微星MS主板电路图工厂资料
- 格式:pdf
- 大小:786.73 KB
- 文档页数:37
第一部分,纽扣电池(此时不插电源线)BAT经过双二极管D16以及跳线为南桥COMS电路提供基本供电,32.768起振。
同时BAT还链接到F71882,用于检测电池电量。
第二部分,接上电源线(不点击开机按钮)接上电源线后,5VSB通过UP7706稳压模块产生3VSB,为南桥和IO(F71882)提供待机电压。
当此电压稳定以后IO输出RSMRST#(高电平)到南桥意思是告诉南桥电源线已插入3.3VSB输出稳定。
至此待机部分结束!第三部分(之一),点击开机键之开机电路出发开机按钮后产生PWRBTIN (有5VSB上拉电压)送给IO的80脚,IO 受到这个跳变信号后发出81脚PWRBTN#(低电平有效)给南桥,南桥接收到这个信号后如果之前送给南桥的RSMRST#无问题,南桥将陆续送出SLP_S5#,SLP_S4#,和SLP_S3#。
其中SLP_S3#这个信号送到IO的82脚,当IO收到这个信号后从83脚PSON#拉低ATX电源插座的绿色线。
3.3V,5V,12V发出。
开机完成.第三部分(之二)全板电压的产生UP7501的作用是产生全板的第一个电压5VDIMM,并且提供基准电压的开启信号。
S3#,S5#此时早已送到芯片的5脚6脚,但此时1脚还没有得到VCC5供电所以此时芯片不能产生5VDRV1。
因为1脚和Q53的D极相连,此时Q53的G极接5VSB此管导通(N沟道场馆G极电压大于S极电压导通)拉低了UP7501一脚的电压,要想使U1得到VCC5供电Q53必须截止,Q53受控于Q52,Q52受控于VCC3的正常输出,也就是说VCC3正常发出并稳定以后,经过R296,R299的电阻分压将使Q52导通,Q53截止从而使U1的1脚得到供电,从而产生5VDRV1。
5VDRV1的作用有2个,其一是提升5VDIMM和3VSB的输出功率,其二是开启基准电压产生芯片和作为USB供电开启信号的开启条件之一。
作用一:5VDRV1加到Q10的控制极使其导通这样VCC5和5VSB经过Q10(有上拉12V)和Q11共同产生5VDIMM提升输出功率。
主板供电电路图解说明主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。
简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。
但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。
主板上的供电电路原理图1图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。
+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。
再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。
单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。
图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。
图2但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能、导体的电阻,都是影响Vcore的要素。
主板开机电路的构成及工作原理图核心提示:一、开机电路的构成及工作原理PWR:主机上的电源开关原理:在按下PWR开关之前,主机上只有紫线和绿有电,紫线为5VSB(待机电压)。
南桥或I/O内部集成了开机触发电路,所有的开机触发电路都是舜间低电平有效(除83627系列I/O),按下PWR开关后会产生舜间的一、开机电路的构成及工作原理PWR:主机上的电源开关原理:在按下PWR开关之前,主机上只有紫线和绿有电,紫线为5VSB(待机电压)。
南桥或I/O内部集成了开机触发电路,所有的开机触发电路都是舜间低电平有效(除83627系列I/O),按下PWR开关后会产生舜间的低电平,南桥开机触发电路工作后发输出迟续的高电平,I/O内部的开机触发电路工作后输出迟续的低电平。
一些厂家的主板上集成了自己的开机复位芯片,不通过南桥或I/O开机,原理是一样的。
二、开关的三种方式常见主板开机电路图一、开机线路图1、VIA大多由南桥开机,有83977EFI/O的由I/O开机2、inter主板较,83627高进高出,8702、8712低进低出3、SIS开机电路4、VIA多,370、462主板常见故障现象:无法软关机,开机不稳定时好时坏,多为门电路坏二、I/O开机图1、132门电路容易损坏2、83627I/O中第67脚有3.3V高电平(点PWR不机,且67脚有3.3V电压为I/O坏,少数为南桥坏)3、83627第67脚为0V,查南桥待机电压,拆下I/O测4、83627第67脚为0V-1V,I/O坏5、83627I/O损坏的故障现象:不开机、能开机不能关机、复位灯常亮第一种两针短接后为低电平,第二种两短接后都为低电平,第三种两针短接后都为高电平三、开机电路检修流程1.查PWR开关处是否有3.3V左右的高电平。
(查开关到紫线之间的线路)2.按下PWR开关时测量是否有瞬间低电平触发南桥或I/O。
3.查绿线到南桥或I/O之间的线路。
故障现象:开机后通下电,马上断电按PWR无反应,这种现象称为电源保护,多为黄、红线短路,用断路法逐个断开与短路电压相关的元件。
微星MS7309主板上电时序微星MS7309主板时序第一部分:等待开机待机有三个条件:3VSB、25M晶振、PWRGD_SB。
一、纽扣电池供电:纽扣电池(此时不插电源线)BAT经过双二极管D22以及D28为桥(PBGA692)提供基本供电VBAT,25M晶振起振。
同时BAT还通过双二极管D22和电阻R699产生VBAT0链接到F71882的82脚,用于检测电池电量。
- 1 -VBAT通过R6产生信号COPEN#送到I/O(F71889ED的83脚,使该脚为高电平。
二、插入ATX电源,+5SB为主板供电1、5VDRV1的产生:当插入ATX电源,+5VSB为主板的部分电路供电,I/O的71脚(VCCGATE)为高电平,通过Q41产生5VDRV1.它的主要作用控制Q37 - 2 -的导通,提升3VDUAL的输出功率(用UP7704产生);应用在3VSB_WAKE 产生电路,同样提升3VSB_WAKE的功率。
- 3 -2、VCC_5SB的产生:当插入ATX电源,+5VSB通过Q110转换成VCC_5SB,主要是把电流从4A降低到2A。
5VSBDRV1的产生:IO的72脚产生DUALGATE信号,VCC5_SB经电阻R465和R466分压,产生此信号。
3、+3.3VDUAL的产生:产生方式可以有两种,一是通过1117来产生,二是通- 4 -过UP7501来产生。
(1)、通过U28(RC117S)产生:通过(2)通过UP7704产生,其2脚受控于信号sys5VSB_OFF,这个信号由IO的47脚产生,同时控制USB接口和5vSB POWER SWITH。
4、VSB3V的产生:3VDUAL(1.2A)通过D32产生VSB3V为IO的65脚供电。
- 5 -5、POWER GOOD_SB的产生条件正常的情况下,由81脚发出RSMRST#到桥的H6端(PWRGD_SB)IO在工作通知桥电源准备好,DUAL电源稳定后该信号为高电平,同时加到Q80的G极,使Q80导通,3VDUAL代替CMOS电池为IO供电。
计算机主板各供电电路图解主板上的供电电路常见有CPU供电电路,内存供电电路,AGP、PCI、ISA供电电路以及I/O供电电路等,这些电源电路一种是开关电源,由双场效应管(MOSFT管)和电感线圈、电解电容组成;另一种是低压差线性调压芯片组成的调压电路。
这两种电路都能够为主板上不同的芯片和组件提供精密的电源电压。
1、CPU供电电路为了降低CPU制造成本,CPU核心电压变得越来越低,于是把ATX电源供给主板的12V、5V和3.3V直流电通过CPU的供电电路来进行高直流电压到低直流电压转换。
(1)CPU供电电路组成由于CPU工作在高频、大电流状态,它的功耗非常大。
因此,CPU供电电路要求具有非常快速的大电流响应能力,同时干扰少。
CPU供电电路使用开关电源,该电源由控制(电源管理)芯片、场效应管、电感线圈和电解电容等元件组成,其中控制芯片主要负责识别CPU供电幅值,振荡产生相应的矩形波,推动后级电路进行功率输出(控制芯片的型号常见有:HIP630l、CS5301、TL494、FAN5056等),场效应管起开关控制作用,电感线圈和电解电容起滤波作用。
主板的CPU供电电路框图如图1所示。
主板的CPU供电电路框:图1 CPU供电电路框图开机后,当控制芯片获得ATX电源输出的+5V或+12V供电后,为CPU提供电压,接着CPU电压自动识别引脚发出电压识别信号VID 给控制芯片,控制芯片通过控制两个场效应管导通的顺序和频率,使其输出的电压与电流达到CPU核心供电要求,为CPU提供工作需要的供电。
CPU的供电方式又分为许多种,有单相供电电路、两相供电电路、多相供供电电路。
(2)CPU供电电路原理图2是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源。
+12V是来自ATX电源的输入,通过一个由电感线圈L1和电容C1组成的滤波电路,然后进入两个开关管(场效应管)组成的电路,此电路受到PMW控制芯片控制(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的输出所要求的电压和电流,再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线,这就是“多相”供电中的“一相”,即单相。
主板供电电路图解说明主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。
简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。
但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。
主板上的供电电路原理图1图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。
+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。
再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。
单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。
图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。
图2但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能、导体的电阻,都是影响Vcore的要素。