图像的几何特征
- 格式:ppt
- 大小:396.50 KB
- 文档页数:30
⼆值图像的⼏何性质⼆值图像 b(x,y) = 1 表⽰前景部分,b(x,y) = 0 表⽰背景部分。
其基本⼏何特性包括:‘1 ⾯积对整个图像区域进⾏积分,使⽤零阶矩表⽰为。
2 位置将图像区域看作⼀种均匀物质构成得平⾯,物体得质⼼即为区域中⼼;使⽤⼀阶矩表⽰如下:,,进⼀步改写得:,。
3 朝向假设物体沿某⼀⽅向⽐较长,其正交⽅向⽐较短,该⽅向定义为物体朝向。
使⽤最⼩转动惯量来定义物体长轴,即寻找⼀条直线,使得物体上所有点到直线上距离平⽅和最⼩,定义如下:, r 表⽰物体上点到直线的最⼩距离。
通过最⼩化 E,可以计算出物体朝向直线,具体如下:1)假设⼆值图像朝向直线已知,使⽤定义为,如下图:如上图所⽰,由于,可以建⽴等式,化简得。
2)对直线 L 上任意点,以点作为参考点,建⽴参数⽅程如下:,s 表⽰点距离参考点的距离。
3)由于,(x,y) 表⽰图像上的点,表⽰直线上的点,将参数⽅程带⼊该等式,使得两个变量简化为⼀个变量 s,如下:,,对 s 求导,当导数为零时表⽰(x,y)到直线 L 上距离最近,计算得,将 s 带⼊得,,最终推导出转动惯量⽅程为,其中,为待求解直线参数。
4)令,,将⽆关变量提出积分符号前,同时除以得,由于为图像中⼼,则最⼩转动惯量对应得轴过图像中⼼。
5)通过 4)结论,直线 L 的确定可转换为对选择⾓度的求解,具体如下:令,将图像上点绝对坐标转换为相对于图像中⼼的相对坐标,带⼊直线 L ⽅程得:,重新改写,当前 E 仅包含未知量,再次改写,其中,,,使⽤倍⾓公式,,,通过以上分析,⼆值图像朝向直线为经过中⼼点,且满⾜的直线,其中,a, b, c 为图像⼆阶矩。
4 形状在分析⼆值图像朝向时,,该⽅程是关于的⼆次⽅程,其系数 a, b, c 为可构成⼀个 2*2 矩阵,通过分析该矩阵的特征值与特征向量可以估计出⼆值图像的形状,具体如下:,通过分析特征值与特征向量,可的如下结论:1)较⼤特征值对应的特征向量⽅向即为⼆值图像朝向;2)两个特征值相差越⼩,⼆值图像越接近圆形。
3.2.3 侧视雷达图像的几何特征侧视雷达图像在垂直飞行方向(y)的像点位置是以飞机的目标的斜距来确定,见图3-27所示,称之为斜距投影。
图像点的斜距算至地面距离为:(3-17)飞行方向(x)则与推扫式扫描仪同。
由于斜距投影的特性,产生以下几种图像的几何特点:1、垂直飞行方向(y)的比例尺由小变大,见图3-28所示。
地面上有A、B、C 三段距图3-27斜距投影离相等,投影至雷达图像上为a、b、c。
由于c>b>a,因此。
显然这是由于com的作用造成的。
从图3-27中可知:地面上AB线段投影到影像上为ab,比例尺为:(3-18)弧线Aaˊ┴SB。
假定:弧线近假为直线段,并且∠AaˊB也近似为直角。
则变成通式(3-19)考虑到实测的斜距是按比例尺缩小为影像,因此在侧视方向上的比例尺为:(3-20)可见,°,cos,即趋于0°时比例尺大,而°,cos,即趋于90°时比例尺小。
2、山体前倾,朝向传感器的山坡影像被压缩,而背向传感器的山坡被拉长,与中心投影相反,还会出现不同地物点重影现象。
如图3-29所示,地物点AC之间的山坡在雷达图3-28 侧视雷达影像的比例尺图像上被压缩,在中心投影像片上是拉伸,CD之间的山坡出现的现象正好相反。
地物点A和B在雷达图像上出现重影,在中心投影像片中不会出现这种现象。
图3-29重影现象3、高差产生的投影差亦与中心投影影像投影差位移的方向相反,位移量也不同。
见图3-30所示。
投影差(3-21)而(3-22)图3-30投影差由于所以取(3-23)当△h>0时,也大于0为正值,反之为负值。
投影差改正时用加法:。
初三椭圆图像特征与画法椭圆是数学中一种重要的曲线形状,具有独特的特征和美观的图像。
在初三学习中,了解椭圆的特征以及正确的画法对于深入理解几何知识和提高绘图技能非常重要。
本文将介绍初三阶段学生可以掌握的椭圆图像特征和正确的画法。
一、椭圆的特征椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点的集合。
其中,F1和F2称为椭圆的焦点,2a为椭圆的长轴长度。
椭圆还具有以下特征:1. 椭圆的中点为中心点O,中心点到焦点的距离为c。
2. 椭圆的长轴长度2a与焦点之间的距离满足关系:2ae=2ac=2a。
3. 椭圆的短轴长度为2b,其中b的计算公式为b=sqrt(a^2-c^2)。
二、椭圆的画法在画椭圆时,需要掌握正确的步骤和方法。
下面将介绍一种常用的画椭圆的方法,即通过划定矩形框架和关键点的位置。
步骤一:确定椭圆的中心点和长轴长度首先,在纸上选择一个点作为椭圆的中心点O,然后确定椭圆的长轴长度2a。
可以使用尺子测量出适当的长度,或者取两个点F1和F2,使得两点与中心点的距离等于2a。
步骤二:画一个矩形边框以中心点O为中心,以长轴长度2a和短轴长度2b为边长,画一个矩形边框。
此时,矩形的两个侧边分别与椭圆相切。
步骤三:在边框上确定关键点的位置通过计算得到椭圆的焦点F1和F2,将这两个点分别标记在矩形边框的上下两侧。
这两个焦点与中心点O共同构成椭圆的关键点。
步骤四:连接关键点在矩形边框的左右两侧,分别与焦点F1和F2相连,形成一个椭圆形状的闭合曲线。
此时,可以用光滑的曲线连接焦点和关键点,使得椭圆的图像更加美观。
步骤五:擦除边框根据画好的椭圆,可以将矩形边框部分擦除,只保留椭圆的图像。
在保持椭圆形状的基础上,去掉多余的线条,使得椭圆更加清晰。
通过以上的画法步骤,初三学生可以较好地掌握椭圆的画法,练习时可以注意以下几点:1. 画椭圆时要保持手稳,尽量减少抖动,使得图像的线条更加流畅。
2. 可以使用铅笔轻轻地描绘关键点和轮廓线,之后再加深线条,以保持图像的正确性。
一般来说,目前的图形(图像)格式大致可以分为两大类:一类为位图;另一类称为描绘类、矢量类或面向对象的图形(图像)。
前者是以点阵形式描述图形(图像)的,后者是以数学方法描述的一种由几何元素组成的图形(图像)。
一般说来,后者对图像的表达细致、真实,缩放后图形(图像)的分辨率不变,在专业级的图形(图像)处理中运用较多。
在介绍图形(图像)格式前,我们实在有必要先了解一下图形(图像)的一些相关技术指标:分辨率、色彩数、图形灰度。
分辨率:分为屏幕分辨率和输出分辨率两种,前者用每英寸行数表示,数值越大图形(图像)质量越好;后者衡量输出设备的精度,以每英寸的像素点数表示;色彩数和图形灰度:用位(bit)表示,一般写成2的n次方,n代表位数。
当图形(图像)达到24位时,可表现1677万种颜色,即真彩。
灰度的表示法类似;下面我们就通过图形文件的特征后缀名(就是如图.bmp这样的)来逐一认识当前常见的图形文件格式:BMP、DIB、PCP、DIF、WMF、GIF、JPG、TIF、EPS、PSD、CDR、IFF、TGA、PCD、MPT。
BMP(bit map picture):PC机上最常用的位图格式,有压缩和不压缩两种形式,该格式可表现从2位到24位的色彩,分辨率也可从480x320至1024x768。
该格式在Windows环境下相当稳定,在文件大小没有限制的场合中运用极为广泛。
DIB(device independent bitmap):描述图像的能力基本与BMP相同,并且能运行于多种硬件平台,只是文件较大。
PCP(PC paintbrush):由Zsoft公司创建的一种经过压缩且节约磁盘空间的PC位图格式,它最高可表现24位图形(图像)。
过去有一定市场,但随着JPEG的兴起,其地位已逐渐日落终天了。
DIF(drawing interchange formar):AutoCAD中的图形文件,它以ASCII方式存储图形,表现图形在尺寸大小方面十分精确,可以被CorelDraw,3DS等大型软件调用编辑。