当前位置:文档之家› 专题02 函数概念与基本初等函数第三讲 指数函数、对数函数、幂函数(解析版)

专题02 函数概念与基本初等函数第三讲 指数函数、对数函数、幂函数(解析版)

专题02 函数概念与基本初等函数第三讲 指数函数、对数函数、幂函数(解析版)
专题02 函数概念与基本初等函数第三讲 指数函数、对数函数、幂函数(解析版)

专题02 函数概念与基本初等函数 第三讲 指数函数、对数函数、幂函数答案部分

2019年

1.

43【解析】存在t ∈R ,使得2|(2)()|3

f t f t +-≤, 即有33

2|(2)(2)|3a t t at t +-+-+≤,

化为2

2|2(364)2|3

a t t ++-≤,

可得2222(364)233a t t -++-, 即224(364)33

a t t ++, 由2

2

3643(1)11t t t ++=++, 可得403a

,可得a 的最大值为4

3

. 2.B 【解析】依题意

22log 0.2log 10

a ==<, 0.20

221b ==>,

因为0.3000.20.21=<<, 所以0.3

0.201c =∈(,),

所以a c b <<.故选B .

学习奥数的优点

1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。

2、训练学生良好的数学思维习惯和思维品质。要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。

3、锻炼学生优良的意志品质。可以培养持之以恒的耐心和克服困难的信心, 以及战胜难题的勇气。可以养成坚韧不拔的毅力

4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

3.A 【解析】由题意,可知5log 21a =<,

1151

2222

1

log 0.2log log 5log 5log 425

b --====>=. 0.20.51

c =<,所以b 最大,a ,c 都小于1.

因为5log 2a ==

15

0.2

10.52??==== ???

225log 42>=>

12?< ?c <, b . 2015-2018年

1.C 【解析】函数()()=++g x f x x a 存在 2个零点,即关于x 的方程()=--f x x a 有2

个不同的实根,即函数()f x 的图象与直线=--y x a 有2个交点,作出直线=--y x a 与函数()f x 的图象,如图所示,

由图可知,1-≤a ,解得1≥a ,故选C . 2.B 【解析】由0.2log 0.3a =得

0.31log 0.2a =,由2log 0.3b =得0.31

log 2b

=, 所以0.30.30.311log 0.2log 2log 0.4a b +=+=,所以1101a b <+<,得01a b

ab

+<

<. 又0a >,0b <,所以0ab <,所以0ab a b <+<.故选B .

3.D 【解析】因为2log e >1a =,ln 2(0,1)b =∈,1

222

1

log log 3log 13

c e ==>>.

所以c a b >>,故选D .

4.D 【解析】设235x

y

z

k ===,因为,,x y z 为正数,所以1k >,

则2log x k =,3log y k =,5log z k =, 所以

22lg lg 3lg 913lg 23lg lg8

x k y k =?=>,则23x y >,排除A 、B ;只需比较2x 与5z , 22lg lg 5lg 2515lg 25lg lg 32

x k z k =?=<,则25x z <,选D . 5.C 【解析】由题意()g x 为偶函数,且在(0,)+∞上单调递增,

所以22(log 5.1)(log 5.1)a g g =-= 又2222log 4log 5.1log 83=<<=,0.8

122<<,

所以0.8

22

log 5.13<<,故b a c <<,选C .

6.A 【解析】11

()3

()(3())()33

x

x x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln 33ln 30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .

7.D 【解析】设361

80310

M x N ==,两边取对数得,

361

36180803lg lg lg3lg10361lg38093.2810

x ==-=?-≈,

所以93.2810x =,即

M N

最接近9310,选D .

8.C 【解析】选项A ,考虑幂函数c

y x =,因为0c >,所以c

y x =为增函数,又1a b >>,

所以c

c

a b >,A 错.对于选项B ,c

c

ab ba <()c

b b a

a ?<

,又()x

b y a

=是减函数,所以B 错.对于选项D ,由对数函数的性质可知D 错,故选C .

9.A 【解析】因为4133216a ==,2155416b ==,13

25c =,且幂函数1

3

y x =在R 上单调递

增,指数函数16x

y =在R 上单调递增,所以b a c <<,故选A . 10.C 【解析】由于2(2)1log 43f -=+=,22log 121log 6

2(log 12)

226f ,

所以2(2)(log 12)f f -+=9.

11.C 【解析】如图,函数2log (1)y

x 的图象可知,2()log (1)f x x ≥的解集是

{|11}x x ≤.

(x +1)

12.C 【解析】因为函数()2

1x m

f x -=-为偶函数,所以0m =,即()21x

f x =-,

所以2

21

log log 3

30.521(log 3)log 21213123a f f ??===-=-=-= ??

?,()2log 5b f =

2log 5214=-=, ()02(0)210c f m f ===-=,所以c a b <<,故选C .

13.B 【解析】由指数函数的性质知,若3

33a

b ,则1a b ,由对数函数的性质,

得log 3log 3a b ;反之,取1

2

a

,13

b ,显然有log 3log 3a b ,此时01b a ,于是33

3a

b ,所以“333a

b

”是log 3log 3a b <的充分不必要条件,选B .

14.C 【解析】由()

(())2

f a f f a =可知()1f a ≥,则121a a ≥??≥?或1311

a a

3a ≥.

15.D 【解析】由图象可知01a <<,当0x =时,log ()log 0a a x c c +=>,得01c <<. 16.B 【解析】∵32log 71a >=>, 1.1

2

2b =>, 3.10.81c =<,所以b a c <<.

17.D 【解析】当1a >时,函数()(0)a

f x x x =>单调递增,函数()lo

g a g x x =单调递增,

且过点(1,0),由幂函数的图象性质可知C 错;当01a <<时,函数()(0)a

f x x x =>单调递增,函数()lo

g a g x x =单调递减,且过点(1,0),排除A ,又由幂函数的图象性质可知C 错,因此选D . 18.D 【解析】2

40x

,解得2x 或2x .由复合函数的单调性知()f x 的单调递增

区间为(,2)-∞-.

19.D 【解析】33log 61log 2,a ==+5577log 101log 2,log 141log 2b c ==+==+,

由下图可知D 正确.

解法二 3321log 61log 21log 3a ==+=+

,5521

log 101log 21log 5

b ==+=+, 7721

log 141log 21log 7

c ==+=+

,由222log 3log 5log 7<<,可得答案D 正确. 20.B 【解析】a ,b ,c ≠1. 考察对数2个公式:

a

b

b y x xy

c c a a a a log log log ,log log log =

+= 对选项A :b

a

b a b b

c c a c c a log log log log log log =

?=?,显然与第二个公式不符,所以

为假.对选项B :a

b

b b a b

c c a c c a log log log log log log =

?=?,显然与第二个公式一致,

所以为真.对选项C :c b bc a a a log log log ?=)(,显然与第一个公式不符,所以为假.对选项D :c b c b a a a

log log )log +=+(,同样与第一个公式不符,所以为假.所以选B .

21.D 【解析】取特殊值即可,如取lg lg lg lg 10,1,2

2,223,x y

x y x y +===+=

()lg lg11lg lg 22,21x y x y +?==.

22.C 【解析】因为函数()f x 是定义在R 上的偶函数,且12

2log log a a =-,

所以222122

(log )(log )(log )(log )2(log )2(1)f a f a f a f a f a f +=+-=≤,

即2(log )(1)f a f ≤,因为函数在区间[0,)+∞单调递增,所以2(log )(1)f a f ≤, 即2log 1a ≤,所以21log 1a -≤≤,解得122a ≤≤,即a 的取值范围是1,22??

????

,选C . 23.D 【解析】23lg 9lg 42lg 32lg 2

log 9log 44lg 2lg 3lg 2lg 3

?=

?=?=. 24.B 【解析】由指数函数与对数函数的图像知1201

1log 4

2

a a <??

,解得12a <<,故选B. 25.A 【解析】因为122.02.022)2

1

(<==-b ,所以a b <<1,

14log 2log 2log 25255<===c ,所以a b c <<,选A .

26.D 【解析】根据对数函数的性质得1x y >>.

27.D 【解析】当2

x a =时,2

lg 2lg 2y a a b ===,所以点2

(,2)a b 在函数lg y x =图象

上.

28.D 【解析】当1x ≤时12

2x

-≤,解得0x ≥,所以01x ≤≤;当1x >时,

21log 2x -≤,解得1

2

x ≥,所以1x >,综上可知0x ≥.

29.A 【解析】因为当x =2或4时,2

20x

x -=,所以排除B 、C ;当x =–2时,

21

24<04

x x -=

-,故排除D ,所以选A . 30.D 【解析】因为50log 41<<,所以b

211

log 2log 5log 102,10,m m m m a b

+=+==∴=

又0,m m >∴ 33.C 【解析】)()()(y x f a a a y f x f y

x y

x

+===+.

34.C 【解析】画出函数的图象,

如图所示,不妨设a b c <<,因为()()()f a f b f c ==,所以1ab =,c 的取值范围是(10,12),所以abc 的取值范围是(10,12).

35.C 【解析】由分段函数的表达式知,需要对a 的正负进行分类讨论。

2112

22

0<0()()log log log ()log ()

a a f a f a a a a a >????

>-???>->-????或

01101

12a a a a a a a <>??????>-<????

或或. 36.[2,)+∞【解析】要使函数()f x 有意义,则2log 10x -≥,即2x ≥,则函数()f x 的

定义域是[2,)+∞.

37.1-【解析】由题意()f x 为奇函数,所以α只能取1,1,3-,又()f x 在(0,)+∞上递减,

所以1α=-.

38.6a =【解析】由题意2625=+p p

ap ,21

25

=-+q q aq ,上面两式相加, 得22122+=++p q

p

q ap aq

,所以22+=p q a pq ,所以236=a , 因为0>a ,所以6=a .

39.4 2【解析】设log b a t =,则1t >,因为215

22

t t a b t +=?=?=,

因此2

2222, 4.b a b b a b b b b b b a =?=?=?==

40.(1,2)-【解析】由题意得:2212x x x -

3log 4=a ,∴3234=?=a a ,∴33

431322=+

=+-a a . 42.(,8]-∞【解析】当1x <时,由1

2x e

-≤得1ln 2x +≤,∴1x <;当1x ≥时,

由1

3

2x ≤得8x ≤,∴18x ≤≤,综上8x ≤. 43.(,0)-∞【解析】22lg ,0

()lg 2lg ||2lg(),0

x x f x x x x x >?===?

-

知单调递减区间是(,0)-∞. 44.14-

【解析】()2

22221()log (22log )log log 2

f x x x x x =?+=+

22111(log )244x =+--≥.当且仅当21

log 2

x =-,即2x =时等号成立.

45.1【解析】lg101==.

46.2【解析】由()1f ab =,得10ab =,于是2

2

2

2

()()lg lg f a f b a b +=+

2(lg lg )2lg()2lg102a b ab =+===.

47.

14【解析】 当1a >时,有214,a a m -==,此时1

2,2

a m ==,此时()g x =数,不合题意.若01a <<,则124,a a m -==,故11

,416

a m ==,检验知符合题意.

48.18【解析】222log log log a b ab +=,∵2ab ≥且0,0a b >>,

则39a

b

+=23318a b +==≥.当且仅当

2a b =,即2,1a b ==时等号成立,所以39a b +的最小值为18.

49.1

(,)2-+∞【解析】由题意知,函数)12(log )(5+=x x f 的定义域为1{|}2

x x >-,所

以该函数的单调增区间是1(,)2

-+∞.

幂函数、指数函数和对数函数_对数及其运算法则_教案

幂函数、指数函数和对数函数·对数及其运算法则·教案 如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作 logaN=b, 其中a叫做底数,N叫做真数,式子logaN叫做对数式. 练习1 把下列指数式写成对数形式: 练习2 把下列对数形式写成指数形式: 练习3 求下列各式的值: 因为22=4,所以以2为底4的对数等于2. 因为53=125,所以以5为底125的对数等于3. 师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么? 生:a>0且a≠1;b∈R;N∈R. 师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.) 生:由于在实数范围内,正数的任何次幂都是正数,因而ab=N中N总是正数. 师:要特别强调的是:零和负数没有对数. 师:定义中为什么规定a>0,a≠1? 生:因为若a<0,则N取某些值时,b可能不存在,如b=log(-2)8不存在;若a=0,则当N不为0时,b不存在,如log02不存在;当N为0时,b可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N 不为1时,b不存在,如log13不存在,N为1时,b可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1. 师:(板书)对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数,简记lgN;底数a=e时,叫做自然对数,记作lnN,其中e是个无理数,即e≈2.718 28……. 练习4 计算下列对数: lg10000,lg0.01,2log24,3log327,10lg105,5log51125. 师:请同学说出结果,并发现规律,大胆猜想. 生:2log24=4.这是因为log24=2,而22=4. 生:3log327=27.这是因为log327=3,而33=27. 生:10lg105=105. 生:我猜想alogaN=N,所以5log51125=1125. alogaN=N(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线) 证明:设指数等式ab=N,则相应的对数等式为logaN=b,所以ab=alogaN=N. 师:你是根据什么证明对数恒等式的? 生:根据对数定义. 师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知

对数指数函数公式全集

C 咨询电话:4006-211-001 WWW r haOfangfa COm 1 指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 a . 1及O ::: a ::: 1两种不同情况。 1、指数函数: 定义:函数y =a x a . 0且a --1叫指数函数。 定义域为R 底数是常数,指数是自变量。 认识。 图象特征 函数性质 (1)图象都位于X 轴上方; (1)X 取任何实数值时,都有 a X A0 ; (2)图象都经过点(0, 1); (2)无论a 取任何正数,X = 0时,y = 1 ; (3) y — 2 , y — 10在第一象限内的纵坐 \ > 0 ,贝U a X A 1 (3)当 a > 1 时,{ →, X 标都大于1,在第二象限内的纵坐标都小于 1, < < 0 ,贝U a <1 X A 0 ,贝U a x V 1 y = — [的图象正好相反; 当 0 ca c1 时,< X £ 0 ,贝U a x A 1 k (4) y =2X , y=10X 的图象自左到右逐渐 (4)当a >1时,y =a x 是增函数, 当0cac1时,y=a x 是减函数。 为什么要求函数 y = a 中的a 必须a . 0且a = 1。 X 因为若a ::;0 时, X 1、对三个指数函数 a = 0 , y = 0 a =1 时,y = 1 =1x 的反函数不存在, y =a x ,y =Iog a X 在

上升,y = f l]的图象逐渐下降。 k2 J ①所有指数函数的图象交叉相交于点(0,1),如y=2x和y=10x相交于(0,1), 的图象在y =2x的图象的上方,当X :::0 ,刚好相反,故有1 0 2. 22及10 ^ ::: 2 ^。 步认识无限个函数的图象。 2、对数: 定义:如果a tl = N(a . 0且a ■■ 1),那么数b就叫做以a为底的对数,记作b = Iog a N (a是底数,N是 真数,log a N是对数式。) 由于N ^a b . 0故log a N中N必须大于0。 当N为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成 比较好办。 解:设Iog 0.32 X ■? 0 时,y = 10 % ②y =2x与y X 的图象关于y轴对称。 ③通过y = 2 X X 三个函数图象,可以画出任意一个函数y = a 示意图,如y =3x的图象,一定位于y =2x和y =IO x两个图象的中间,且过点(0, 1),从而y = X 也由关于y轴的对称性,可得的示意图,即通过有限个函数的图象进 再改写为指数式就

指数函数和对数函数

指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[-, 求a 的值. (二) 专题测试与练习:

指数函数与对数运算解读

指数函数与对数运算 一、选择题 1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .3124 3)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.对数式b a a =--)5(log 2中,实数a 的取值范围是 ( ) A .)5,(-∞ B .(2,5) C .),2(+∞ D . )5,3()3,2( 4.如果c b a x lg 5lg 3lg lg -+=,那么 ( ) A .x =a +3b -c B .c ab x 53= C .53 c ab x = D .x =a +b 3-c 3 5.已知指数函数()y f x =,且35 ()225 f -= ,则函数()y f x =的解析式是( ) A 、32 y x = B 、5x y -= C 、5 y x = D 、5x y = 6.设123()4a -=,144()3b =,3 43 ()2 c -=则,,a b c 的大小顺序是 ( ) A c a b << B c b a << C b a c << D b c a << 7.为了得到函数13()3 x y =?的图象,可以把函数1()3 x y =的图象 ( ) A 向左平移3个单位长度 B 向右平移3个单位长度 C 向左平移1个单位长度 D 向右平移1个单位长度 8.函数13x y =-的定义域是( ) A 、(,0]-∞ B 、(,1]-∞ C 、[0,)+∞ D 、[1,)+∞ 9. 若{} |2x M y y ==,{ } |1N x y x == -则M N = ( ) A {}|1y y > B {}|1y y ≥ C {}|0y y > D {}|0y y ≥ 10.函数?????>≤-=-0 ,0 ,12)(2x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或

指数函数和对数函数

第七讲: 指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e - 是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f -1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[- , 求a 的值. (二) 专题测试与练习: 一. 选择题 1. 设0x >且) (0,b a, ,1b a x x ∞+∈<<, 则a 、b 的大小关系是 ( ) A. 1a b << B. 1b a << C. a b 1<< D. b a 1<< 2. 如果1a 0<<, 那么下列不等式中正确的是 ( ) A. 21 31 )a 1()a 1(->- B. )a 1(log ) a 1(+- C. 2 3)a 1()a 1(+>- D. 1)a 1()a 1(>-+ 3. 已知x 1是方程3x lg x =+的一个根, 2x 是方程310x x =+的一个根, 那么21x x +的值 是 ( ) A. 6 B. 3 C. 2 D. 1 4. ,0z log log log y log log log x log log log 324243432===则z y x ++的值为 ( ) A. 50 B. 58 C. 89 D. 111 5. 当1a >时, 在同一坐标系中, 函数x a y -=与=y x log a 的图象是图中的 ( ) 6. 若函数)x (f 与=)x (g x ) 2 1 (的图象关于直线x y =对称, 则)x 4(f 2 -的单调递增区间是( ) A. ]2 ,2(- B. ) ,0[∞+ C. )2 ,0[ D. ]0 ,(-∞ 二. 填空题 7. 已知522x x =+-, 则=+-x x 88 . 8. 若函数=y 2x log 2+的反函数定义域为),3(∞+ , 则此函数的定义域为 . 9. 已知=y )ax 3(log a -在]2 ,0[上是x 的减函数, 则a 的取值范围是 . 10.函数=)x (f )1a ,0a (a x ≠>在]2 ,1[上的最大值比最小值大2 a , 则a 的值为 . 三. 解答题 11. 设 1x 0 <<, 试比较|)x 1(log a -|与|)x 1(log a +|的大小.

指数对数概念及运算公式

指数函数及对数函数重难点 根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根.即,若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . ②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 幂的有关概念: ①规定:1)∈???=n a a a a n ( N * , 2))0(10 ≠=a a , n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ), 2)r a a a s r s r ,0()(>=?、∈s Q ), 3)∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 例 求值 (1) 3 28 (2)2 125 - (3)()5 21- (4)() 43 8116- 例.用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)32 )(b a - (4)43 )(b a + (5)32 2b a ab + (6)42 33 )(b a + 例.化简求值

(1)0 121 32322510002.08 27)()()()(-+--+---- (2)2 11 5 3125.05 25 .231 1.0)32(256) 027.0(?? ????+-+-????? ?-- (3)=?÷ ?--3133 73 32 9a a a a (4)21 1511336622263a b a b a b ??????-÷- ??? ??????? = (5)6323 1.512??= 指数函数的定义: ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<a 时函数为增函数. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 例:比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.1 0.8 -与0.2 0.8 - ( 3 ) 1.70.3 与 0.93.1 例:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求 (0),(1),(3)f f f -的值. 思考:已知0.7 0.9 0.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 例 如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,则 d c b a ,,,与1的大小关系为 O x y a d c b

对数指数函数公式全集

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 14 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但 y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的 认识。 图象特征与函数性质:

对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10222--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ? ? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的 示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ? 13也由 关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0 故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 求lo g .032524?? ? ? ? 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524?? ? ? ?=x ,再改写为指数式就比较好办。 解:设log .032524?? ? ? ?=x

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结及练习题 一.指数函数 (一)指数及指数幂的运算 n m n m a a = s r s r a a a +=? rs s r a a =)( r r r b a ab =)( (二)指数函数及其性质 1.指数函数的概念:一般地,形如x a y =(0>a 且1≠a )叫做指数函数。 2.指数函数的图象和性质 10<a 6 54321 -1 -4-2 2460 1 6 5 4 3 2 1 -1 -4-2 246 1 定义域 R 定义域 R 值域y >0 值域y >0 在R 上单调递减 在R 上单调递增 非奇非偶函数 非奇非偶函数 定点(0,1) 定点(0,1) 二.对数函数 (一)对数 1.对数的概念:一般地,如果N a x =(0>a 且1≠a ),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做底数,N 叫做真数,N a log 叫做对数式。 2.指数式与对数式的互化 幂值 真数 x N N a a x =?=log 底数 指数 对数

3.两个重要对数 (1)常用对数:以10为底的对数N lg (2)自然对数:以无理数 71828.2=e 为底的对数N ln (二)对数的运算性质(0>a 且1≠a ,0,0>>N M ) ①MN N M a a a log log log =+ ②N M N M a a a log log log =- ③M n M a n a log log = ④换底公式:a b b c c a log log log =(0>c 且1≠c ) 关于换底公式的重要结论:①b m n b a n a m log log = ②1log log =?a b b a (三)对数函数 1.对数函数的概念:形如x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量。 2对数函数的图象及性质 01 32.5 2 1.51 0.5-0.5 -1-1.5-2-2.5 -1 1 23456780 1 1 32.5 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -2.5 -1 1 2345678 1 1 定义域x >0 定义域x >0 值域为R 值域为R 在R 上递减 在R 上递增 定点(1,0) 定点(1,0)

指数对数幂函数总结归纳

指数与指数幂的运算 【学习目标】 1.理解有理指数幂的含义,掌握幂的运算. 2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质. 4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指 数型函数、对数型函数进行变形处理. 5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质. 6.知道指数函数 与对数函数互为反函数(a >0,a ≠1). 【要点梳理】 要点一、幂的概念及运算性质 1.整数指数幂的概念及运算性质 2.分数指数幂的概念及运算性质 为避免讨论,我们约定a>0,n ,m ∈N *,且 m n 为既约分数,分数指数幂可如下定义: 3.运算法则 当a >0,b >0时有: (1)n m n m a a a +=?; (2)()mn n m a a =; (3)()0≠>=-a n m a a a n m n m ,; (4)()m m m b a ab =. 要点诠释: (1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算; (2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-; (3)幂指数不能随便约分.如2 142 )4()4(-≠-. 要点二、根式的概念和运算法则 1.n 次方根的定义: 若x n =y(n ∈N * ,n>1,y ∈R),则x 称为y 的n 次方根,即x=n y . n 为奇数时, y 的奇次方根有一个,是负数,记为n y ;零的奇次方根为零,记为00=n ; n 为偶数时,正数y 的偶次方根有两个,记为n y ±;负数没有偶次方根;零的偶次方根为零,记为00n =. 2.两个等式 (1)当1n >且*n N ∈时, ()n n a a =; (2)???=)(||) (,为偶数为奇数n a n a a n n 要点诠释: ①计算根式的结果关键取决于根指数n 的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成||a 的形式,这样能避免出现错误. ②指数幂的一般运算步骤 有括号先算括号里的;无括号先做指数运算. 负指数幂化为正指数幂的倒数. 底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数(如 ),先要化成假分数(如15/4),

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

指数、对数函数公式及练习

高加索教育指数函数和对数函数总结练习典藏版 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,log 在a >1及 01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的 反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的认识。 图象特征与函数性质: 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10 22 2--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,

如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ?13也由关于y 轴的对 称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以 a 为底N 的对数,记作 b N a =log (a 是底数,N 是真 数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零或负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算:() 3 13 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+, ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1 3、对数函数: 定义:指数函数y a a a x =>≠()01且的反函数 y x a =log x ∈+∞(,)0叫做对数函数。 1、对三个对数函数y x y x ==log log 212 ,, y x =lg 的图象的认识。 图象特征与函数性质: (1)所有对数函数的图象都过点(1,0),但是y x =log 2与y x =lg 在点(1,0)曲线是交叉的,即当x >0时, y x =log 2的图象在y x =lg 的图象上方;而01<;log .lg .20101<。 (2)y x =log 2的图象与y x =log 12 的图象关于x 轴对称。

指数函数、对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ g123 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

对数函数公式.pdf

指数函数和对数函数 y a a a x =>≠01且定义域为R ,底数是常数,指数是自变量。a 必须a a >≠01且。 如果 a N a a =>≠()01且,那么数 b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对 数式。)由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在 求35x =中的x ,化为对数式x =log 35即成。 对数恒等式:由a N b N b a ==()log ()12a N a N log =对数的性质:①负数和零没有对数; ②1的对数是 零; ③底数的对数等于1。对数的运算法则: ()() log log log a a a MN M N M N R =+∈+ , ()log log log a a a M N M N M N R =?∈+,()() log log a n a N n N N R =∈+ () log log a n a N n N N R =∈+1 3、对数函数:定义:指数函数y a a a x =>≠()01且的反函数y x a =log x ∈+∞(,)0叫做对数函数。 1、对三个对数函数y x y x ==log log 212 ,,y x =lg 的图象的认识。:

4、对数换底公式: log log log log (.)log b a a n e g N N b L N N e N L N N = ===其中…称为的自然对数称为常数对数 27182810 由换底公式可得: L N N e N N n = ==lg lg lg ..lg 04343 2303 由换底公式推出一些常用的结论: (1) log log log log a b a b b a b a = =11或· (2)log log a m a n b m n b = (3)log log a n a n b b = (4)

指数函数和对数函数公式(全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a x ,y log a x 在 a 1及 0 a 1两种不同情况。 1、指数函数: y x 且a 叫指数函数。 定义:函数 aa 0 1 定义域为 R ,底数是常数,指数是自变量。 为什么要求函数 y a x 中的 a 必须 a 0且a 1 。 因为若 a 0时, y 4 x ,当 x 1 时,函数值不存在。 4 a 0 , y 0x ,当 x 0 ,函数值不存在。 a 时, y 1 x x 虽有意义,函数值恒为 1,但 1 对一切 y 1x 的反函数不存在, 因 为 要 求 函 数 y a x 中 的 a 0且 a 1 。 x 1、对三个指数函数 y 2 x , y 1 ,y 10x 的图象的 2 认识。 图象特征与函数性质: 图象特征 函数性质 ( 1)图象都位于 x 轴上方; ( 1) x 取任何实数值时,都有 a x 0 ; 2 0 1 ); ( 2)无论 a 取任何正数, x 0 时, y 1 ; ( )图象都经过点( , ( 3) y 2x , y 10 x 在第一象限内的纵坐 ( 3)当 a x 0,则 a x 1 1 时, 0,则 a x 1 标都大于 1,在第二象限内的纵坐标都小于 1, x 1 y 2 x x 0,则 a x 1 当 0 的图象正好相反; a 1时, 0,则 a x 1 x ( 4) y 2x , y 10 x 的图象自左到右逐渐 ( 4)当 a 1 时, y a x 是增函数,

对数函数及其性质-对数的公式互化-详尽的讲解

2.1 对数与对数运算 1.对数的概念 一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 说明:(1)实质上,上述对数表达式,不过是指数函数y =a x 的另一种表达形式,例如:34=81与4=log 381这两个式子表达是同一关系,因此,有关系式a x =N ?x =log a N ,从而得对数恒等式:a log a N =N . (2)“log ”同“+”“×”“ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面. (3)根据对数的定义,对数log a N (a >0,且a ≠1)具有下列性质: ①零和负数没有对数,即N >0; ②1的对数为零,即log a 1=0; ③底的对数等于1,即log a a =1. 2.对数的运算法则 利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度. (1)基本公式 ①log a (MN )=log a M +log a N (a >0,a ≠1,M >0,N >0),即正数的积的对数,等于同一底数的各个因数的对数的和. ②log a M N =log a M -log a N (a >0,a ≠1,M >0,N >0),即两个正数的商的对数,等于被除数 的对数减去除数的对数. ③log a M n =n ·log a M (a >0,a ≠1,M >0,n ∈R ),即正数的幂的对数等于幂的底数的对数乘以幂指数. (2)对数的运算性质注意点 ①必须注意M >0,N >0,例如log a [(-3)×(-4)]是存在的,但是log a (-3)与log a (-4)均不存在,故不能写成log a [(-3)×(-4)]=log a (-3)+log a (-4). ②防止出现以下错误:log a (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N ,log a M N = log a M log a N ,log a M n =(log a M )n . 3.对数换底公式 在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底

高中数学-指数函数对数函数知识点

指数函数、对数函数知识点 知识点内容典型题 整数和有理指数幂的运算 a 0=1(a≠0);a-n= 1 a n (a≠0, n∈N*) a m n=n a m(a>0 , m,n∈N*, 且n>1) (a>0 , m,n∈N*, 且n>1) 当n∈N*时,(n a)n=a 当为奇数时,n a n=a 当为偶数时,n a n=│a│= a (a≥0) -a (a<0) 运算律:a m a n=a m + n (a m)n=a m n (ab)n=a n b n 1.计算: 2-1×6423=. 2. 224282=; 333363= . 3343427=; 393 36 = . 3.? - - + +-45 sin 2 )1 2 ( )1 2 (0 1 4. 指数函数的概念、图象与性质1、解析式:y=a x(a>0,且a≠1) 2、图象: 3、函数y=a x(a>0,且a≠1)的性质: ①定义域:R ,即(-∞,+∞) 值域:R+ , 即(0,+∞) ②图象与y轴相交于点(0,1). ③单调性:在定义域R上 当a>1时,在R上是增函数 当0<a<1时,在R上是减函数 ④极值:在R上无极值(最大、最小值) 当a>1时,图象向左与x轴无限接近; 当0<a<1时,图象向右与x轴无限接 近. ⑤奇偶性:非奇非偶函数. 5.指数函数y=a x(a>0且a≠1)的图象过 点(3,π) , 求f (0)、f (1)、f (-3)的值. 6.求下列函数的定义域: ①2 2x y- =;② 2 4 1 5- = - x y. 7.比较下列各组数的大小: ①1.22.5 1.22.51 , 0.4-0.10.4-0.2 , ②0.30.40.40.3, 233322. ③(2 3 )- 1 2,( 2 3 )- 1 3,( 1 2 )- 1 2 8.求函数 17 6 2 2 1+ - ? ? ? ? ? = x x y的最大值. 9.函数x a y)2 (- =在(-∞,+∞)上是减函数, 则a的取值范围( ) A.a<3 B.c C.a>3 D.2<a<3 10.函数x a y)1 (2- =在(-∞,+∞)上是减函 数,则a适合的条件是( ) A.|a|>1 B.|a|>2 C.a>2 D.1<|a|<2

相关主题
文本预览
相关文档 最新文档