浙江新昌中学、浦江中学、富阳中学2021年高三第一次联考技术试卷+答案
- 格式:pdf
- 大小:9.75 MB
- 文档页数:20
2023年高三化学对接新高考全真模拟试卷(二)(云南,安徽,黑龙江,山西,吉林五省通用)(考试时间:50分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回可能用到的相对原子质量:H 1 Li7 C12 N14 O16 Na 23 Mg 24 Al 27 P 31 S 32 Cl 35.5 K39 Ca 40 Cr52 Fe 56 Cu 64 Zn 65 Ag 108一、选择题:本题共7个小题,每小题6分。
共42分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(浙江省三校(新昌中学、浦江中学、富阳中学)2021届高三上学期第一次联考化学试题)新中国成立70年来,我国在载人飞船、北斗卫星、高铁、5G技术等领域取得了举世瞩目的成就。
它们均与化学有着密切联系。
下列说法正确的是A.“神舟十一号”宇宙飞船返回舱外表面使用的高温结构陶瓷是新型无机非金属材料,其主要成分是硅酸盐B.国庆阅兵中出现的直-20直升机使用了大量的新型材料,其中锂铝合金属于金属材料C.截止2019年11月我国光缆线路总长超过三千万公里,光纤的主要成分是碳化硅D.我国2020年发射的首颗火星探测器,其太阳能电池帆板的材料是二氧化硅【答案】B【详解】A. 高温结构陶瓷分为氧化铝陶瓷、氮化硅陶瓷、氮化硼陶瓷,其主要成分不是硅酸盐,故A错误;B. 锂铝合金属于合金,为金属材料,故B正确;C. 光纤的主要成分是二氧化硅,故C错误;D. 太阳能电池帆板的材料是单晶硅,故D错误。
故答案选:B。
NaClO是一种高效的漂白剂和氧2.(2022·黑龙江·大庆实验中学高三开学考试)亚氯酸钠()2化剂,制备亚氯酸钠的流程如下。
学习资料浙江省三校(新昌中学、浦江中学、富阳中学)高三英语上学期第一次联考试题浙江省三校(新昌中学、浦江中学、富阳中学)2021届高三英语上学期第一次联考试题第Ⅰ卷第一部分:听力(共两节,满分30分)做题时,先将答案标在试卷上.录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节:(共5小题;每小题1.5分,满分7.5分)听下面 5 段对话。
每段对话后有一个小题,从题中所给的 A、B、C 三个选项中选出最佳选项.听完每段对话后,你都有 10 秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍. 1. What will the man do first?A。
Learn more about prices。
B. Find a supplier。
C. Do reports.2。
When will the meeting be held?A. At 11:30。
B. At 12:00.C. At 1:00.3。
Why is the woman leaving work early?A。
To take care of her mother。
B. To post a package。
C。
To pick up a car。
4。
What are the speakers talking about in general?A。
A trip。
B. Food. C。
The weather。
5. What relation is the man to the woman?A。
Her customer。
B. Her co—worker。
C. Her boss。
第二节(共15小题;每小题1.5分,满分22。
5分)听下面 5 段对话或独白.每段对话或独白后有几个小题,从题中所给的 A、B、C 三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题 5 秒钟;听完后,各小题给出 5 秒钟的作答时间.每段对话或独白读两遍。
浙江省三校(新昌中学、浦江中学、富阳中学)2021届高三化学上学期第一次联考试题可能用到的相对原子质量:H 1 C 12N 14O 16 F 19 Na 23Al 27Si 28P 31S 32Cl 35.5K 39Ca 40Fe 56 Cu 64Zn 65Ag 108 I 127Ba 137一、选择题(本大题共25小题,每小题2分,共50分。
每个小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.下列物质因水解呈碱性的是A.CaO B.CuSO4C.KClO D.NaOH2.分离乙苯和乙醇,需要用到的仪器是A.B.C.D.3.实验测知K3C60熔融状态下能导电,关于K3C60的分析错误..的是A.是离子晶体B.是强电解质C.存在两种作用力D.阴阳离子个数比为20∶1 4.下列物质中,化学式能真正表示该物质分子组成的是A.KHCO3 B.S C.H3PO4D.SiO25.下列化学用语表示正确的是A.CF4的球棍模型:B.-CHO的电子式:C.硅元素的原子结构示意图:D.乙醇的结构式:C2H6O6.下列说法不正确的是A.煤是由有机化合物和无机物所组成的复杂的混合物B.石油的催化重整和煤的干馏均可以得到芳香烃C.“可燃冰”是天然气的水合物,外形似冰,易燃烧D.花生油、豆油、羊油和润滑油均属于高级脂肪酸甘油酯7.下列说法正确的是A.C60与C70互为同位素B.异丙苯和苯互为同系物C.H2O与D2O互为同素异形体D.乙醇和乙醚互为同分异构体8。
下列说法不正确的是A.石英是由硅原子和氧原子构成的原子晶体,每个原子的最外层都具有8电子稳定结构B.Na2O是离子晶体,其溶于水生成NaOH的过程中既有离子键的断裂又有共价键的形成C.现代科技已经能够拍到氢键的“照片”,直观地证实了水分子间的氢键是一个水分子中的氢原子与另一个水分子中的氧原子间形成的化学键D.硅晶体熔化与碘化氢分解需克服的化学键相同9.新中国成立70年来,我国在载人飞船、北斗卫星、高铁、5G技术等领域取得了举世瞩目的成就。
浙江省2021届高三三校联考(第一次联考)生物试题一、选择题(本大题共25小题,每小题2分,共50分)1.下列生理过程中,可以发生在人体内环境中的是()A.胰腺腺泡组织的分泌B.溶菌酶对细菌的杀灭C.剧烈运动时乳酸的产生D.下丘脑中调节激素的合成2.为了筛选出能产生脲酶的微生物,应当从下列哪一种环境中选择()A.施用尿素较多的农田B.施用氨肥较多的农田C.施用磷肥较多的农田D.落叶较多的地方3.关于能源物质,下列说法正确的是()A.ATP作为直接能源物质,生物体的生命活动都依赖ATP供能B.植物的多糖都在植物细胞内降解为单糖用于供能C.油脂作为良好贮能物质的结构基础是C、H比例高于等质量的糖D.作为生命物质的蛋白质不能提供能量4.下列关于几种育种方式的叙述中,正确的是()A.杂交育种可以获得稳定遗传的个体B.诱变育种可大幅提高有利变异的比例C.单倍体育种通过花药离体培养得到纯合二倍体,排除了显隐性干扰D.多倍体育种过程中不涉及到人工诱变5.下列关于人类与环境的相关叙述,正确的是()A.温室效应导致水温升高,从而使沿海海域发生赤潮B.公布城市空气质量时,无需公布的项目是二氧化碳含量C.在农田种植糯性品系和非糯性品系水稻增加了农田的物种多样性D.温室效应主要是由于CO2分子俘获热减少,热逸散增加6.对遗传病进行监测可在一定程度上有效地预防遗传病的发生。
下列措施合理的是()A.进行遗传咨询,以确定胎儿是否携带致病基因B.可将患者的缺陷基因诱变成正常基因C.禁止近亲结婚,因为近亲结婚是造成畸形胎的遗传原因之一D.需在人群中随机调查,以判断遗传方式7.关于日常生活中与细胞呼吸的联系,下列叙述正确的是()A.创可贴要求透气性好是为了促进好氧型细菌的增殖B.牛奶包装盒鼓起是细菌需氧呼吸产生CO2引起的C.利用酵母菌发面是因为酵母菌能产生乙醇使淀粉发生物理化学变化D.洪水导致植物烂根是因为抑制了根部细胞的需氧呼吸8.如图为细菌和动物细胞中主要遗传信息的表达过程,据图分析下列叙述正确的是()A.图甲细胞的转录和翻译是同时进行的B.图乙细胞中核糖体的翻译方向是3’到5’C.甲乙两种生物的起始密码都编码甲硫氨酸D.图乙细胞中转录过程所需原料和酶均在细胞核内合成9.如图所示为去除顶芽前后侧芽部位激素甲和乙的含量变化以及侧芽长度的变化情况。
绝密★考试结束前(高三暑假返校联考)Z20名校联盟(浙江省名校新高考研究联盟)2021届第一次联考技术试题卷第一部分:信息技术(共50分)一、选择题(本大题共12小题,每小题2分,共24分。
每小题给出的四个选项中,只有一个符合题目要求,不选、多选、错选均不得分)1.下列有关信息和信息技术的说法中,错误..的是A.传感器技术已经在智能手机中广泛使用B.计算机中所有的字符都采用ASCII码编码C.声音数字化的基本方法是采样和量化D.数据压缩技术提高了多媒体信息存储、处理和传输的效率2.下列有关网站和网页的说法中,正确的是A.使用“添加到收藏夹”功能可将网址收藏到指定的文件夹中B.使用搜索引擎搜索时,关键词越多,搜索结果越多C.网站内各个网页之间均需相互链接D.以“网页全部(*.htm;*.html)”类型保存网页,网页中的图像不会被保存3.在设计某校园一卡通管理系统时,使用Access软件创建的数据表部分界面如图所示。
下列说法正确的是A.该一卡通系统属于数据库管理系统B.同一身份证号不能同时办理两张校园卡C.当前不能对数据表“充消记录表”进行重命名操作D.“用户身份”的字段值可以输入“是”或“否”4.将下列数转换为十进制数,除以8后余数为1的是A.B50HB.100111BC.F59HD.111000B5.使用Goldwave软件打开某音频文件,选中其中一段音频后的部分界面如图所示。
下列说法正确的是A.当前状态下执行“删除”操作,则两个声道的2~4秒均为静音B.当前状态下执行“裁剪”操作,保持其他参数不变直接保存,存储容量约为344.5KBC.把音频文件“素材.wav”重命名为“素材.mp3”,可以实现声音格式的转换D.当前状态下执行“插入6秒静音”操作,音频的时长不变6.使用Photoshop软件编辑“算术.psd”,部分界面如图所示。
则当前文档的图像大小为A.300*400像素B.520*1000像素C.450*800像素D.1116*1400像素7.在VB中,若x、y都是正整数且表达式x Mod y=1为真,则下列关系表达式值一定为真的是A.x>yB.x\y=0C.x\y<>x/yD.x*y Mod 2=08.如第8题图是求112122++的流程图,则图中①处应填入的内容是A.A←1+12AB.A←2+1AC.A←112A+D.A←12A+9.有如下VB程序段:数组元素a(1)到a(5)的值依次为“1,3,4,2,3”,执行该程序段后,变量s的值为A.6B.7C.10D.1310.有如下VB程序段:执行该程序段后,变量c的值是A.abcdefB.abcdefghC.ghabcdefD.hgabcdef11.某冒泡排序算法的VB程序段如下:执行完上述程序段后,实现a数组元素有序排列,则划线处的代码可以是①n To n + 2- i Step –i ②n To i + 1 Step -1 ③2 To i ④2 To n-iA.②③B.②④C.①④D.①③12.某同学将对分查找程序进行了改编,程序运行时,自动产生9个[10,99]之间的不重复随机数并降序排列,在文本框Text1中显示。
2021年浙江新昌中学、浦江中学、富阳中学三校第一次联考高三上学期数学试卷-学生用卷一、选择题(本大题共10小题,每小题4分,共40分)1、【来源】 2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第1题4分2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第1题4分2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第1题4分已知集合A={x||2x−1|<6},B={x|2x+13−x⩽0},则A∩∁R B=().A. (−52,−12]∪(3,72)B. (−52,−12)∪[3,72)C. (−12,3]D. (−12,3)2、【来源】 2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第2题4分2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第2题4分2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第2题4分已知a∈R,若a1+i +1+i2(i为虚数单位)是实数,则实数a等于().A. 1B. 2C. 32D. 523、【来源】 2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第3题4分2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第3题4分2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第3题4分若{x⩾0 x−2y⩽0x+y−3⩾0,则z=x+3y的最小值是().A. 0B. 1C. 5D. 94、【来源】 2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第4题4分2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第4题4分2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第4题4分2020~2021学年10月山东青岛市南区青岛第三十九中学高三上学期月考第4题5分2017~2018学年10月河北邯郸临漳县临漳县第一中学高三上学期月考文科第6题5分设m,n是空间两条直线,α,β是空间两个平面,则下列选项中不正确的是().A. 当n⊥α时,"n⊥β”是“α//β”成立的充要条件B. 当m⊂α时,“m⊥β”是“a⊥β”的充分不必要条件C. 当m⊂α时,”n//α”是“m//n”必要不充分条件D. 当m⊂α时,“n⊥α”是“m⊥n”的充分不必要条件5、【来源】 2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第5题4分2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第5题4分2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第5题4分2013年上海奉贤区高三一模已知函数y=sinax+b(a>0)的图象如图所示,则函数y=log a(x+b)的图象可能是().A.B.C.D.6、【来源】 2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第6题4分2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第6题4分2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第6题4分已知F1,F2是双曲线C:x 2a2−y2b2=1(a>0,b>0)的左右两个焦点,若双曲线左支上存在一点P与点F2关于直线y=bax对称,则该双曲线C的离心率为().A. √52B. √5C. √2D. 27、【来源】 2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第7题4分2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第7题4分 2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第7题4分2012年高考真题四川卷理科第12题设函数f(x)=2x −cosx ,{a n }是公差为π8的等差数列,f(a 1)+f(a 2)+⋅⋅⋅+f(a 5)=5π,则[f(a 3)]2−a 1a 5=( ).A. 0B. 116π2 C. 18π2D. 1316π28、【来源】 2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第8题4分2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第8题4分 2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第8题4分 已知平面向量a →,b →,c →满足:|a →|=2,a →,b →的夹角为60°,且c →=−12a →+tb →(t ∈R ).则|c →|+|c →−a →|的最小值为( ).A. √13B. 4C. 2√3D. 9√349、【来源】 2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第9题4分2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第9题4分 2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第9题4分袋子A 中装有若干个均匀的红球和白球,从A 中有放回地摸球,每次摸出一个,摸出一个红球的概率是 13, 有3次摸到红球即停止.记5次之内(含5次)摸到红球的次数为ξ,则ξ 的数学期望Eξ=( ).A.13181 B.14381 C.433243 D. 59324310、【来源】 2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第10题4分2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第10题4分 2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第10题4分定义全集U 的子集A 的特征函数f A (x)={1,x ∈A 0,x ∈∁U A.这里∁U A 表示集合A 在全集U 中的补集.已知A ⊆U ,B ⊆U ,以下结论 不正确...的是( ). A. 若A ⊆B ,则对于任意x ∈U ,都有f A (x )⩽f B (x )B. 对于任意x ∈U ,都有f ∁U A (x )=1−f A (x )C. 对于任意x ∈U ,都有f A∩B (x )=f A (x )⋅f B (x )D. 对于任意x ∈U ,都有f A∪B (x )=f A (x )+f B (x )二、填空题(本大题共7小题,共36分)11、【来源】 2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第11题4分2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第11题4分2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第11题4分在2000多年前,古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究圆锥曲线:用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面倾斜到“和且仅和”圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线.已知一个圆锥的高和底面半径都为2,则用与底面呈45°的平面截这个圆锥,得到的曲线是.12、【来源】 2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第12题6分2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第12题6分2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第12题6分某几何体的三视图如图所示,且该几何体的体积是1,则正视图中的x的值是,该几何体的表面积是.13、【来源】 2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第13题6分2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第13题6分2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第13题6分已知多项式(x2+1)(x−1)5=a0+a1(x+1)+a2(x+1)2+⋯+a7(x+1)7,则a1+a2+⋯+a7=,a4=.14、【来源】 2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第14题6分2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第14题6分2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第14题6分(0<θ<π),则tanθ=,sin2(θ−已知sinθ+cosθ=−713π)=.415、【来源】 2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第15题4分2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第15题4分2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第15题4分2020~2021学年福建福州仓山区福建师范大学附属中学高二上学期期中B卷第14题5分过x−y−2=0上一点P(x0,y0)作直线与x2+y2=1相切于A,B两点.当x0=3时,切线长|PA|为;当|PO|⋅|AB|最小时,x0的值为.16、【来源】 2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第16题4分2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第16题4分2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第16题4分2004年全国高中数学联赛竞赛一试第12题9分在平面直角坐标系xOy中,给定两点M(−1,2)和N(1,4),点P在x轴上移动,当∠MPN取最大值时,点P的横坐标为.17、【来源】 2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第17题4分2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第17题4分2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第17题4分)lnx恒成立,则实数a的最小值若对任意x>0,不等式a(e ax+1)⩾2(x+1x为.三、解答题(本大题共5小题,共74分)18、【来源】 2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第18题15分2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第18题15分2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第18题15分在①A+C=2B②a+c=2b这两个条件中任选一个,补充在下面问题中,并求解.问题:已知△ABC内角A,B,C的对边分别为a,b,c,若b=2,,试求sinA⋅sinB⋅sinC的范围.19、【来源】 2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第19题15分2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第19题15分2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第19题15分如图,在四棱锥E−ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=DE=3,F为DE的中点.(1) 求证:BE//平面ACF.(2) 求BE与平面BCF所成角的正弦值.20、【来源】 2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第20题15分2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第20题15分2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第20题15分已知数列{a n}的首项a1,前n项之和S n,满足S n=n2+na12,数列{b n}的前n项之和T n,满足(q−1)T n=qb n−1(q>0),n∈N∗.(1) 若对任意正整数n都有a n⩽b n+1成立,求正数q的取值范围.(2) 当q=2,数列{c n}满足:c n=a n+2S n⋅b n+1,求证:32⩽c1+c2+⋅⋅⋅+c n<2.21、【来源】 2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第21题15分2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第21题15分2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第21题15分已知椭圆Γ:x 2a2+y2b2=1(a>b>0)左顶点为A,离心率为√32,且过点(√3,12).(1) 求Γ的方程.(2) 过抛物线C:y2=2px(p>0)上一点P的切线l交Γ于D,E两点,线段DE,PA的中点分别为M,N.求证:对任意p>0,都存在这样的点P,使得MN所在直线平行于y轴.22、【来源】 2021年浙江绍兴新昌县浙江省新昌中学高三上学期高考模拟(三校第一次联考)第22题15分2021年浙江杭州富阳区富阳中学高三上学期高考模拟(三校第一次联考)第22题15分2021年浙江金华浦江县浙江省浦江中学高三上学期高考模拟(三校第一次联考)第22题15分 已知函数f (x )=e x +ax 2,其中e =2.71828⋯⋯是自然对数的底数.(1) 若g (x )=f (x )x+1(x ≠−1)有三个极值点x 1,x 2,x 3.① 求实数a 的范围.② 求证:x 1+x 2+x 3>−2.(2) 若y =f (x )有三个零点x 1,x 2,x 3,且x 1<x 2<x 3,求证:−√−1a+1<x 1<0.1 、【答案】 C;2 、【答案】 A;3 、【答案】 C;4 、【答案】 C;5 、【答案】 C;6 、【答案】 B;7 、【答案】 D;8 、【答案】 A;9 、【答案】 A;10 、【答案】 D;11 、【答案】 抛物线;12 、【答案】 1;5+√52+√212; 13 、【答案】 63;−180;14 、【答案】 −512;−119169; 15 、【答案】 3;1;16 、【答案】 1;第11页, 共11页 17 、【答案】 2e ;18 、【答案】 当选①A +C =2B ,sinA ⋅sinB ⋅sinC ∈(0,3√38]; 当选②a +c =2b ,sinA ⋅sinB ⋅sinC ∈(0,3√38]. ;19 、【答案】 (1) 证明见解析. ;(2) √10251.;20 、【答案】 (1) q ⩾√33. ;(2) 证明见解析.;21 、【答案】 (1) x 24+y 2=1.;(2) 证明见解析.;22 、【答案】 (1)① a <−1e 且a ≠−12.② 证明见解析.;(2) 证明见解析.;。
浙江省2021届高三数学第一次联考试题(含解析)一、选择题1.已知集合{|(3)(1)0}A x x x =-+>,{1|1}B xx =->‖,则()R C A B ⋂=( ) A. [1,0)(2,3]-B. (2,3]C. (,0)(2,)-∞+∞D. (1,0)(2,3)-【答案】A 【解析】 【分析】解一元二次不等式和绝对值不等式,化简集合A , B 利用集合的交、补运算求得结果.【详解】因为集合{|(3)(1)0}A x x x =-+>,{1|1}B xx =->‖, 所以{|3A x x =>或1}x <-,{|2B x x =>或0}x <, 所以{|13}R C A x x =-≤≤,所以()R C A B ⋂={|23x x <≤或10}x -≤<,故选A.【点睛】本题考查一元二次不等式、绝对值不等式的解法,考查集合的交、补运算.2.已知双曲线22:193x y C -=,则C 的离心率为( )A.2C.3D. 2【答案】C 【解析】 【分析】由双曲线的方程得229,3a b ==,又根据222c a b =+,可得,a c 的值再代入离心率公式.【详解】由双曲线的方程得229,3a b ==,又根据2229312c a b =+=+=,解得:3,a c ==3c e a ==,故选C.【点睛】本题考查离心率求法,考查基本运算能力.3.已知,a b 是不同的直线,αβ,是不同的平面,若a α⊥,b β⊥,//a β,则下列命题中正确的是( ) A. b α⊥ B. //b αC. αβ⊥D. //αβ【答案】C 【解析】 【分析】构造长方体中的线、面与直线,,,a b αβ相对应,从而直观地发现αβ⊥成立,其它情况均不成立.【详解】如图在长方体1111ABCD A B C D -中,令平面α为底面ABCD ,平面β为平面11BCC B ,直线a 为1AA若直线AB 为直线b ,此时b α⊂,且αβ⊥,故排除A,B,D ;因为a α⊥,//a β,所以β内存在与a 平行的直线,且该直线也垂直α,由面面垂直的判定定理得:αβ⊥,故选C.【点睛】本题考查空间中线、面位置关系,考查空间想象能力,求解时要排除某个答案必需能举出反例加以说明.4.已知实数,x y满足312(1)xx yy x≤⎧⎪+≥⎨⎪≤-⎩,则2z x y=+的最大值为()A. 11B. 10C. 6D. 4【答案】B【解析】【分析】画出约束条件所表示的可行域,根据目标函数2z x y=+的几何意义,当直线2y x z=-+在y 轴上的截距达到最大时,z取得最大值,观察可行域,确定最优解的点坐标,代入目标函数求得最值.【详解】画出约束条件312(1)xx yy x≤⎧⎪+≥⎨⎪≤-⎩所表示的可行域,如图所示,根据目标函数2z x y=+的几何意义,当直线2y x z=-+在y轴上的截距达到最大时,z取得最大值,当直线过点(3,4)A时,其截距最大,所以max23410z=⨯+=,故选B.【点睛】本题考查线性规划,利用目标函数的几何意义,当直线2y x z=-+在y轴上的截距达到最大时,z取得最大值,考查数形结合思想的应用.5.已知圆C的方程为22(3)1x y-+=,若y轴上存在一点A,使得以A为圆心、半径为3的圆与圆C有公共点,则A的纵坐标可以是()A. 1B. –3C. 5D. -7【答案】A 【解析】 【分析】设0(0,)A y ,以A 为圆心、半径为3的圆与圆C 有公共点,可得圆心距大于半径差的绝对值,同时小于半径之和,从而得到0y <<【详解】设0(0,)A y,两圆的圆心距d =因为以A 为圆心、半径为3的圆与圆C 有公共点,所以313124d -<<+⇒<<,解得0y <<B 、C 、D 不合题意,故选A.【点睛】本题考查两圆相交的位置关系,利用代数法列出两圆相交的不等式,解不等式求得圆心纵坐标的范围,从而得到圆心纵坐标的可能值,考查用代数方法解决几何问题.6.已知函数221,0()log ,0x x f x x x ⎧+-≤=⎨>⎩,若()1f a ≤,则实数a 的取值范围是( ) A. (4][2,)-∞-+∞ B. [1,2]-C. [4,0)(0,2]-D. [4,2]-【答案】D 【解析】 【分析】不等式()1f a ≤等价于0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩分别解不等式组后,取并集可求得a 的取值范围.【详解】()1f a ≤⇔0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩,解得:40a -≤≤或02a <≤,即[4,2]a ∈-,故选D.【点睛】本题考查与分段函数有关的不等式,会对a 进行分类讨论,使()f a 取不同的解析式,从而将不等式转化为解绝对值不等式和对数不等式.7.已知函数()ln(||)cos f x x x =⋅,以下哪个是()f x 的图象( )A. B.C. D.【答案】B 【解析】 【分析】由2x π=时的函数值,排除C,D ;由2x π=的函数值和322x ππ<<函数值的正负可排除A. 【详解】当2x π=时,(2)ln 20f ππ=>排除C,D , 当2x π=时,()02f π=,当322x ππ<<时,ln 0,cos 0x x ><, 所以()0f x <排除A, 故选B.【点睛】本题考查通过研究函数解析式,选择函数对应的解析式,注意利用特殊值进行检验,考查数形结合思想的运用.8.在矩形ABCD 中,4AB =,3AD =,E 为边AD 上的一点,1DE =,现将ABE ∆沿直线BE 折成A BE ∆',使得点A '在平面BCDE 上的射影在四边形BCDE 内(不含边界),设二面角A BE C '--的大小为θ,直线A B ','A C 与平面BCDE 所成的角分别为,αβ,则( )A. βαθ<<B. βθα<<C. αθβ<<D. αβθ<<【答案】D 【解析】 【分析】由折叠前后图象的对比得点A '在面BCDE 内的射影'O 在线段OF 上,利用二面角、线面有的定义,求出tan ,tan ,tan αβθ的表达式,再进行大小比较.【详解】如图所示,在矩形ABCD 中,过A 作AF BE ⊥交于点O ,将ABE ∆沿直线BE 折成A BE ∆',则点A '在面BCDE 内的射影'O 在线段OF 上,设A '到平面BCDE 上的距离为h ,则''h AO =,由二面角、线面角的定义得:'tan h O O θ=,'tan h O B α=,'tan hO Cβ=,显然'''',O O O B O O O C <<,所以tan θ最大,所以θ最大, 当'O 与O 重合时,max (tan )h OB α=,min (tan )h OCβ=, 因为h OB <hOC,所以max (tan )α<min (tan )β,则tan tan αβ<,所以αβ<, 所以αβθ<<,故选D.【点睛】本题以折叠问题为背景,考查二面角、线面角大小比较,本质考查角的定义和正切函数的定义,考查空间想象能力和运算求解能力.9.已知函数2()(,R)f x x ax b a b =++∈有两个零点,则“20a b -≤+≤”是“函数()f x 至少有一个零点属于区间[0]2,”的一个( )条件 A. 充分不必要 B. 必要不充分 C. 充分必要 D. 既不充分也不必要【答案】A 【解析】 【分析】函数2()(,R)f x x ax b a b =++∈有两个零点,所以判别式240a b ∆=->,再从函数在[0]2,上的零点个数得出相应条件,从而解出+a b 的范围.【详解】函数2()(,R)f x x ax b a b =++∈有两个零点,所以判别式240a b ∆=->,函数()f x 至少有一个零点属于区间[0]2,分为两种情况: (1)函数()f x 在区间[0]2,上只有一个零点0,(0)(2)0,f f ∆>⎧⇔⎨⋅≤⎩2222(0)(2)(42)2424f f b a b b ab b b ab a b a ⋅=++=++=+++- 22()40a b b a =++-≤,即22()4a b a b +≤-又因为240a b ->,所以,a b ≤+≤(2)函数()f x 在[0]2,上有2个零点0,(0)0,(2)420,02,2f b f a b a ∆>⎧⎪=≥⎪⎪⇔⎨=++≥⎪⎪<-<⎪⎩解得:20a b -≤+≤; 综上所述“函数()f x 至少有一个零点属于区间[0]2,”⇔20a b -≤+≤或a b ≤+≤所以20a b -≤+≤⇒20a b -≤+≤或a b ≤+≤ 而后面推不出前面(前面是后面的子集),所以“20a b -≤+≤”是“函数()f x 至少有一个零点属于区间[0]2,”的充分不必要条件,故选A.【点睛】本题考查二次函数的性质、简易逻辑的判定方法,考查推理能力与计算能力,属于基础题.10.已知数列{}n a 满足:1102a <<,()1ln 2n n n a a a +=+-.则下列说法正确的是( ) A. 2019102a << B. 2019112a <<C. 2019312a <<D. 2019322a <<【答案】B 【解析】 【分析】考察函数()ln(2)(02)f x x x x =+-<<,则'11()1022xf x x x-=-=>--先根据单调性可得1n a <,再利用单调性可得1231012n a a a a <<<<<<<<.【详解】考察函数()ln(2)(02)f x x x x =+-<<,由'11()1022xf x x x-=-=>--可得()f x ()0,1单调递增,由'()0f x <可得()f x 在()1,2单调递减且()()11f x f ≤=,可得1n a <,数列{}n a 为单调递增数列, 如图所示:且1(0)ln 2ln 4ln 2f e ==>=,211()(0)2a f a f =>>,图象可得1231012n a a a a <<<<<<<<,所以2019112a <<,故选B. 【点睛】本题考查数列通项的取值范围,由于数列是离散的函数,所以从函数的角度来研究数列问题,能使解题思路更简洁,更容易看出问题的本质,考查数形结合思想和函数思想.二、填空题11.复数2(1)1i z i-=+(i 为虚数单位),则z 的虚部为_____,||z =__________.【答案】 (1). -1 (2). 2 【解析】 【分析】复数z 进行四则运算化简得1i z =--,利用复数虚部概念及模的定义得虚部为1-,模为2.【详解】因为2(1)2(1)11(1)(1)i i i z i i i i ---===--++-,所以z 的虚部为1-,22||(1)12z =-+=,故填:1-;2.【点睛】本题考查复数的四则运算及虚部、模的概念,考查基本运算能力.12.某几何体的三视图为如图所示的三个正方形(单位:cm ),则该几何体的体积为_____3cm ,表面积为____2cm .【答案】 (1). 233(2). 23 【解析】 【分析】判断几何体的形状,利用三视图的数据求解几何体的体积与表面积. 【详解】由题意可知几何体为正方体去掉一个三棱锥的多面体,如图所示:正方体的棱长为2,去掉的三棱锥的底面是等腰直角三角形,直角边长为1,棱锥的高为2, 所以多面体的体积为:1123222112323⨯⨯-⨯⨯⨯⨯=3cm , 表面积为:2212116222(5)()11212232222⨯⨯+⨯⨯--⨯⨯-⨯⨯⨯=2cm【点睛】本题考查几何体的三视图的应用,几何体的体积与表面积的求法,考查空间想象能力和运算求解能力.13.若7280128(2)(21)x x a a x a x a x +-=++++,则0a =______,2a =_____.【答案】 (1). –2 (2). –154 【解析】 【分析】令0x =得:02a =-,求出两种情况下得到2x 项的系数,再相加得到答案. 【详解】令0x =得:02a =-,展开式中含2x 项为:(1)当(2)x +出x ,7(21)x -出含x 项,即1617(2)(1)T x C x =⋅⋅⋅-; (2)当(2)x +出2,7(21)x -出含2x 项,即225272(2)(1)T C x =⋅⋅⋅-; 所以2a =1277224(1)154C C ⋅+⋅⋅⋅-=-,故填:2-;154-.【点睛】本题考查二项式定理展开式中特定项的系数,考查逻辑推理和运算求解,注意利用二项式定理展开式中,项的生成原理进行求解.14.在ABC ∆中,90ACB ∠=︒,点,D E 分别在线段,BC AB 上,36AC BC BD ===,60EDC ∠=︒,则BE =________,cos CED ∠=________.【答案】 (1). 326+ (2). 2 【解析】 【分析】在BDE ∆中利用正弦定理直接求出BE ,然后在CEB ∆中用余弦定理求出CE ,再用余弦定理求出cos CEB ∠,进一步得到cos CED ∠的值.【详解】如图ABC ∆中,因为60EDC ∠=︒,所以120EDB ∠=︒, 所以sin sin BE BD EDB BED =∠∠,即2sin120sin15BE =,解得:33326sin152321BE ===+⋅-⋅在CEB ∆中,由余弦定理,可得:2222cos CE BE CB BE CB B =+-⋅2242(422)=-=-,所以422CE =-2221cos 22CE BE CB CEB CE BE +-∠==⋅,CEB 60,︒∠=CED CEB BED 45∠=∠-∠=,所以2cos 2CED ∠=326;22.【点睛】本题考查正弦定理和余弦定理在三角形中的运用,求解过程中注意把相关的量标在同一个三角形中,然后利用正、余弦定理列方程,考查方程思想的应用.15.某高三班级上午安排五节课(语文,数学,英语,物理,体育),要求语文与英语不能相邻、体育不能排在第一节,则不同的排法总数是_______(用数字作答). 【答案】60 【解析】 【分析】先求出体育不能排在第一节的所有情况,从中减去体育不能排在第一节,且语文与英语相邻的情况,即为所求.【详解】体育不能排在第一节,则从其他4门课中选一门排在第一节,其余的课任意排,它的所有可能共有144496A A ⋅=种.其中,体育不能排在第一节,若语文与英语相邻,则把语文与英语当做一节,方法有22A 种,则上午相当于排4节课,它的情况有:13233236A A A ⋅⋅=种.故语文与英语不能相邻,体育不能排在第一节,则所有的方法有963660-=种.【点睛】本题考查用间接法解决分类计数原理问题,以及特殊元素特殊处理,属于中档题.16.已知,A B 是抛物线24y x =上的两点,F 是焦点,直线,AF BF 的倾斜角互补,记,AF AB 的斜率分别为1k ,2k ,则222111k k -=____. 【答案】1 【解析】 分析】设1122(,),(,)A x y B x y ,由抛物线的对称性知点22(,)x y -在直线AF 上,直线1:(1)AF y k x =-代入24y x =得到关于x 的一元二次方程,利用韦达定理得到12,k k 的关系,从而求得222111k k -的值. 【详解】设1122(,),(,)A x y B x y ,由抛物线的对称性知点22(,)x y -在直线AF 上,直线1:(1)AF y k x =-代入24y x =得:2222111(24)0k x k x k -++=,所以2112211224,1,k x x k x x ⎧++=⎪⎨⎪=⎩,因为2221122221121121212y y k k k x x k x x x x x x -==⇒==-++++,所以212222211111111k k k k k +-=-=,故填:1. 【点睛】本题考查直线与抛物线的位置关系,会用坐标法思想把所要求解的问题转化成坐标运算,使几何问题代数化求解.17.已知非零平面向量,a b 不共线,且满足24a b a ⋅==,记3144c a b =+,当,b c 的夹角取得最大值时,||a b -的值为______. 【答案】4 【解析】 【分析】先建系,再结合平面向量数量积的坐标及基本不等式的应用求出向量b ,进而通过运算求得||a b -的值.【详解】由非零平面向量,a b 不共线,且满足24a b a ⋅==,建立如图所示的平面直角坐标系:则(2,0),(2,),0A B b b >,则(2,0),(2,)a b b ==,由3144c a b =+,则(2,)4b C , 则直线,OB OC 的斜率分别为,28b b, 由两直线的夹角公式可得:3328tan BOC 841282b b b b b b -∠==≤=+⨯+,当且仅当82bb =,即4b =时取等号,此时(2,4)B ,则(0,4)a b -=-, 所以||4a b -=,故填:4.【点睛】本题考查平面向量数量积的坐标运算及基本不等式求最值的运用,考查转化与化归思想,在使用基本不等式时,注意等号成立的条件.三、解答题18.已知函数2()cos cos f x x x x =+. (1)求3f π⎛⎫⎪⎝⎭的值; (2)若13,0,2103f απα⎛⎫⎛⎫=∈⎪ ⎪⎝⎭⎝⎭,求cos α的值. 【答案】(1)1;(2) 4cos 10α= 【解析】 【分析】(1)利用倍角公式、辅助角公式化简1()sin 226f x x π⎛⎫=++ ⎪⎝⎭,再把3x π=代入求值; (2)由13,0,2103f απα⎛⎫⎛⎫=∈⎪ ⎪⎝⎭⎝⎭,43sin ,cos 6565ππαα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭,利用角的配凑法得:66ππαα=+-,再利用两角差的余弦公式得cos α=. 【详解】解:(1)因为21cos21()cos cos sin 22226x f x x x x x x π+⎛⎫=+=+=++ ⎪⎝⎭,所以121511sin sin 132362622f ππππ⎛⎫⎛⎫=++=+=+=⎪⎪⎝⎭⎝⎭. (2)由13,0,2103f απα⎛⎫⎛⎫=∈⎪ ⎪⎝⎭⎝⎭得43sin ,cos 6565ππαα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭, 334cos cos cos cos sin sin 66666610ππππππαααα+⎛⎫⎛⎫⎛⎫=+-=+++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 【点睛】本题考查三角恒等变换中的倍角公式、辅助角公式、两角差的余弦公式等,考查角的配凑法,考查运算求解能力.19.在三棱柱111ABC A B C -中,底面ABC ∆是等腰三角形,且90ABC ∠=︒,侧面11ABB A 是菱形,160BAA ∠=︒,平面11ABB A ⊥平面BAC ,点M 是1AA 的中点.(1)求证:1BB CM ⊥;(2)求直线BM 与平面1CB M 所成角的正弦值.【答案】(1) 证明见解析;10【解析】 【分析】(1)证明直线1BB 垂直CM 所在的平面BCM ,从而证明1BB CM ⊥;(2)以A 为原点,BC 为x 轴正方向,AB 为y 轴正方向,垂直平面ABC 向上为z 轴正方向建立平面直角坐标系,设2AB =,线面角为θ,可得面1B MC 的一个法向量(23,3,5)n =-,330,,22BM ⎛⎫=- ⎪ ⎪⎝⎭,代入公式sin |cos ,|n BM θ=<>进行求值. 【详解】(1)证明:在Rt ABC ∆中,B 是直角,即BC AB ⊥,平面ABC ⊥平面11AA B B , 平面ABC平面11AA B B AB =,BC ⊂平面ABC ,BC ∴⊥平面11AA B B AB =,1BC B B ∴⊥.在菱形11AA B B 中,160A AB ︒∠=,连接BM ,1A B 则1A AB ∆是正三角形,∵点M 是1AA 中点,1AA BM ∴⊥. 又11//AA B B ,1BB BM ∴⊥.又BMBC B =,1BB ∴⊥平面BMC1BB MC ∴⊥.(2)作1BG MB ⊥于G ,连结CG .由(1)知BC ⊥平面11AA B B ,得到1BC MB ⊥, 又1BG MB ⊥,且BCBG B =,所以1MB ⊥平面BCG .又因为1MB ⊂平面1CMB ,所以1CMB ⊥BCG , 又平面1CMB 平面BCG CG =,作BH CG ⊥于点H ,则BH ⊥平面1CMB ,则BMH ∠即为所求线面角. 设 2AB BC ==, 由已知得1221302,3,BB BM BG BH ====sinBHBMHBM∠===,则BM与平面1CB M所成角的正弦值为5.【点睛】本题考查空间中线面垂直判定定理、求线面所成的角,考查空间想象能力和运算求解能力.20.已知数列{}n a为等差数列,n S是数列{}n a的前n项和,且55a=,36S a=,数列{}n b满足1122(22)2n n na b a b a b n b+++=-+.(1)求数列{}n a,{}n b的通项公式;(2)令*,nnnac n Nb=∈,证明:122nc c c++<.【答案】(1) n a n=.2nnb=. (2)证明见解析【解析】【分析】(1)利用55a=,36S a=得到关于1,a d的方程,得到na n=;利用临差法得到12nnbb-=,得到{}n b是等比数列,从而有2nnb=;(2)利用借位相减法得到12111121222222n n nn n-+++++-=-,易证得不等式成立. 【详解】(1)设等差数列{}n a的公差为d,11145335a da d a d+=⎧∴⎨+=+⎩,解得111ad=⎧⎨=⎩,∴数列{}n a的通项公式为n a n=.122(22)2n nb b nb n b∴++=-+,当2n≥时,12112(1)(24)2n nb b n b n b--++-=-+11(24)(2)2nn n n b n b n b b --⇒-=-⇒=, 即{}n b 是等比数列,且12b =,2q =,2n n b ∴=. (2)2n n n n a nc b ==,记121212222n nn S c c c =++=++⋯+, 则1212321222n nS -=++++, 1211112212222222n n n n n S S S -+∴=-=++++-=-<.【点睛】本题考查数列通项公式、前n 项和公式等知识的运用,考查临差法、错位相减法的运用,考查运算求解能力.21.已知抛物线24x y =,F 为其焦点,椭圆22221(0)x y a b a b+=>>,1F ,2F 为其左右焦点,离心率12e =,过F 作x 轴的平行线交椭圆于,P Q 两点,46||3PQ =.(1)求椭圆的标准方程;(2)过抛物线上一点A 作切线l 交椭圆于,B C 两点,设l 与x 轴的交点为D ,BC 的中点为E ,BC 的中垂线交x 轴为K ,KED ∆,FOD ∆的面积分别记为1S ,2S ,若121849S S =,且点A 在第一象限.求点A 的坐标.【答案】(1)22143x y+=. (2) ()2,1【解析】【分析】(1)由题设可知26,13P⎛⎫⎪⎝⎭,又12e=,把,a b均用c表示,并把点26,13P⎛⎫⎪⎝⎭代入标圆方程,求得1c=;(2)根据导数的几可意义求得直线BC的方程,根据韦达定理及中点坐标公式求得点E的坐标,求得中垂线方程,即可求得K点坐标,根据三角形面积公式,即可求得点A坐标. 【详解】(1)不妨设P在第一象限,由题可知26,1P⎛⎫⎪⎝⎭,228113a b∴+=,又12e=,22811123c c∴+=,可得1c=,椭圆的方程为22143x y+=.(2)设2,4xA x⎛⎫⎪⎝⎭则切线l的方程为20024x xy x=-代入椭圆方程得:()422300031204xx x x x+-+-=,设()()()112233,,,,,B x yC x y E x y,则()31232223xx xxx+==+,()2200033232443x x xy xx=-=-+,KE 的方程为()()230022000324323x x y x x x x ⎡⎤+=--⎢⎥++⎢⎥⎣⎦, 即()20200243x y x x x =-++, 令0y =得()32083K x x x =+, 在直线l 方程中令0y =得02D x x =, 222004124x x FD +⎛⎫=+=⎪⎝⎭()()()23000022003428383x x x x DK x x +=-=++,002,2FD BC x k k x =-=, 1FD BC k k ∴⋅=-,FD BC ⊥,DEK FOD ∴∆∆∽,()()22200122220941849163x x S DK S FD x +∴===+. 化简得()()2200177240x x+-=,02x ∴=(02x =-舍去)A ∴的坐标为()2,1.()4223031204x x x x x +-+-=,()()462420000431234814404x x x x x ⎛⎫∆=-+-=---≥ ⎪⎝⎭,因为2008x ≤≤+【点睛】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理、中点坐标公式、三角形的面积公式,考查逻辑推理和运算求解能力.22.设a 为实常数,函数2(),(),xf x axg x e x R ==∈.(1)当12a e=时,求()()()h x f x g x =+的单调区间; (2)设m N *∈,不等式(2)()f x g x m +≤的解集为A ,不等式()(2)f x g x m +≤的解集为B ,当(]01a ∈,时,是否存在正整数m ,使得A B ⊆或B A ⊆成立.若存在,试找出所有的m ;若不存在,请说明理由.【答案】(1) ()h x 在(),1-∞-上单调递减,在()1,-+∞上单调递增.(2)存在,1m =【解析】【分析】(1)当12a e =时得21()2x h x x e e=+,求导后发现()h x '在R 上单调递增,且(1)0h '-=,从而得到原函数的单调区间;(2)令2()(2)()4x F x f x g x ax e =+=+,22()()(2)x G x f x g x ax e =+=+,利用导数和零点存在定理知存在120x x <≤,使得()()12F x F x m ==,再对m 分1m =和1m 两种情况进行讨论.【详解】解:(1)21()2x h x x e e =+,1()x h x x e e'=+, ∵()h x '在R 上单调递增,且(1)0h '-=,∴()h x '在(),1-∞-上负,在()1,-+∞上正, 故()h x 在(),1-∞-上单调递减,在()1,-+∞上单调递增.(2)设2()(2)()4x F x f x g x ax e =+=+,22()()(2)xG x f x g x ax e =+=+ ()8x F x ax e '=+,()80x F x a e ''=+>,()F x '∴单调递增.又(0)0F '>,0F '⎛ < ⎪ ⎪⎝⎭(也可依据lim ()0x F x '→-∞<), ∴存在00 x <使得()00F x '=,故()F x 在()0,x -∞上单调递减,在()0,x +∞上单调递增.又∵对于任意*m N ∈存在ln x m >使得()F x m >,又lim ()x F x →-∞→+∞,且有()0(0)1F x F m <=≤,由零点存在定理知存在120x x <≤,使得()()12F x F x m ==,故[]34,B x x =.()()222()()4x x F x G x ax e ax e -=---,令2()xH x ax e =-,由0a >知()H x 在(,0)-∞上单调递减,∴当0x <时,()()(2 )()0F x G x H x H x -=->又∵m 1≥,3x 和1x 均在各自极值点左侧,结合()F x 单调性可知()()()133F x m G x F x ==<,310x x ∴<<当1m =时,240x x ==, A B ∴⊆成立,故1m =符合题意.当0x >时,2222()()33x x x x F x G x ax e e x e e -=+-≤+-, 令1()2ln P t t t t =--,则22(1)()0t P t t '-=>, ∴当1t >时,()(1)0P t P >=. 在上式中令2x t e =,可得当0x >时,有22x xe e x -->成立, 322x x x e e xe ∴-> 令()2t Q t e t =-,则()2tQ t e '=-, ()(ln2)22ln20Q t Q ∴≥=->,2x e ∴>恒成立. 故有32223x x x e e xe x ->>成立,知当0x >时,()()0F x G x -<又∵()F x ,()G x 在[)0,+∞上单调递增,∴当1m 时,()()()244F x m G x F x ==>,240x x ∴>>,而31 0x x <<,∴此时A B ⊆和B A ⊆均不成立.综上可得存在1m =符合题意.【点睛】本题考查利用导数研究函数的单调性、零点存在定理,特别要注意使用零点存在定理判断零点的存在性,要注意说明端点值的正负.同时,对本题对构造法的考查比较深入,对逻辑推理、运算求解的能力要求较高,属于难题.。