数字图像处理 第三章 图像的基本运算
- 格式:pptx
- 大小:3.74 MB
- 文档页数:59
数字图像处理_图像基本运算图像基本运算1点运算线性点运算是指输⼊图像的灰度级与输出图像呈线性关系。
s=ar+b(r为输⼊灰度值,s为相应点的输出灰度值)。
当a=1,b=0时,新图像与原图像相同;当a=1,b≠0时,新图像是原图像所有像素的灰度值上移或下移,是整个图像在显⽰时更亮或更暗;当a>1时,新图像对⽐度增加;当a<1时,新图像对⽐度降低;当a<0时,暗区域将变亮,亮区域将变暗,点运算完成了图像求补; ⾮线性点运算是指输⼊与输出为⾮线性关系,常见的⾮线性灰度变换为对数变换和幂次变换,对数变换⼀般形式为:s=clog(1+r)其中c为⼀常数,并假设r≥0.此变换使窄带低灰度输⼊图像映射为宽带输出值,相对的是输出灰度的⾼调整。
1 x=imread('D:/picture/DiaoChan.jpg');2 subplot(2,2,1)3 imshow(x);4 title('原图');5 J=0.3*x+50/255;6 subplot(2,2,2);7 imshow(J);8 title('线性点变换');9 subplot(2,2,3);10 x1=im2double(x);11 H=2*log(1+x1);12 imshow(H)13 title('⾮线性点运算');%对数运算幂次变换⼀般形式:s=cr^γ幂级数γ部分值把窄带暗值映射到宽带输出值下⾯是⾮线性点运算的幂运算1 I=imread('D:/picture/DiaoChan.jpg');2 subplot(2,2,1);3 imshow(I);title('原始图像','fontsize',9);4 subplot(2,2,2);5 imshow(imadjust(I,[],[],0.5));title('Gamma=0.5');7 imshow(imadjust(I,[],[],1));title('Gamma=1');8 subplot(2,2,4);9 imshow(imadjust(I,[],[],1.5));title('Gamma=1.5');2代数运算和逻辑运算加法运算去噪处理1 clear all2 i=imread('lenagray.jpg');3 imshow(i)4 j=imnoise(i,'gaussian',0,0.05);5 [m,n]=size(i);6 k=zeros(m,n);7for l=1:1008 j=imnoise(i,'gaussian',0,0.05);9 j1=im2double(j);10 k=k+j1;11 End12 k=k/100;13 subplot(1,3,1),imshow(i),title('原始图像')14 subplot(1,3,2),imshow(j),title('加噪图像')15 subplot(1,3,3),imshow(k),title(‘求平均后的减法运算提取噪声1 I=imread(‘lena.jpg’);2 J=imnoise (I,‘lena.jpg’,0,0.02);3 K=imsubtract(J,I);4 K1=255-K;5 figure;imshow(I);7 figure;imshow(K1);乘法运算改变图像灰度级1 I=imread('D:/picture/SunShangXiang.jpg')2 I=im2double(I);3 J=immultiply(I,1.2);4 K=immultiply(I,2);5 subplot(1,3,1),imshow(I);subplot(1,3,2),imshow(J);6 subplot(1,3,3);imshow(K);逻辑运算1 A=zeros(128);2 A(40:67,60:100)=1;3 figure(1)4 imshow(A);5 B=zeros(128);6 B(50:80,40:70)=1;7 figure(2)8 imshow(2);9 C=and(A,B);%与10 figure(3);11 imshow(3);12 D=or(A,B);%或13 figure(4);14 imshow(4);15 E=not(A);%⾮16 figure(5);17 imshow(E);3⼏何运算平移运算实现图像的平移1 I=imread('lenagray.jpg');2 subplot(1,2,1);3 imshow(I);4 [M,N]=size(I);g=zeros(M,N);5 a=20;b=20;6for i=1:M7for j=1:N8if((i-a>0)&(i-a<M)&(j-b>0)&(j-b<N)) 9 g(i,j)=I(i-a,j-b);10else11 g(i,j)=0;12 end13 end14 end15 subplot(1,2,2);imshow(uint8(g));⽔平镜像变换1 I=imread('lena.jpg');2 subplot(121);imshow(I);3 [M,N]=size(I);g=zeros(M,N);4for i=1:M5for j=1:N6 g(i,j)=I(i,N-j+1);7 end8 end9 subplot(122);imshow(uint8(g));垂直镜像变换1 I=imread('lena.jpg');2 subplot(121);imshow(I);3 [M,N]=size(I);g=zeros(M,N);4for i=1:M5for j=1:N6 g(i,j)=I(M-i+1,j);7 end8 end9 subplot(122);imshow(uint8(g));图像的旋转1 x=imread('D:/picture/DiaoChan.jpg');2 imshow(x);3 j=imrotate(x,45,'bilinear');4 k=imrotate(x,45,'bilinear','crop');5 subplot(1,3,1),imshow(x);6 title(‘原图')7 subplot(1,3,2),imshow(j);8 title(‘旋转图(显⽰全部)')9 subplot(1,3,3),imshow(k);10 title(‘旋转图(截取局部)')⼏种插值法⽐较1 i=imread('lena.jpg');2 j1=imresize(i,10,'nearest');3 j2=imresize(i,10,'bilinear');4 j3=imresize(i,10,'bicubic');5 subplot(1,4,1),imshow(i);title(‘原始图像')6 subplot(1,4,2),imshow(j1);title(‘最近邻法')7 subplot(1,4,3),imshow(j2);title(‘双线性插值法')8 subplot(1,4,4),imshow(j3);title(‘三次内插法')放缩变换1 x=imread('D:/picture/ZiXia.jpg')2 subplot(2,3,1)3 imshow(x);4 title('原图');5 Large=imresize(x,1.5);6 subplot(2,3,2)7 imshow(Large);8 title('扩⼤为1.5');9 Small=imresize(x,0.1);10 subplot(2,3,3)11 imshow(Small);12 title('缩⼩为0.3');13 subplot(2,3,4)14 df=imresize(x,[600700],'nearest');15 imshow(df)16 title('600*700');17 df1=imresize(x,[300400],'nearest');18 subplot(2,3,5)19 imshow(df1)20 title('300*400');后记:(1)MATLAB基础知识回顾1:crtl+R是对选中的区域注释,ctrl+T是取消注释2:有的代码中点运算如O=a.*I+b/255 ,其中b除以255原因是:灰度数据有两种表式⽅法:⼀种是⽤unit8类型,取值0~255;另⼀种是double类型,取值0~1。
《数字图像处理》习题参考答案第1章概述1.1 连续图像和数字图像如何相互转换?答:数字图像将图像看成是许多大小相同、形状一致的像素组成。
这样,数字图像可以用二维矩阵表示。
将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。
图像的数字化包括离散和量化两个主要步骤。
在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。
1.2 采用数字图像处理有何优点?答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点:1.具有数字信号处理技术共有的特点。
(1)处理精度高。
(2)重现性能好。
(3)灵活性高。
2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。
3.数字图像处理技术适用面宽。
4.数字图像处理技术综合性强。
1.3数字图像处理主要包括哪些研究内容?答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。
1.4 讨论数字图像处理系统的组成。
列举你熟悉的图像处理系统并分析它们的组成和功能。
答:如图1.8,数字图像处理系统是应用计算机或专用数字设备对图像信息进行处理的信息系统。
图像处理系统包括图像处理硬件和图像处理软件。
图像处理硬件主要由图像输入设备、图像运算处理设备(微计算机)、图像存储器、图像输出设备等组成。
软件系统包括操作系统、控制软件及应用软件等。
图1.8 数字图像处理系统结构图11.5 常见的数字图像处理开发工具有哪些?各有什么特点?答.目前图像处理系统开发的主流工具为Visual C++(面向对象可视化集成工具)和MATLAB 的图像处理工具箱(ImageProcessingToolbox)。
两种开发工具各有所长且有相互间的软件接口。
Microsoft 公司的VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发出来的Win32程序有着运行速度快、可移植能力强等优点。
数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。
包括:采样和量化。
2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。
(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。
一幅数字图像中不同灰度值的个数称为灰度级。
二值图像是灰度级只有两级的。
(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。
采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。
2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。
量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。
2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。
2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。
(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。
2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。
(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。
(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。
第一章引言一.填空题1. 数字图像是用一个数字阵列来表示的图像。
数字阵列中的每个数字,表示数字图像的一个最小单位,称为像素2.像增强等;二是从图像到非图像的一种表示,如图像测量等。
5. 数字图像处理包含很多方面的研究内容。
其中,图像重建的目的是根据二维平面图像数据构造出三维物体的图像。
二.简答题1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。
①图像数字化:将一幅图像以数字的形式表示。
主要包括采样和量化两个过程。
②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。
③图像的几何变换:改变图像的大小或形状。
④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
如傅利叶变换等。
⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
2. 什么是图像识别与理解?图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将检测出来的人脸区域进行分析,确定其是否是该犯罪分子。
5. 简述图像几何变换与图像变换的区别。
①图像的几何变换:改变图像的大小或形状。
比如图像的平移、旋转、放大、缩小等,这些方法在图像配准中使用较多。
②图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
比如傅里叶变换、小波变换等。
第二章图像的基本概念一.填空题1. 量化可以分为均匀量化和非均匀量化两大类。
2. 采样频率是指一秒钟内的采样次数。
3. 图像因其表现方式的不同,可以分为连续图像和离散图像两大类。
3.5. 对应于不同的场景内容,一般数字图像可以分为二值图像、灰度图像和彩色图像三类。
数字图像处理复习第一章概述1. 图像的概念及数字图像的概念。
图-是物体透射或反射光的分布,是客观存在的。
像-是人的视觉系统对图的接受在大脑中形成的印象或反映,图像是图和像的有机结合,是客观世界能量或状态以可视化形式在二维平面上的投影。
数字图像是物体的一个数字表示,是以数字格式存放的图像。
2. 数字图像处理的概念。
数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程,以提高图像的实用性。
3. 数字图像处理的优点。
精度高、再现性好、通用性、灵活性强第二章数字图像处理基础1. 人眼视觉系统的基本构造P14 图2.1人眼横截面简图2. 亮度的适应和鉴别人眼对光亮度的适应性非常高,一般情况下跨度达到10的10次方量级,从伸手不见五指到闪光灯强曝光。
3.光强度与主观亮度曲线。
P15 图2.4光强度与主观亮度的关系曲线4. 图像的数字化及表达。
(采样和量化的概念)图像获取即图像的数字化过程,包括扫描、采样和量化。
采样:将空间上连续的图像变成离散点的操作 量化:将像素灰度转换成离散的整数值的过程5. 图像采样过程中决定采样空间分辨率最重要的两个参数。
采样间隔、采样孔径6. 图像量化过程中量化级数与量化灰度取值范围之间的关系量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.7. 像素的相邻领域概念(4领域,8领域)。
设为位于坐标处的一个像素(x+1,y ),(x-1,y ),(x,y+1),(x,y-1) 组成的4邻域,用)(4p N 表示。
(x+1,y+1),(x+1,y-1),(x-1,y+1),(x-1,y-1) 像素集用)p (N D 表示)(4p N 和)p (N D 合起来称为p 的8邻域,用)(8p N 表示。
8. 领域空间内像素距离的计算。
(欧式距离,街区距离,棋盘距离) p 和q 之间的欧式距离定义为: 22)()(),(t y s x q p D e -+-=p 和q 之间的4D 距离(也叫城市街区距离)定义为: t y s x q p D -+-=),(4p 和q 之间的8D 距离(也叫棋盘距离)定义为: ),max(),(8t y s x q p D --=第三章 图像的基本运算(书后练习3.2,3.9 ) 1. 线性点运算过程中各参数表示的含义(k ,b )。
第一章绪论1.模拟图像处理与数字图像处理主要区别表现在哪些方面?(什么是图像?什么是数字图像?什么是灰度图像?模拟图像处理与数字图像处理主要区别表现在哪些方面?)图像:是对客观对象的一种相似性的、生动性的描述或写真。
数字图像:一种空间坐标和灰度均不连续的、用离散数字(一般用整数)表示的图像。
灰度图像:在计算机领域中,灰度数字图像是每个像素只有一个采样颜色的图像。
在数字图像领域之外,“黑白图像”也表示“灰度图像”,例如灰度的照片通常叫做“黑白照片”。
模拟图像处理与数字图像处理主要区别:模拟图像处理是利用光学、照相方法对模拟图像的处理。
(优点:速度快,一般为实时处理,理论上讲可达到光的速度,并可同时并行处理。
缺点:精度较差,灵活性差,很难有判断能力和非线性处理能力)数字图像处理(称计算机图像处理,指将图像信号转换成数字格式并利用计算机对数据进行处理的过程)是利用计算机对数字图像进行系列操作,从而达到某种预期目的的技术.(优点:精度高,内容丰富,可进行复杂的非线性处理,灵活的变通能力,一只要改变软件就可以改变处理内容)2.图像处理学包括哪几个层次?各层次间有何区别和联系?数字图像处理可分为三个层次:狭义图像处理、图像分析和图像理解。
狭义图像处理是对输入图像进行某种变换得到输出图像,是一种图像到图像的过程。
图像分析主要是对图像中感兴趣的目标进行检测和测量,从而建立对图像目标的描述,图像分析是一个从图像到数值或符号的过程。
图像理解则是在图像分析的基础上,基于人工智能和认知理论研究图像中各目标的性质和它们之间的相互联系,对图像内容的含义加以理解以及对原来客观场景加以解译,从而指导和规划行动。
区别和联系:狭义图像处理是低层操作,它主要在图像像素级上进行处理,处理的数据量非常大;图像分析则进入了中层,经分割和特征提取,把原来以像素构成的图像转变成比较简洁的、非图像形式的描述;图像理解是高层操作,它是对描述中抽象出来的符号进行推理,其处理过程和方法与人类的思维推理有许多类似之处。
《数字图像处理》课程教学大纲【课程代码】:13319617【英文译名】:Digital Image Processing【适用专业】:地理信息系统【学分数】:3【总学时数】:48一、本课程教学目的和课程性质通过对本课程的学习,要求较深入地理解数字图像处理的基本概念、基础理论以及解决问题的基本思想方法,掌握基本的数字图像处理处理技术,了解与各个处理技术相关的应用领域。
该课程为专业选修课。
二、本课程的基本要求要求学生经过本课程的学习后,能熟练使用数字图像处理方法,具有一定的数字图像处理能力,并为以后进一步学习和研究其它数字图像处理方法和提高数字图像处理能力奠定基础。
掌握数字图象处理基本概念、掌握数字图象处理基本运算、理解图象的变换域处理、了数字图象处理的应用。
三、本课程与其他课程的关系先修课程:数学分析,概率与统计四、课程内容(内容体系、结构、基本知识点和重点、难点)该课程主要是让学生学习对航片数据和卫片数据的处理,学习一些基本的数字处理的方法,让学生了解地理信息系统中数据的主要获取方法。
主要的内容有数字图象处理基本概念、数字图象处理基本运算、图象的变换域处理和数字图象处理的应用。
重点是图象的变换域处理和数字图象处理的应用,难点是图象的变换域处理和数字图象处理基本运算。
第一章:数字图象处理基本概念在本章主要学习数字图象处理的一些基本概念。
主要的内容有图象和数字图象、数字化图象、基本的数字图象处理系统、基本术语、数字图象的显示。
重点:数字图象的基本术语和对数字图象的理解难点:基本的数字图象处理系统第二章:数字图象处理基本运算在该章主要是学习数字图象处理的一些运算方法。
主要的内容有灰度直方图、点运算、代数运算、几何运算。
重点:数字图象的代数运算和几何运算难点:灰度直方图第三章:图象的变换域处理在本章主要是学习数字图象处理的一些变换域理论和方法。
具体的内容有线性系统理论、Fourier变换(Fourier变换的性质、线性系统和Fourier变换、二维Fourier变换、相关和功率谱)、滤波器设计(低通滤波器、带通和带止滤波器、高频增强滤波器、最优线性滤波器设计)、离散图象变换(线性变换、基函数和基图象、正弦变换、矩形波变换、基于特征向量的变换、变换域滤波)、小波变换(连续小波变换、小波级数展开、离散小波变换)重点:线性系统理论和小波变换难点:Fourier变换和小波变换第四章:数字图象处理的应用在本章主要是学习数字图象处理的一些基本应用。
《数字图像处理》课程教学大纲Digital image processing一、教学目标及教学要求数字图像处理课程是智能科学与技术、数字媒体技术等专业的专业必修课。
主要目标及要求是通过该课程的学习,使学生初步掌握数字图像处理的基本概念、基本原理、基本技术和基本处理方法,了解数字图像的获取、存储、传输、显示等方面的方法、技术及应用,为学习相关的数字媒体、视频媒体和机器视觉等课程,以及今后从事数字媒体、视频媒体、图像处理和计算机视觉等领域的技术研究与系统开发打下坚实的理论与技术基础。
二、本课程的重点和难点(一)课程教学重点教学重点内容包括:图像的表示,空间分辨率和灰度级分辨率,图像直方图和直方图均衡,基于空间平滑滤波的图像增强方法,基于空间锐化滤波的图像增强方法,图像的傅里叶频谱及其特性分析,图像编码模型、霍夫曼编码和变换编码,图像的边缘特征及其检测方法,彩色模型,二值形态学中的有腐蚀运算和膨胀运算。
(二)课程教学难点教学难点包括:直方图均衡,二维离散傅里叶变换的若干重要性质、图像的傅里叶频谱及其特性分析,变换编码,小波变换的概念、嵌入式零树小波编码,图像的纹理特征及其描述和提取方法,Matlab图像处理算法编程。
三、主要实践性教学环节及要求本课程的实验及实践性环节要求使用Matlab软件平台,编写程序实现相关的数字图像处理算法及功能,并进行实验验证。
课程实验与实践共10学时,分别为:实验一:图像基本运算实验(2学时)。
实验二:图像平滑滤波去噪实验(2学时)。
实验三:图像中值滤波去噪实验(2学时)。
实验四:图像边缘检测实验(2学时)。
相关图像处理算法的课堂演示验证(2学时)。
要求每个学生在总结实验准备、实验过程和收获体会的基础上,写出实验报告。
四、采用的教学手段和方法利用多媒体课件梳理课程内容和讲授思路,合理运用启发式教学方式激发学生的思考力,采用讨论式教学方式增强教学过程的互动效果,理论教授与应用实例编程实践相结合,提高学生的分析和解决问题的能力。