(中考复习)第1讲 实数的有关概念
- 格式:ppt
- 大小:965.00 KB
- 文档页数:8
中考数学复习数与式知识点总结第一部分:教材知识梳理-系统复第一单元:数与式第1讲:实数知识点一:实数的概念及分类1.实数是按照定义和正负性来分类的。
其中,既不属于正数也不属于负数的数是零。
无理数有几种常见形式:含π的式子是正有理数;无限不循环小数是无理数;开方开不尽的数是无理数;三角函数型的数是实数。
有理数包括正有理数、负有理数和零。
负无理数和正无理数的定义很明确。
2.在判断一个数是否为无理数时,需要注意开得尽方的含根号的数属于无理数,而开得尽的数属于有理数。
3.数轴有三个要素:原点、正方向和单位长度。
实数与数轴上的点一一对应,数轴右边的点表示的数总比左边的点表示的数大。
4.相反数是具有相反符号的两个数,它们的和为0.数轴上表示互为相反数的两个点到原点的距离相等。
5.绝对值是一个数到原点的距离。
它有非负性,即绝对值大于等于0.若|a|+b2=0,则a=b=0.绝对值等于该数本身的数是非负数。
知识点二:实数的相关概念2.数轴是一个直线,用来表示实数。
数轴上的每个点都对应着一个实数,反之亦然。
3.相反数是具有相反符号的两个数,它们的和为0.4.绝对值是一个数到原点的距离。
它有非负性,即绝对值大于等于0.5.倒数是乘积为1的两个数互为倒数。
a的倒数是1/a(a≠0)。
6.科学记数法是一种表示实数的方法,其中1≤|a|<10,n为整数。
确定n的方法是:对于数位较多的大数,n等于原数的整数位减去1;对于小数,写成a×10n,1≤|a|<10,n等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)。
7.近似数是一个与实际数值很接近的数。
它的精确度由四舍五入到哪一位来决定。
例:用科学记数法表示为2.1×104.19万用科学记数法表示为1.9×10^5,0.0007用科学记数法表示为7×10^-4.知识点三:科学记数法、近似数科学记数法是一种表示极大或极小数的方法,它的基本形式是a×10^n,其中1≤a<10,n为整数。
第一章 数与式第一讲 实数的分类与相关概念一、实数的分类重温知识1. 正负数的意义:用来表示具有相反意义的量2. 实数的分类:(1)按定义分 (2)按性质分⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无理数负分数正分数负整数正整数有理数实数0 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧负无理数负有理数负实数正无理数正有理数正实数实数3.常见的几种无理数的形式: (1)π及化简后含π的数,如2π,3+π等; (2)开方开不尽的数,如5332,,等;(3)有规律但不循环的无限小数,如0.3030030003...(两个3之间依次多一个0)等;(4)一些三角函数值,如︒︒30tan 60sin ,等; 注意:判断一个数是否是无理数,要看它最终结果是不是无限不循环小数.例题点拨例1:(2017,聊城)纽约、悉尼与北京时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):则当北京6月15日23时,悉尼、纽约的时间分别是( )A. 6月16日1时;6月15日10时B. 6月16日1时;6月14日10时C. 6月15日21时;6月15日10时D. 6月15日21时;6月16日12时例2:(2017,湖州)实数02122,,,中,无理数是( ) A.2 B.2 C.21D.0例3:在49...001010010.07220232018---+,,,,,,,π这7个数中,有理数的个数为( )A.4B.5C.6D.7随堂演练1.(2016,盐城)在体育课的跳远比赛中,以4.00米为标准,如果小东跳出了4.22米,可记作+0.22,那么小东跳出了3.85米,记作( )A.-0.15B.+0.22C.+0.15D.-0.222.(2017,成都)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则−7℃表示气温为 ( )A. 零上3℃B. 零下3℃C. 零上7℃D. 零下7℃3.(2016,金华)如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A.Φ45.02B.Φ44.9C.Φ44.98D.Φ45.01 4.(2017,宁波)在2,0,21,3-这四个数中,为无理数的是( ) A. 3 B.21C. 0D. −2 5.(2018,温州)给出4个实数1025-,,,,其中负数是( ) A.5 B.2 C.0 D.1- 6.(2016,烟台)下列实数中,有理数是( ) A.8 B.34 C.2πD. 0.101 001 001 7.有下列四个论断,①31-是有理数;②22是分数;③2.131131113(每两个3之间依次多1个1)…是无理数;④π是无理数,其中正确的是( )A.4个B.3个C.2个D.1个二、实数的有关概念重温知识1.数轴:(1)概念:规定了 、 和 的直线叫做数轴 (2) 和数轴上的点是一一对应的. 2.相反数:(1)只有 不同的两个数互为相反数; (2)b a b a ,⇔=+0互为相反数;(3)实数)0(≠a a 的相反数是 ,特别地,0的相反数是 ;(4)几何意义:在数轴上,表示相反数的两个点位于原点的两侧,且到原点的距离 . 3.绝对值:(1)几何意义:绝对值是数轴上表示数a 的点到原点的距离,记作a ;离原点越远的数绝对值越大;(2)代数意义:正数的绝对值为它本身;负数的绝对值为它的相反数;0的绝对值还是0 注意:对于任何有理数a ,总有0≥a ;若)0(≥=a a x ,则a x ±= 4.倒数:(1)b a ,互为倒数0=∙⇔b a ;(2)实数)0(≠a a 的倒数是 ,0没有倒数, 的倒数是它本身.例题点拨例1:下列数轴的画法正确的是( )例2:(2017,广州)如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为( )A.-6B.6C.0D.无法确定 例3:写出下列各数的绝对值:327-, )6(--, 3-π, π-14.3, 32-例4:(2014,东营)81的平方根是( )A.3±B.3C.9±D.9 例5:(2018,济宁)31-的值是( )A. 1B.1-C.3D.3-随堂演练1.(2018,枣庄)31-的倒数是( ) A.3 B.3- C.31 D.31-2.(2016,福州)A ,B 是数轴上两点,线段AB 上的点表示的数中,互为相反数的是( )3.(2018,济南)4的算数平方根是( )A.2B.2-C.2±D.2 4.8的相反数的立方根是( ) A. 2 B.21 C.2- D.21- 5.(2013,聊城)()32-的相反数是( ) A.6- B.8 C.61- D.816.下列实数中是无理数的是( )A.1B.2C.3-D.317.(2015,烟台)如图,数轴上点A ,B 所表示的两个数的和的绝对值是____.8.(2018,潍坊)=-21( )A.21-B.12-C.21+D.21--9.(2016,威海)实数a,b 在数轴上的位置如图所示,则|a |−|b |可化简为( )A. a−bB. b−aC. a +bD. −a−b 10.(2018,重庆)下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0.B.如果一个数的倒数等于这个数本身,那么这个数一定是1.C.如果一个数的平方等于这个数本身,那么这个数定是0.D.如果一个数的算术平方根等于这个数本身,那么这个数定是0.11.(2018,滨州)若数轴上点A ,B 分别表示数2,2-,则A ,B 两点之间的距离可以表示为( )A.)2(2-+B.)2(2--C.2)2(+-D.2)2(--12.(2016,贵阳模拟)有理数a 、b 、c 在数轴上对应的点中图所示,则下列式子中正确的是( )A. ac >bcB. |a −b |=a −bC. −a <−b <cD. −a −c >−b −c。