频率响应。
在实验中,我们使用了一个RC滤波电路,包括一个电容和一个电阻。
我们首先将输入信号源连接到滤波电路的输入端,然后将输出信号连接到示波器上进行观察。
接下来,我们改变输入信号的频率,观察输出信号的变化情况。
实验结果显示,当输入信号的频率较低时,滤波电路基本不对信号进行滤波处理,输出信号与输入信号相似。
然而,当输入信号的频率增加时,滤波电路开始对信号进行滤波,输出信号的幅度逐渐减小。
当输入信号的频率高于滤波电路的截止频率时,滤波电路几乎完全阻断了信号的传递。
实验三:调节电路调节电路是模拟电路中常用的一种电路,通过对电子元件的调节,实现对电压、电流等信号的调节。
本实验旨在研究调节电路的工作原理和调节范围。
在实验中,我们使用了一个调节电路,包括一个电位器和一个负载电阻。
电子电路仿真实验报告
本次实验是一次电子电路的仿真实验,旨在通过使用电路仿真软件进行电路实验的模拟,通过对模拟的数据和仿真结果进行分析和总结,进一步掌握电子电路的实验知识和技能,在理论和实践中加深对电子电路的理解和掌握。
实验一:开关电源
1.实验目的
掌握开关电源基本工作原理,理解电源的稳压和稳流的基本原理,掌握开关电源的设
计和布局方法。
2.实验步骤
(1)根据实验手册,搭建开关电源电路,包括开关电源 IC、滤波电感、电容、稳流
二极管和稳压二极管。
(2)进行仿真实验,记录各个参数数据。
(3)分析实验结果,了解电源电路的工作原理和性能。
3.实验结果分析
(1)开关频率:在实验中,我们通过改变开关频率,观察电路的输出。
结果表明,当开关频率增加时,电路的效果也增强。
(2)输出电压:在实验中,我们对电路的输出电压进行了测量,结果表明,当输入电压较高时,输出电压也较高;当输入电压较低时,输出电压也较低。
4.实验总结
开关电源是一种高效率、小体积、轻量化的电源,广泛应用于电子产品中,是电子领
域不可或缺的核心器件之一。
掌握开关电源的设计和布局方法,对于我们理解和掌握电子
电路的原理和技术具有重要的意义。
通过本次实验,我们加深了对开关电源的理解和掌握,为日后的学习和实践打下了基础。
一、实验目的1. 理解并掌握基本模拟电路元件(电阻、电容、电感)的特性及其在电路中的作用。
2. 掌握模拟电路的测试方法,包括伏安特性曲线的测量、阻抗测量等。
3. 培养实验操作技能,提高分析问题、解决问题的能力。
二、实验原理1. 电阻元件:电阻元件是模拟电路中最基本的元件之一,其特性表现为对电流的阻碍作用。
电阻元件的伏安特性曲线为直线,其斜率即为电阻值。
2. 电容元件:电容元件的特性表现为储存电荷的能力。
电容元件的伏安特性曲线为非线性,其斜率与电容值和电压值有关。
3. 电感元件:电感元件的特性表现为储存磁场能量的能力。
电感元件的伏安特性曲线为非线性,其斜率与电感值和电流值有关。
4. 电路测试方法:伏安特性曲线的测量方法为在电路中施加一定的电压,测量通过电路的电流,然后绘制电压与电流的关系曲线。
阻抗测量方法为测量电路的电压和电流,然后根据欧姆定律计算电路的阻抗。
三、实验器材1. 电阻元件:R1、R2、R3(不同阻值)2. 电容元件:C1、C2、C3(不同容量)3. 电感元件:L1、L2、L3(不同电感值)4. 直流稳压电源5. 电压表6. 电流表7. 示波器8. 电路实验板四、实验步骤1. 测量电阻元件的伏安特性曲线(1)将电阻元件R1、R2、R3分别接入电路,测量通过电阻元件的电流和对应的电压值。
(2)根据测量的电压和电流值,绘制电阻元件的伏安特性曲线。
2. 测量电容元件的伏安特性曲线(1)将电容元件C1、C2、C3分别接入电路,测量通过电容元件的电流和对应的电压值。
(2)根据测量的电压和电流值,绘制电容元件的伏安特性曲线。
3. 测量电感元件的伏安特性曲线(1)将电感元件L1、L2、L3分别接入电路,测量通过电感元件的电流和对应的电压值。
(2)根据测量的电压和电流值,绘制电感元件的伏安特性曲线。
4. 测量电路阻抗(1)将待测电路接入电路实验板,测量电路的电压和电流值。
(2)根据测量的电压和电流值,计算电路的阻抗。
一、实验目的1. 理解模拟电子技术的基本概念和基本原理。
2. 掌握模拟电路的搭建和调试方法。
3. 培养实验操作能力和数据分析能力。
二、实验原理模拟电子技术是研究模拟信号处理和模拟电路设计的学科。
本实验主要涉及以下原理:1. 基本放大电路:包括共射放大电路、共集放大电路、共基放大电路等。
2. 运算放大器:包括反相比例放大、同相比例放大、加法运算、减法运算等。
3. 滤波电路:包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。
三、实验仪器与设备1. 模拟电子技术实验箱2. 函数信号发生器3. 示波器4. 数字多用表5. 绝缘导线6. 插头四、实验步骤1. 搭建共射放大电路:- 根据实验指导书,连接共射放大电路。
- 调整偏置电阻,使晶体管工作在放大区。
- 使用函数信号发生器输入正弦波信号,观察输出波形。
- 调整电路参数,观察输出波形的变化。
2. 搭建运算放大器电路:- 根据实验指导书,连接运算放大器电路。
- 输入不同电压信号,观察输出波形。
- 调整电路参数,观察输出波形的变化。
3. 搭建滤波电路:- 根据实验指导书,连接滤波电路。
- 输入不同频率的信号,观察输出波形。
- 调整电路参数,观察输出波形的变化。
五、实验结果与分析1. 共射放大电路:- 输入信号频率为1kHz,输出信号频率为1kHz,放大倍数为20。
- 当输入信号频率为10kHz时,输出信号频率为10kHz,放大倍数为10。
2. 运算放大器电路:- 反相比例放大电路:输入电压为1V,输出电压为-2V。
- 同相比例放大电路:输入电压为1V,输出电压为2V。
- 加法运算电路:输入电压分别为1V和2V,输出电压为3V。
- 减法运算电路:输入电压分别为1V和2V,输出电压为-1V。
3. 滤波电路:- 低通滤波器:当输入信号频率为1kHz时,输出信号幅度为0.5V;当输入信号频率为10kHz时,输出信号幅度为0.1V。
- 高通滤波器:当输入信号频率为1kHz时,输出信号幅度为0.1V;当输入信号频率为10kHz时,输出信号幅度为0.5V。
《模拟电子线路实验》实验报告实验报告一、实验目的通过模拟电子线路实验,掌握电子线路的基本原理和实验技巧,加深对电子线路的理论知识的理解。
二、实验设备实验中使用的设备有:示波器、万用表、信号发生器、电阻、电容、二极管等。
三、实验原理电子线路由电源、电阻、电容、电感、二极管等元件组合而成。
在电子线路中,电源提供电流,电流通过线路中的元件实现信号的处理和传递。
电阻限制电流的流动,电容储存电荷,电感储存磁场,二极管具有导通(正向偏置)和截止(反向偏置)的特性。
四、实验内容本次实验的实验内容主要包括以下几个方面:1.电阻的测量和串并联的实验(1)利用示波器和万用表对不同电阻值的电阻进行测量,并分析测量值和标称值之间的差异;(2)在电路中连接不同的电阻,并观察并分析串联和并联对电阻阻抗的影响。
2.电容的充放电实验(1)利用信号发生器输出方波信号,通过一个电阻将方波信号传到一个电容上进行充放电;(2)通过示波器观察电容充放电波形,分析电容的充放电过程。
3.二极管的直流分压和交流放大实验(1)利用电源和电阻构建一个二极管直流分压电路,通过示波器观察电路输出;(2)通过信号发生器产生正弦波信号,通过二极管放大电路增大信号幅度,并通过示波器观察放大后的信号。
五、实验结果1.电阻的测量和串并联的实验经测量,不同电阻的测量值与标称值相差较小,误差在可接受范围内。
串联电阻的总阻抗等于各个电阻之和,而并联电阻的总阻抗等于各个电阻的倒数之和。
2.电容的充放电实验通过示波器观察到电容的充放电过程,放电过程是指电容器通过一个电阻将储存的电荷逐渐释放,电压逐渐下降的过程;充电过程是指电容器内的电压逐渐增加,直到与输入信号的幅度相等,并保持恒定的过程。
3.二极管的直流分压和交流放大实验通过示波器观察到二极管直流分压电路的输出近似为输入信号的一半。
在交流放大实验中,增加了二极管和电容,使得输入信号的幅度得以增大,实现了信号的放大。
六、实验总结通过本次实验,我深入了解了电子线路的基本原理和实验技巧。
模拟电子线路实验报告模拟电子线路实验报告引言:模拟电子线路是电子工程领域中的重要基础课程,通过实验可以帮助学生理解电子器件的工作原理和电路的设计方法。
本实验报告将介绍我在模拟电子线路实验中所进行的一系列实验,包括放大器电路、滤波器电路和振荡器电路。
实验一:放大器电路在放大器电路实验中,我们使用了两个常见的放大器电路:共射极放大器和共基极放大器。
共射极放大器具有较高的电压增益和输入阻抗,适用于信号放大应用。
共基极放大器则具有较低的电压增益和输出阻抗,适用于驱动低阻抗负载。
通过实验,我们验证了这两种放大器电路的性能,并观察到了它们在不同频率下的响应特性。
实验二:滤波器电路滤波器电路是电子系统中常见的电路,用于去除或选择特定频率的信号。
在实验中,我们研究了三种常见的滤波器电路:低通滤波器、高通滤波器和带通滤波器。
通过调整电路参数和元件值,我们观察到了这些滤波器在不同频率下的截止特性和幅频响应。
此外,我们还讨论了滤波器的阶数和频率响应对电路性能的影响。
实验三:振荡器电路振荡器电路是一种能够产生稳定振荡信号的电路,常用于时钟发生器、射频发射和接收等应用中。
在实验中,我们设计和搭建了两种常见的振荡器电路:RC 相移振荡器和LC谐振振荡器。
通过调整电路参数和元件值,我们观察到了振荡器的频率稳定性和波形特性。
此外,我们还讨论了振荡器的起振条件和频率稳定性的影响因素。
实验结果与分析:通过实验,我们对放大器、滤波器和振荡器电路的性能进行了验证和分析。
我们观察到了不同电路参数和元件值对电路性能的影响,例如放大器的电压增益、滤波器的截止频率和振荡器的频率稳定性。
我们还学习到了如何根据电路需求选择合适的电路结构和元件数值,以满足特定的电路设计要求。
结论:通过模拟电子线路实验,我们深入了解了放大器、滤波器和振荡器电路的原理和性能。
我们通过实验验证了这些电路的工作特性,并学会了根据设计要求选择合适的电路结构和元件数值。
这些实验为我们今后在电子工程领域的学习和研究奠定了坚实的基础。
模拟电子线路实验实验二晶体管共射极单管放大器【实验名称】晶体管共射极单管放大器【实验目的】1.学习单管放大器静态工作点的测量方法。
2.学习单管放大电路交流放大倍数的测量方法。
3.了解放大电路的静态工作点对动态特性的影响。
4.熟悉常用电子仪器及电子技术实验台的使用。
【预习要点】1.复习课件中有关单管放大电路工作点稳定问题的内容。
2.放大电路输出信号波形在哪些情况下可能产生失真?应如何消除失真?【实验仪器设备】【实验原理】实验电路图如图2-1所示。
温度的变化会导致三极管的性能发生变化,致使放大器的工作点发生变化,R和射极电阻影响放大器的正常工作。
图2-1所示电路中通过增加下偏置电阻B2R来改善直流工作点的稳定性,其工作原理如下:E图2-1 分压偏置共射极放大电路①利用B1R 和B2R 的分压作用固定基极电压V B 。
当B1R 、B2R 选择适当,满足I B1>> I B 时,有B2B CC B1B2R V V R R =+式中B1R 、B2R 和CC V 都是固定的,不随温度变化,所以基极电位V B 基本上为一定值。
②通过E R 的负反馈作用,限制C I 的改变,使工作点保持稳定。
具体稳定过程如下:CT ︒I电容C 1、C 2有隔直通交的作用,C 1滤除输入信号的直流成份,C 2滤除输出信号的直流成份。
射极电容C E 在静态时稳定工作点;动态时短路R E ,增大放大倍数。
当流过偏置电阻B1R (b1R 和电位器W R 的阻值和)的电流I B1远大于晶体管的基极电流B I (一般5~10倍),基极电压V B 远大于V BE 时,它的静态工作点可用下式估算B1B CC B1B2R V V R R =+B BEC E E=V V I I R ≈- CE CC C C E =(+)V V I R R -当放大器的输入端加交流输入信号i v 后,基极回路便有交流输入b i 产生,经过放大在集电极回路产生β倍的c i ,同时在负载输出o c L 'v i R =,从而实现了电压放大。
模拟电路实验报告目录1. 实验目的1.1 实验背景1.2 实验内容2. 实验原理2.1 模拟电路基本概念2.2 电阻、电容和电感3. 实验器材3.1 仪器设备3.2 元器件4. 实验步骤4.1 搭建电路4.2 施加电压4.3 测量电流电压5. 实验数据处理5.1 绘制电流电压曲线5.2 计算阻抗6. 实验结果分析6.1 对比理论值6.2 分析电路特性7. 实验结论7.1 实验总结7.2 结论和展望1. 实验目的1.1 实验背景在实验中介绍模拟电路的基本概念和重要性,以及实验的背景和意义。
1.2 实验内容详细描述本次实验中涉及的主要内容和实验要求。
2. 实验原理2.1 模拟电路基本概念解释模拟电路的基本概念,包括模拟信号与数字信号的区别以及模拟电路在各种电子设备中的应用。
2.2 电阻、电容和电感介绍电阻、电容、电感的定义、特性以及在模拟电路中的作用和影响。
3. 实验器材3.1 仪器设备列出实验中所需的仪器设备,如示波器、信号发生器等。
3.2 元器件说明实验中所用到的元器件,如电阻、电容、电感等。
4. 实验步骤4.1 搭建电路逐步说明如何搭建模拟电路实验中所需的电路结构。
4.2 施加电压描述如何正确施加电压源以保证实验进行顺利。
4.3 测量电流电压介绍如何进行电流电压的测量方法及注意事项。
5. 实验数据处理5.1 绘制电流电压曲线详细说明如何根据测量数据绘制电流电压曲线图。
5.2 计算阻抗提供计算阻抗所需的步骤和公式,并进行相关数据处理。
6. 实验结果分析6.1 对比理论值分析实验结果与理论值的差异,并探讨可能的原因。
6.2 分析电路特性根据实验数据分析模拟电路的特性,如频率响应、幅频特性等。
7. 实验结论7.1 实验总结总结实验过程中的收获和困难,并提出改进建议。
7.2 结论和展望总结实验结果并展望模拟电路实验对深入学习电子电路的意义和价值。
模拟电子线路实验实验报告WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】网络高等教育《模拟电子线路》实验报告学习中心:浙江建设职业技术学院奥鹏学习中心层次:高中起点专科专业:电力系统自动化技术年级: 12 年秋季学号:学生姓名:实验一常用电子仪器的使用一、实验目的1.了解并掌握模拟电子技术实验箱的主要功能及使用方法。
2.了解并掌握数字万用表的主要功能及使用方法。
3.学习并掌握TDS1002型数字存储示波器和信号源的基本操作方法。
二、基本知识1.简述模拟电子技术实验箱布线区的结构及导电机制。
布线区面板以大焊孔为主,其周围以十字花小孔结构相结合,构成接点的连接形式,每个大焊孔与它周围的小孔都是相通的。
2.试述NEEL-03A型信号源的主要技术特性。
①输出波形:三角波、正弦波、方波、二脉、四脉、八脉、单次脉冲信号;②输出频率:10Hz~1MHz连续可调;③幅值调节范围:0~10V P-P连续可调;④波形衰减:20dB、40dB;⑤带有6位数字频率计,既可作为信号源的输出监视仪表,也可以作外侧频率计用。
注意:信号源输出端不能短路。
3.试述使用万用表时应注意的问题。
使用万用表进行测量时,应先确定所需测量功能和量程。
确定量程的原则:①若已知被测参数大致范围,所选量程应“大于被测值,且最接近被测值”。
②如果被测参数的范围未知,则先选择所需功能的最大量程测量,根据初测结果逐步把量程下调到最接近于被测值的量程,以便测量出更加准确的数值。
如屏幕显示“1”,表明已超过量程范围,须将量程开关转至相应档位上。
4.试述TDS1002型示波器进行自动测量的方法。
按下“测量”按钮可以进行自动测量。
共有十一种测量类型。
一次最多可显示五种。
按下顶部的选项按钮可以显示“测量1”菜单。
可以在“信源”中选择在其上进行测量的通道。
可以在“类型”中选择测量类型。
测量类型有:频率、周期、平均值、峰-峰值、均方根值、最小值、最大值、上升时间、下降时间、正频宽、负频宽。
模拟电子电路实验一三极管的放大特性实验报告模拟电子电路实验一三极管的放大特性实验报告实验目的本实验旨在研究三极管放大器的基本原理和放大特性,了解其输出特性曲线和输入特性曲线,并通过实验验证与理论相符。
实验内容1. 搭建三极管放大电路;2. 测量和记录三极管的输入特性和输出特性;3. 理论分析输出特性曲线。
实验仪器和设备1. 双踪示波器;2. 函数发生器;3. 三极管;4. 电阻、电容等元器件。
实验步骤1. 按照电路图搭建三极管放大电路;2. 设置函数发生器,输入信号频率为1kHz,幅度适当;3. 调节电源电压,使其为恒定值;4. 使用双踪示波器测量输入电压和输出电压,并记录数据;5. 根据实测数据绘制输出特性曲线,并进行分析。
实验结果与分析通过实验测量和数据记录,我们得到了三极管的输入特性和输出特性曲线,并与理论预测进行了对比。
实验结果显示,三极管在放大电路中表现出了良好的放大特性,输出特性曲线呈现出非线性的特点。
通过分析输出特性曲线,我们可以得到三极管的放大倍数、截止频率等重要参数。
结论本实验通过搭建三极管放大电路,测量和分析了其放大特性。
实验结果与理论相符,验证了三极管放大器的基本原理。
三极管作为一种常用的电子器件,在实际电路中具有重要的应用价值。
实验总结通过本次实验,我们加深了对三极管放大特性的理解,并掌握了实验测量和分析的方法。
在后续的实验中,我们将进一步研究和应用三极管放大器,探索更多的电子电路原理和技术。
---> 注意:本报告的内容为实验结果和分析的简要总结,详细数据和图表请参见实验记录。
实验一晶体管共射极单管放大器、实验目的1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。
2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
3 、熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理图2-1为电阻分压式工作点稳定单管放大器实验电路图。
它的偏置电路采用隔和%组成的分压电路,并在发射极中接有电阻电以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i相位相反,幅值被放大了的输出信号u o,从而实现了电压放大。
图2-1共射极单管放大器实验电路在图2- 1电路中,当流过偏置电阻F Bi和F B2的电流远大于晶体管T的基极电流I B时(一般5〜10倍),则它的静态工作点可用下式估算U B UB ER EL C E = L C C — I C (忌+ R )电压放大倍数rbe输入电阻R = R B 1 // R% // r be输出电阻R O ~ R C由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。
在设计前应测量所用元器件的参数, 为电路设计提供必 要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各 项性能指标。
一个优质放大器,必定是理论设计与实验调整相结合的产物。
因此, 除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。
放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰 与自激振荡及放大器各项动态参数的测量与调试等。
1、放大器静态工作点的测量与调试 1)静态工作点的测量U Bf^BIR31R32测量放大器的静态工作点,应在输入信号u i= 0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C以及各电极对地的电位U B、U C和L Eo 一般实验中,为了避免断开集电极,所以采用测量电压L E或L C,然后算出I C的方法,例如,只要测出L E,即可用I C I E土算出I C (也可根据I C 土土,由L C确定I C),R E R C同时也能算出L BE=L B— L E,L C E= L C—L Eo为了减小误差,提高测量精度,应选用内阻较高的直流电压表。
2)静态工作点的调试放大器静态工作点的调试是指对管子集电极电流I (或L C E)的调整与测试。
静态工作点是否合适,对放大器的性能和输出波形都有很大影响。
如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u o的负半周将被削底,如图2 —2(a)所示;如工作点偏低则易产生截止失真,即u o的正半周被缩顶(一般截止失真不如饱和失真明显),如图2—2(b)所示。
这些情况都不符合不失真放大的要求。
所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压u i,检查输出电压u o的大小和波形是否满足要求。
如不满足,则应调节静态工作点的位置。
(a(b图2-2静态工作点对u o波形失真的影响改变电路参数U C C R、R B (隔、甩)都会引起静态工作点的变化,如图2-3所示。
但通常多采用调节偏置电阻民2的方法来改变静态工作点,如减小电,则可使静态工作点提高等。
80pA60心0 [a2010------- UCE图2-3电路参数对静态工作点的影响最后还要说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如输入信号幅度很小,即使工作点较高或较低也不一定会出现失真。
所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。
如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。
2、放大器动态指标测试放大器动态指标包括电压放大倍数、输入电阻、输出电阻、最大不失真输出电压(动态范围)和通频带等。
1)电压放大倍数A V的测量调整放大器到合适的静态工作点,然后加入输入电压U,在输出电压u o不失真的情况下,用交流毫伏表测出u i和u o的有效值U和U O,贝UU oU2)输入电阻R 的测量为了测量放大器的输入电阻,按图2-4电路在被测放大器的输入端与信号 源之间串入一已知电阻 R,在放大器正常工作的情况下, 用交流毫伏表测出U S和U ,则根据输入电阻的定义可得测量时应注意下列几点:① 由于电阻R 两端没有电路公共接地点,所以测量R 两端电压U R 时必须分 别测出U 和U ,然后按U R= U S- U 求出值。
② 电阻R 的值不宜取得过大或过小,以免产生较大的测量误差,通常取 R与R 为同一数量级为好,本实验可取 R= 1〜2K Q 。
3)输出电阻R 的测量按图2-4电路,在放大器正常工作条件下,测出输出端不接负载 R L 的输出电压U 0和接入负载后的输出电压L L ,根据UL *即可求出U OU iUi U RU i U S U i图2-4 输入、输出电阻测量电路R O(# 1)R LU L在测试中应注意,必须保持R接入前后输入信号的大小不变。
4)最大不失真输出电压Lk p的测量(最大动态范围)如上所述,为了得到最大动态范围,应将静态工作点调在交流负载线的中点。
为此在放大器正常工作情况下,逐步增大输入信号的幅度,并同时调节Rv (改变静态工作点),用示波器观察U O,当输出波形同时出现削底和缩顶现象(如图2 -5)时,说明静态工作点已调在交流负载线的中点。
然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用交流毫伏表测出Ub (有效值),则动态范围等于22U O。
或用示波器直接读出U Opp来0图2 —5静态工作点正常,输入信号太大引起的失真5)放大器幅频特性的测量放大器的幅频特性是指放大器的电压放大倍数A U与输入信号频率f之间的关系曲线。
单管阻容耦合放大电路的幅频特性曲线如图2-6所示,A um为中频电压放大倍数,通常规定电压放大倍数随频率变化下降到中频放大倍数的1/ 2倍,即0.707A um所对应的频率分别称为下限频率f L和上限频率f H,则通频带f BW =f H-f L放大器的幅率特性就是测量不同频率信号时的电压放大倍数 A 。
为此,可采 用前述测A U 的方法,每改变一个信号频率,测量其相应的电压放大倍数,测量 时应注意取点要恰当,在低频段与高频段应多测几点,在中频段可以少测几点。
此外,在改变频率时,要保持输入信号的幅度不变,且输出波形不得失真。
6)干扰和自激振荡的消除 参考实验附录2、函数信号发生器 4、交流毫伏表6 、直流毫安表8、万用电表9、晶体三极管3DG6<1( 50〜100)或9011X 1 (管脚排列如图2 — 7所示)电阻器、电容器若干 四、实验内容实验电路如图2—1所示。
各电子仪器可按实验一中图1 — 1所示方式连接, 为防止干扰,各仪器的公共端必须连在一起,同时信号源、交流毫伏表和示波器 的引线应采用专用电缆线或屏蔽线,如使用屏蔽线,则屏蔽线的外包金属网应接 在公共接地端上。
1、调试静态工作点图2—7晶体三极管管脚排列二、实验设备与器件 1、+ 12V 直流电源 3、双踪示波器 5 、直流电压表 7、频率计图2 —6幅频特性曲线接通直流电源前,先将R调至最大,函数信号发生器输出旋钮旋至零。
接通+ 12V电源、调节R,使1= 2.0mA (即U E= 2.0V),用直流电压表测量U B、U E U C及用万用电表测量F B2值。
记入表2—1。
表2-1 I = 2mA2在放大器输入端加入频率为1KHz的正弦信号u s,调节函数信号发生器的输出旋钮使放大器输入电压U 10mV同时用示波器观察放大器输出电压u o波形, 在波形不失真的条件下用交流毫伏表测量下述三种情况下的U O值,并用双踪示波器观察u o和u i的相位关系,记入表2 —2。
表2—2 Ic = 2.0mA U i = mV3、观察静态工作点对电压放大倍数的影响置F C= 2.4K Q, u适量,调节RW,用示波器监视输出电压波形,在u o不失真的条件下,测量数组I C和U O值,记入表2-3。
表2-3 民=2.4K Q R L=X U i= mV测量I C时,要先将信号源输出旋钮旋至零(即使U = 0)4、观察静态工作点对输出波形失真的影响置F C= 2.4K Q,2.4K Q,u = 0,调节R使 I = 2.0mA 测出少值,再逐步加大输入信号,使输出电压u o足够大但不失真。
然后保持输入信号不变,分别增大和减小R,使波形出现失真,绘出u o的波形,并测出失真情况下的I C 和U3E值,记入表2-4中。
每次测I C和U^E值时都要将信号源的输出旋钮旋至零。
表2—4 R c= 2.4K Q R L=X U i = mV置R C= 2.4K Q,2.4K Q,按照实验原理2.4)中所述方法,同时调节输入信号的幅度和电位器R,用示波器和交流毫伏表测量 Ubp吸3值,记入表2-5。
表 2-L*6、测量输入电阻和输出电阻 置F C = 2.4K Q,2.4K Q, I c= 2.0mA 。
输入f = 1KHz 的正弦信号,在输出电压u o 不失真的情况下,用交流毫伏表测出U S ,U 和U L 记入表2-6保持不变,断开R,测量输出电压 5记入表2-6。
表 2-6 I c = 2mA R = 2.4K Q R L = 2.4K Q*7、测量幅频特性曲线取1= 2.0mA 住=2.4K Q ,2.4K Q 。
保持输入信号 J 的幅度不变,改 为了信号源频率f 取值合适,可先粗测一下,找出中频范围,然后再仔细读数。
说明:本实验内容较多,其中6 7可作为选作内容。
五、实验总结1、列表整理测量结果,并把实测的静态工作点、电压放大倍数、输入电阻、输出电阻之值与理论计算值比较(取一组数据进行比较),分析产生误差原因。
2 、总结住,R-及静态工作点对放大器电压放大倍数、输入电阻、输出电阻的影响。
3、讨论静态工作点变化对放大器输出波形的影响。
4、分析讨论在调试过程中出现的问题。
六、预习要求1、阅读教材中有关单管放大电路的内容并估算实验电路的性能指标。
假设:3DG6Bp = 100, F B= 20K Q,电=60心,F C=2.4K Q, R=2.4K Q。
估算放大器的静态工作点,电压放大倍数A V,输入电阻R和输出电阻F O2 、阅读实验附录中有关放大器干扰和自激振荡消除内容。
3、能否用直流电压表直接测量晶体管的U B E?为什么实验中要采用测U B、U E,再间接算出氏的方法?4 、怎样测量吊2阻值?5、当调节偏置电阻Fh,使放大器输出波形出现饱和或截止失真时,晶体管的管压降I CE怎样变化?6、改变静态工作点对放大器的输入电阻R有否影响?改变外接电阻R-对输出电阻F O有否影响?7、在测试A v, R和甩时怎样选择输入信号的大小和频率?为什么信号频率一般选1KHz而不选100KHz或更高?8、测试中,如果将函数信号发生器、交流毫伏表、示波器中任一仪器的二个测试端子接线换位(即各仪器的接地端不再连在一起),将会出现什么问题?注:附图2- 1所示为共射极单管放大器与带有负反馈的两级放大器共用实验模块。